Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (822)

Search Parameters:
Keywords = brain histology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1283 KiB  
Communication
Clinical Performance of Analog and Digital 18F-FDG PET/CT in Pediatric Epileptogenic Zone Localization: Preliminary Results
by Oreste Bagni, Roberta Danieli, Francesco Bianconi, Barbara Palumbo and Luca Filippi
Biomedicines 2025, 13(8), 1887; https://doi.org/10.3390/biomedicines13081887 - 3 Aug 2025
Viewed by 195
Abstract
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but [...] Read more.
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but its performance in pediatric epilepsy remains untested. Methods: We retrospectively analyzed 22 children (mean age 11.5 ± 2.6 years) who underwent interictal brain 18F-FDG PET/CT: 11 on an analog system (Discovery ST, 2018–2019) and 11 on a digital system (Biograph Vision 450, 2020–2021). Three blinded nuclear medicine physicians independently scored EZ localization and image quality (4-point scale); post-surgical histology and ≥1-year clinical follow-up served as reference. Results: The EZ was correctly identified in 8/11 analog scans (72.7%) versus 10/11 digital scans (90.9%). Average image quality was significantly higher with dPET (3.0 ± 0.9 vs. 2.1 ± 0.9; p < 0.05), and inter-reader agreement improved from good (ICC = 0.63) to excellent (ICC = 0.91). Conclusions: Our preliminary findings suggest that dPET enhances image clarity and reader consistency, potentially improving localization accuracy in pediatric epilepsy presurgical workups. Full article
Show Figures

Figure 1

16 pages, 1961 KiB  
Article
A Novel Glycosylated Ferulic Acid Conjugate: Synthesis, Antioxidative Neuroprotection Activities In Vitro, and Alleviation of Cerebral Ischemia–Reperfusion Injury (CIRI) In Vivo
by Jian Chen, Yongjun Yuan, Litao Tong, Manyou Yu, Yongqing Zhu, Qingqing Liu, Junling Deng, Fengzhang Wang, Zhuoya Xiang and Chen Xia
Antioxidants 2025, 14(8), 953; https://doi.org/10.3390/antiox14080953 (registering DOI) - 3 Aug 2025
Viewed by 176
Abstract
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between [...] Read more.
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between glucose at the C6 position and FA at the C4 position, was designed and synthesized. The hydrophilicity and chemical stability of FA-Glu were tested. FA-Glu’s protection against DNA oxidative cleavage was tested using pBR322 plasmid DNA under the Fenton reaction. The cytotoxicity of FA-Glu was examined via the PC12 cell and bEnd.3 cell tests. Antioxidative neuroprotection was evaluated, in vitro, via a H2O2-induced PC12 cell test, measuring cell viability and ROS levels. Antioxidative alleviation of cerebral ischemia–reperfusion injury (CIRI), in vivo, was evaluated using a rat middle cerebral artery occlusion (MCAO) model. The results indicated that FA-Glu was water-soluble (LogP −1.16 ± 0.01) and chemically stable. FA-Glu prevented pBR322 plasmid DNA cleavage induced via •OH radicals (SC% 88.00%). It was a non-toxic agent based on PC12 cell and bEnd.3 cell tests results. FA-Glu significantly protected against H2O2-induced oxidative damage in the PC12 cell (cell viability 88.12%, 100 μM) and inhibited excessive cell ROS generation (45.67% at 100 μM). FA-Glu significantly reduced the infarcted brain areas measured using TTC stain observation, quantification (FA-Glu 21.79%, FA 28.49%, I/R model 43.42%), and H&E stain histological observation. It sharply reduced the MDA level (3.26 nmol/mg protein) and significantly increased the GSH level (139.6 nmol/mg protein) and SOD level (265.19 U/mg protein). With superior performance to FA, FA-Glu is a safe agent with effective antioxidative DNA and neuronal protective actions and an ability to alleviate CIRI, which should help in the prevention of IS. Full article
Show Figures

Graphical abstract

20 pages, 6929 KiB  
Article
Protective Effects of Sodium Copper Chlorophyllin and/or Ascorbic Acid Against Barium Chloride-Induced Oxidative Stress in Mouse Brain and Liver
by Salma Benayad, Basma Es-Sai, Yassir Laaziouez, Soufiane Rabbaa, Hicham Wahnou, Habiba Bouchab, Hicham El Attar, Bouchra Benabdelkhalek, Loubna Amahdar, Oualid Abboussi, Raphaël Emmanuel Duval, Riad El Kebbaj and Youness Limami
Molecules 2025, 30(15), 3231; https://doi.org/10.3390/molecules30153231 - 1 Aug 2025
Viewed by 161
Abstract
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in [...] Read more.
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in the liver and brain of mice using a two-phase experimental protocol. Animals received either SCC (40 mg/kg), ASC (160 mg/kg), or their combination for 14 days prior to BaCl2 exposure (150 mg/L in drinking water for 7 days), allowing evaluation of both preventive and therapeutic effects. Toxicological and behavioral assessments confirmed the absence of systemic toxicity or neurobehavioral alterations following supplementation. Body weight, liver and kidney indices, and biochemical markers (Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT), creatinine) remained within physiological ranges, and no anxiogenic or locomotor effects were observed. In the brain, BaCl2 exposure significantly increased SOD (+49%), CAT (+66%), GPx (+24%), and GSH (+26%) compared to controls, reflecting a robust compensatory antioxidant response. Although lipid peroxidation (MDA) showed a non-significant increase, SCC, ASC, and their combination reduced MDA levels by 42%, 37%, and 55%, respectively. These treatments normalized antioxidant enzyme activities and GSH, indicating an effective neuroprotective effect. In contrast, the liver exhibited a different oxidative profile. BaCl2 exposure increased MDA levels by 80% and GSH by 34%, with no activation of SOD, CAT, or GPx. Histological analysis revealed extensive hepatocellular necrosis, vacuolization, and inflammatory infiltration. SCC significantly reduced hepatic MDA by 39% and preserved tissue architecture, while ASC alone or combined with SCC exacerbated inflammation and depleted hepatic GSH by 71% and 78%, respectively, relative to BaCl2-exposed controls. Collectively, these results highlight a differential, organ-specific response to BaCl2-induced oxidative stress and the therapeutic potential of SCC and ASC. SCC emerged as a safer and more effective agent, particularly in hepatic protection, while both antioxidants demonstrated neuroprotective effects when used individually or in combination. Full article
Show Figures

Graphical abstract

14 pages, 6918 KiB  
Article
Point-of-Injury Treatment with Hydrogel Containing Dexamethasone Improves Cognitive Function and Reduces Secondary Injury Response After TBI
by Claire E. Jones, Bradley Elliott, Fuying Ma, Zachary Bailey, Janice Gilsdorf, Anke H. Scultetus, Deborah Shear, Ken Webb and Jeoung Soo Lee
Gels 2025, 11(8), 600; https://doi.org/10.3390/gels11080600 - 1 Aug 2025
Viewed by 172
Abstract
Functional recovery after traumatic brain injury (TBI) is hindered by progressive neurodegeneration resulting from neuroinflammation and other secondary injury processes. Dexamethasone (DX), a synthetic glucocorticoid, has been shown to reduce inflammation, but its systemic administration can cause a myriad of other medical issues. [...] Read more.
Functional recovery after traumatic brain injury (TBI) is hindered by progressive neurodegeneration resulting from neuroinflammation and other secondary injury processes. Dexamethasone (DX), a synthetic glucocorticoid, has been shown to reduce inflammation, but its systemic administration can cause a myriad of other medical issues. We aim to provide a local, sustained treatment of DX for TBI. Previously, we demonstrated that PEG-bis-AA/HA-DXM hydrogels composed of polyethyleneglycol-bis-(acryloyloxy acetate) (PEG-bis-AA) and dexamethasone-conjugated hyaluronic acid (HA-DXM) reduced secondary injury and improved motor functional recovery at 7 days post-injury (DPI) in a rat moderate controlled cortical impact (CCI) TBI model. In this study, we evaluated the effect of PEG-bis-AA/HA-DXM hydrogel on cognitive function and secondary injury at 14 DPI. Immediately after injury, hydrogel disks were placed on the surface of the injured cortex. Cognitive function was evaluated using the Morris Water Maze test, and secondary injury was evaluated by histological analysis. The hydrogel treatment group demonstrated significantly shorter latency to target, decreased distance to find the hidden target, increased number of target crossings, increased number of entries to the platform zone, and decreased latency to first entry of target zone compared to untreated TBI rats for probe test. We also observed reduced lesion volume, inflammatory response, and apoptosis in the hydrogel treatment group compared to the untreated TBI group. Full article
(This article belongs to the Special Issue Recent Advances in Multi-Functional Hydrogels)
Show Figures

Figure 1

29 pages, 28078 KiB  
Article
Long-Term Neuroprotective Effects of Hydrogen-Rich Water and Memantine in Chronic Radiation-Induced Brain Injury: Behavioral, Histological, and Molecular Insights
by Kai Xu, Huan Liu, Yinhui Wang, Yushan He, Mengya Liu, Haili Lu, Yuhao Wang, Piye Niu and Xiujun Qin
Antioxidants 2025, 14(8), 948; https://doi.org/10.3390/antiox14080948 (registering DOI) - 1 Aug 2025
Viewed by 232
Abstract
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male [...] Read more.
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male Sprague Dawley rats were randomly divided into five groups: control, irradiation (IR), IR with memantine, IR with HRW, and IR with combined treatment. All but the control group received 20 Gy whole-brain X-ray irradiation, followed by daily interventions for 60 days. Behavioral assessments, histopathological analyses, oxidative stress measurements, 18F-FDG PET/CT imaging, transcriptomic sequencing, RT-qPCR, Western blot, and serum ELISA were performed. HRW significantly improved anxiety-like behavior, memory, and learning performance compared to the IR group. Histological results revealed that HRW reduced neuronal swelling, degeneration, and loss and enhanced dendritic spine density and neurogenesis. PET/CT imaging showed increased hippocampal glucose uptake in the IR group, which was alleviated by HRW treatment. Transcriptomic and molecular analyses indicated that HRW modulated key genes and proteins, including CD44, CD74, SPP1, and Wnt1, potentially through the MIF, Wnt, and SPP1 signaling pathways. Serum CD44 levels were also lower in treated rats, suggesting its potential as a biomarker for chronic RIBI. These findings demonstrate that HRW can alleviate chronic RIBI by preserving neuronal structure, reducing inflammation, and enhancing neuroplasticity, supporting its potential as a therapeutic strategy for radiation-induced cognitive impairment. Full article
Show Figures

Graphical abstract

19 pages, 2479 KiB  
Article
Sensitivity of Diffusion Tensor Imaging for Assessing Injury Severity in a Rat Model of Isolated Diffuse Axonal Injury: Comparison with Histology and Neurological Assessment
by Vladislav Zvenigorodsky, Benjamin F. Gruenbaum, Ilan Shelef, Dmitry Frank, Beatris Tsafarov, Shahar Negev, Vladimir Zeldetz, Abed N. Azab, Matthew Boyko and Alexander Zlotnik
Int. J. Mol. Sci. 2025, 26(15), 7333; https://doi.org/10.3390/ijms26157333 - 29 Jul 2025
Viewed by 180
Abstract
Diffuse axonal brain injury (DAI) is a common, debilitating consequence of traumatic brain injury, yet its detection and severity grading remain challenging in clinical and experimental settings. This study evaluated the sensitivity of diffusion tensor imaging (DTI), histology, and neurological severity scoring (NSS) [...] Read more.
Diffuse axonal brain injury (DAI) is a common, debilitating consequence of traumatic brain injury, yet its detection and severity grading remain challenging in clinical and experimental settings. This study evaluated the sensitivity of diffusion tensor imaging (DTI), histology, and neurological severity scoring (NSS) in assessing injury severity in a rat model of isolated DAI. A rotational injury model induced mild, moderate, or severe DAI in male and female rats. Neurological deficits were assessed 48 h after injury via NSS. Magnetic resonance imaging, including DTI metrics, such as fractional anisotropy (FA), relative anisotropy (RA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD), was performed prior to tissue collection. Histological analysis used beta amyloid precursor protein immunohistochemistry. Sensitivity and variability of each method were compared across brain regions and the whole brain. Histology was the most sensitive method, requiring very small groups to detect differences. Anisotropy-based MRI metrics, especially whole-brain FA and RA, showed strong correlations with histology and NSS and demonstrated high sensitivity with low variability. NSS identified injury but required larger group sizes. Diffusivity-based MRI metrics, particularly RD, were less sensitive and more variable. Whole-brain FA and RA were the most sensitive MRI measures of DAI severity and were comparable to histology in moderate and severe groups. These findings support combining NSS and anisotropy-based DTI for non-terminal DAI assessment in preclinical studies. Full article
Show Figures

Figure 1

15 pages, 3612 KiB  
Article
Postmortem Changes in mRNA Expression and Tissue Morphology in Brain and Femoral Muscle Tissues of Rat
by Sujin Choi, Minju Jung, Mingyoung Jeong, Sohyeong Kim, Dong Geon Lee, Kwangmin Park, Xianglan Xuan, Heechul Park, Dong Hyeok Kim, Jungho Kim, Min Ho Lee, Yoonjung Cho and Sunghyun Kim
Int. J. Mol. Sci. 2025, 26(15), 7059; https://doi.org/10.3390/ijms26157059 - 22 Jul 2025
Viewed by 200
Abstract
The postmortem interval (PMI), defined as the time elapsed between death and the discovery or examination of the body, is a crucial parameter in forensic science for estimating the time of death. There are many ways to measure the PMI, such as Henssge’s [...] Read more.
The postmortem interval (PMI), defined as the time elapsed between death and the discovery or examination of the body, is a crucial parameter in forensic science for estimating the time of death. There are many ways to measure the PMI, such as Henssge’s nomogram, which uses rectal temperature measurement; livor mortis; rigor mortis; and forensic entomology. However, these methods are usually affected by various conditions in the surrounding environment. The purpose of the present study was to compare molecular genetics and histological changes in the brain and skeletal muscle tissues of SD rats over increasing periods of time after death. For the PMIs, we considered 0 h, 6 h, 12 h, 24 h, 36 h, 48 h, 4 days, 6 days, 8 days, 10 days, 14 days, and 21 days and compared them at 4 °C and 26 °C. Hematoxylin and Eosin (H&E) staining was performed to observe tissue changes. Morphological tissue changes were observed in cells for up to 21 days at 4 °C, and cell destruction was visually confirmed after 14 days at 26 °C. Total RNA (tRNA) was isolated from each tissue sample, and complementary DNA (cDNA) was synthesized. A reverse transcription quantitative PCR (RT-qPCR) SYBR Green assay targeting three types of housekeeping genes, including Gapdh, Sort1, B2m, and 5S rRNA, was performed. The results showed that Gapdh and 5S rRNA were highly stable and could be better RNA targets for estimating the PMI in brain and skeletal muscle tissues. Conversely, Sort1 and B2m showed poor stability and low expression levels. In conclusion, these molecular biomarkers could be used as auxiliary indicators of the PMI in human, depending on the stability of the marker. Full article
(This article belongs to the Special Issue Advances in Molecular Forensic Pathology and Toxicology: An Update)
Show Figures

Figure 1

12 pages, 10788 KiB  
Article
Characteristics of Scar Formation After Intracerebral Hemorrhage in Aged Rats: Effects of Deferoxamine
by Xiongjie Fu, Yingfeng Wan, Ya Hua, Guohua Xi and Richard F. Keep
Cells 2025, 14(15), 1127; https://doi.org/10.3390/cells14151127 - 22 Jul 2025
Viewed by 370
Abstract
Intracerebral hemorrhage (ICH), a severe stroke subtype common in the elderly, often results in high morbidity and mortality, with limited treatment options for long-term recovery. While glial scar formation is increasingly recognized as key to central nervous system (CNS) repair, its role and [...] Read more.
Intracerebral hemorrhage (ICH), a severe stroke subtype common in the elderly, often results in high morbidity and mortality, with limited treatment options for long-term recovery. While glial scar formation is increasingly recognized as key to central nervous system (CNS) repair, its role and characteristics in the aging brain post-ICH remain unclear. This study investigated glial scar formation after ICH (100 μL autologous blood injected into the right basal ganglia model) in aged Fischer 344 rats and assessed the effects of deferoxamine (DFX) treatment. Histological and immunohistochemical analyses were conducted on days 7, 28, and 60 post-ICH using cell-specific and iron-related markers, with DFX administered at 100 mg/kg daily for 14 days in separate groups. Over time, the lesion core showed increased hemosiderin accumulation and astrogliosis. By day 60, the area of astrogliosis corresponded to an area with persistent neuronal loss (DARPP-32-negative). Glial composition shifted from microglia dominance on day 28 to astrocyte predominance by day 60. DFX treatment reduced iron deposition, astrogliosis, and DARPP-32-negative regions while enhancing oligodendrocyte presence. Iron-related markers (HO-1, ferritin, Perls’ staining) and PDGFRβ-positive fibrotic cells were concentrated in the scar core. These findings provide novel insights into scar formation after ICH in aged rats and suggest DFX as a potential therapy to improve outcomes in elderly stroke patients. Full article
(This article belongs to the Special Issue Neuroinflammation in Brain Health and Diseases)
Show Figures

Graphical abstract

20 pages, 2445 KiB  
Article
Oral Administration of GnRH and Domperidone via Gel Feed and Their Effect on Reproductive Performance of Devario devario (Bengal Danio), an Ornamental Fish
by Suparna Deb, Pradyut Biswas, Soibam Khogen Singh, Gusheinzed Waikhom, Reshmi Debbarma, Shubham Kashyap, Jham Lal, Khusbu Samal, Supratim Malla, Nitesh Kumar Yadav, Ng. Chinglembi Devi, Pronob Das, N. Sureshchandra Singh, G. Deepak Reddy and Surajkumar Irungbam
Gels 2025, 11(7), 554; https://doi.org/10.3390/gels11070554 - 18 Jul 2025
Cited by 1 | Viewed by 241
Abstract
This study investigated the effects of dietary Gonadotropin-releasing hormone (GnRH) and domperidone on the reproductive performance of Devario devario during a 40-day trial. Five treatment groups received varying doses of GnRH (100, 50, 25, 12.5 µg/kg body weight) in combination with domperidone (50, [...] Read more.
This study investigated the effects of dietary Gonadotropin-releasing hormone (GnRH) and domperidone on the reproductive performance of Devario devario during a 40-day trial. Five treatment groups received varying doses of GnRH (100, 50, 25, 12.5 µg/kg body weight) in combination with domperidone (50, 25, 12.5, 6.25 mg/kg body weight), embossed in a gel-based diet alongside a control group without the exogenous hormones. Reproductive performance was examined by measuring the gonadosomatic index, fecundity, reproductive hormone levels, and histological features of the gonads, blood parameters, and antioxidant enzyme activity. The T1 group (100 µg GnRH + 50 mg domperidone) exhibited the highest GSI in both sexes. The histological analysis of testes from T1, T2 (50 µg GnRH + 25 mg domperidone), and T3 (25 µg GnRH + 12.5 mg domperidone) groups revealed an increased presence of late-stage spermatids and spermatozoa. In females, the T2 group produced the highest proportion of advanced-stage oocytes and demonstrated the greatest absolute fecundity (1300 ± 23 eggs). However, the control group showed the highest fertilization and hatching rates. Testosterone levels were significantly elevated in the T3 group, while vitellogenin levels increased in the T1 and T2 groups. Antioxidant enzyme activity varied, with the T1 group displaying higher superoxide dismutase activity in gills and liver, and the T2 group showing increased SOD activity in muscle and brain. Improvements in haematological parameters were observed across all treatments. These results suggest that an optimal dose of 50 µg GnRH + 25 mg domperidone can enhance reproductive performance in D. devario. Full article
(This article belongs to the Special Issue Advances in Functional Gel (2nd Edition))
Show Figures

Figure 1

17 pages, 1772 KiB  
Article
Exploration of the Possible Relationships Between Gut and Hypothalamic Inflammation and Allopregnanolone: Preclinical Findings in a Post-Finasteride Rat Model
by Silvia Diviccaro, Roberto Oleari, Federica Amoruso, Fabrizio Fontana, Lucia Cioffi, Gabriela Chrostek, Vera Abenante, Jacopo Troisi, Anna Cariboni, Silvia Giatti and Roberto Cosimo Melcangi
Biomolecules 2025, 15(7), 1044; https://doi.org/10.3390/biom15071044 - 18 Jul 2025
Viewed by 1971
Abstract
Background: Finasteride, a 5α-reductase inhibitor commonly prescribed for androgenetic alopecia, has been linked to persistent adverse effects after discontinuation, known as post-finasteride syndrome (PFS). Symptoms include neurological, psychiatric, sexual, and gastrointestinal disturbances. Emerging evidence suggests that PFS may involve disruption of sex steroid [...] Read more.
Background: Finasteride, a 5α-reductase inhibitor commonly prescribed for androgenetic alopecia, has been linked to persistent adverse effects after discontinuation, known as post-finasteride syndrome (PFS). Symptoms include neurological, psychiatric, sexual, and gastrointestinal disturbances. Emerging evidence suggests that PFS may involve disruption of sex steroid homeostasis, neuroactive steroid deficiency (notably allopregnanolone, ALLO), and gut–brain axis alterations. Objective: This study aimed to investigate the effects of finasteride withdrawal (FW) in a rat model and evaluate the potential protective effects of ALLO on gut and hypothalamic inflammation. Methods: Adult male Sprague Dawley rats were treated with finasteride for 20 days, followed by one month of drug withdrawal. A subgroup received ALLO treatment during the withdrawal. Histological, molecular, and biochemical analyses were performed on the colon and hypothalamus. Gut microbiota-derived metabolites and markers of neuroinflammation and blood–brain barrier (BBB) integrity were also assessed. Results: At FW, rats exhibited significant colonic inflammation, including a 4.3-fold increase in Mφ1 levels (p < 0.001), a 2.31-fold decrease in butyrate concentration (p < 0.01), and elevated hypothalamic GFAP and Iba-1 protein expression (+360%, p < 0.01 and +100%, p < 0.01, respectively). ALLO treatment rescued these parameters in both the colon and hypothalamus but only partially restored mucosal and BBB structural integrity, as well as the NF-κB/PPARγ pathway. Conclusions: This preclinical study shows that FW causes inflammation in both the gut and hypothalamus in rats. ALLO treatment helped reduce several of these effects. These results suggest ALLO could have a protective role and have potential as a treatment for PFS patients. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

24 pages, 1164 KiB  
Review
The Aryl Hydrocarbon Receptor in Neurotoxicity: An Intermediator Between Dioxins and Neurons in the Brain
by Eiki Kimura
Toxics 2025, 13(7), 596; https://doi.org/10.3390/toxics13070596 - 16 Jul 2025
Viewed by 568
Abstract
Industrial development has increased environmental dioxin concentrations, sparking concern about human health impacts. Examining dioxin neurotoxicity has highlighted associations with cognitive impairment and behavioral abnormality. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor; it is speculated that dioxin-induced [...] Read more.
Industrial development has increased environmental dioxin concentrations, sparking concern about human health impacts. Examining dioxin neurotoxicity has highlighted associations with cognitive impairment and behavioral abnormality. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor; it is speculated that dioxin-induced AHR activation is pivotal for toxic effects. Accurate AHR-expressing cell identification is therefore indispensable for understanding the molecular and cellular mechanisms of dioxin toxicity. Herein, current knowledge regarding AHR expression in the mammalian brain is summarized, and dioxin neurotoxicity mechanisms are discussed. Histological studies show AHR-expressing neurons in multiple brain regions, including the hippocampus and cerebral cortex. Dopaminergic and noradrenergic neurons exhibit AHR expression, suggesting possible roles in the monoaminergic system. AHR overactivation evokes dendritic arborization atrophy, whereas its deficiency increases complexity, implying that AHR-mediated signaling is crucial for neuronal growth and maturation. AHR is also involved in neurogenesis and neuronal precursor migration. Collectively, these findings support the notion that dioxin-induced AHR overactivation in individual neurons disrupts neural circuit structure, ultimately leading to impaired brain function. However, as AHR downstream signaling is intertwined with various molecules and pathways, the precise mechanisms remain unclear. Further studies on the expression, signaling, and roles of AHR are needed to clarify dioxin neurotoxicity. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

16 pages, 520 KiB  
Review
Alzheimer’s Disease–Thrombosis Comorbidity: A Growing Body of Evidence from Patients and Animal Models
by Joanna Koch-Paszkowski, Christopher Sennett and Giordano Pula
Cells 2025, 14(14), 1069; https://doi.org/10.3390/cells14141069 - 12 Jul 2025
Viewed by 661
Abstract
Background/Objectives: A growing body of evidence is amassing in the literature suggesting a correlation between Alzheimer’s disease (AD) and thrombotic vascular complications, which led to the suggestive hypothesis that thrombosis may contribute to AD onset and progression by damaging the neurovasculature and reducing [...] Read more.
Background/Objectives: A growing body of evidence is amassing in the literature suggesting a correlation between Alzheimer’s disease (AD) and thrombotic vascular complications, which led to the suggestive hypothesis that thrombosis may contribute to AD onset and progression by damaging the neurovasculature and reducing the cerebral blood flow. In turn, low cerebral blood flow is likely to contribute to neurodegeneration by reducing nutrient and oxygen supply and impairing toxic metabolite removal from the brain tissue. Methods: We searched the literature for studies in animal models of AD or patients diagnosed with the disease that reported circulating markers of platelet hyperactivity or hypercoagulation, or histological evidence of brain vascular thrombosis. Results: Platelet hyperactivity and hypercoagulability have been described in multiple animal models of AD, and histological evidence of neurovascular thrombosis has also been reported. Similarly, clinical studies on patients with AD showed circulating markers of platelet hyperactivity and hypercoagulation, or histological evidence of neurovascular thrombosis collected from post-mortem brain tissue samples. Conclusions: Taken together, a convincing picture is emerging that suggests a strong correlation between systemic or neurovascular thrombosis and AD. Nonetheless, a mechanistic role for haemostasis dysregulation and neurovascular damage in the onset or the progression of AD remains to be proven. Future research should focus on this important question in order to clarify the mechanisms underlying AD and identify a treatment for this disease. Full article
Show Figures

Figure 1

29 pages, 14985 KiB  
Article
Spatiotemporal Characterization of Changes in the Respiratory Tract and the Nervous System, Including the Eyes in SARS-CoV-2-Infected K18-hACE2 Mice
by Malgorzata Rosiak, Tom Schreiner, Georg Beythien, Eva Leitzen, Anastasiya Ulianytska, Lisa Allnoch, Kathrin Becker, Lukas M. Michaely, Sandra Lockow, Sabrina Clever, Christian Meyer zu Natrup, Asisa Volz, Wolfgang Baumgärtner, Malgorzata Ciurkiewicz, Kirsten Hülskötter and Katharina M. Gregor
Viruses 2025, 17(7), 963; https://doi.org/10.3390/v17070963 - 9 Jul 2025
Viewed by 545
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is known to affect multiple organ systems, including the respiratory tract and nervous and ocular systems. This retrospective study aimed to characterize the spatiotemporal distribution of viral antigen [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is known to affect multiple organ systems, including the respiratory tract and nervous and ocular systems. This retrospective study aimed to characterize the spatiotemporal distribution of viral antigen and associated pathological changes in the nose, lungs, brain, and eyes of K18-hACE2 mice intranasally infected with SARS-CoV-2. Using histology and immunohistochemistry, tissues were examined at 3, 6, and 7/8 days post-infection (dpi). In addition, lung and brain tissues were analyzed by means of RT-qPCR to determine viral RNA titers. Viral antigen was most pronounced in the nose, brain, and lung at 3, 6, and 7/8 dpi, respectively, whereas viral antigen was detected at 6 and 7/8 dpi in the retina. Quantitative PCR confirmed increasing viral RNA levels in both lung and brain, peaking at 7/8 dpi. Nasal and lung inflammation mirrored viral antigen distribution and localization. In the brain, the predominantly basal viral spread correlated with lymphohistiocytic meningoencephalitis, neuronal vacuolation, and altered neurofilament immunoreactivity. Retinal ganglion cells showed viral antigen expression without associated lesions. Microglial activation was evident in both the optic chiasm and the brain. These findings highlight the K18-hACE2 model’s utility for studying extrapulmonary SARS-CoV-2 pathogenesis. Understanding the temporal and spatial dynamics of viral spread enhances insights into SARS-CoV-2 neurotropism and its clinical manifestations. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Graphical abstract

35 pages, 5871 KiB  
Article
Transcriptomic and Proteomic Changes in the Brain Along with Increasing Phenotypic Severity in a Rat Model of Neonatal Hyperbilirubinemia
by John Paul Llido, Giorgia Valerio, David Křepelka, Aleš Dvořák, Cristina Bottin, Fabrizio Zanconati, Julia Theresa Regalado, Audrey Franceschi Biagioni, Mohammed Qaisiya, Libor Vítek, Claudio Tiribelli and Silvia Gazzin
Int. J. Mol. Sci. 2025, 26(13), 6262; https://doi.org/10.3390/ijms26136262 - 28 Jun 2025
Viewed by 1051
Abstract
Kernicterus spectrum disorder is the permanent and highly disabling neurologic sequel of neonatal exposure to hyperbilirubinemia, presenting, among other symptoms, variable and untreatable motor disabilities. To search for potential biomolecular explanations, we used a Gunn rat colony exhibiting spontaneous hyperbilirubinemia and a large [...] Read more.
Kernicterus spectrum disorder is the permanent and highly disabling neurologic sequel of neonatal exposure to hyperbilirubinemia, presenting, among other symptoms, variable and untreatable motor disabilities. To search for potential biomolecular explanations, we used a Gunn rat colony exhibiting spontaneous hyperbilirubinemia and a large variability of motor deficits on a beam-walking test. Histological and microscopic analyses confirmed worsening damage in the cerebellum (Cll; hypoplasia, increased death of neurons, and disrupted astroglial structures) and parietal motor cortex (hCtx; increased cell sufferance and astrogliosis). Clustering and network analyses of transcriptomic data reveal rearrangement of the physiological expression patterns and signaling pathways associated with bilirubin neurotoxicity. Bilirubin content among hyperbilirubinemic (jj) animals is overlapped, which suggests that the amount of bilirubin challenge does not fully explain the tissue, transcriptomic, proteomic, and neurobehavioral alterations. The expression of nine genes involved in key postnatal brain development processes is permanently altered in a phenotype-dependent manner. Among them, Grm1, a metabotropic glutamatergic receptor involved in glutamate neurotoxicity, is consistently downregulated in both brain regions both at the transcriptomic and proteomic levels. Our results support the role of Grm1 and glutamate as biomolecular markers of ongoing bilirubin neurotoxicity, suggesting the possibility to improve diagnosis by 1H-MR spectroscopy. Full article
(This article belongs to the Special Issue Bilirubin: Health Challenges and Opportunities)
Show Figures

Graphical abstract

13 pages, 1990 KiB  
Article
Elephant Cathelicidin-Derived Peptides Inhibit Herpes Simplex Virus 1 Infection
by Haiche Yisihaer, Peng Dong, Pengpeng Li, Enjie Deng, Rui Meng, Lin Jin and Guilan Li
Antibiotics 2025, 14(7), 655; https://doi.org/10.3390/antibiotics14070655 - 28 Jun 2025
Viewed by 397
Abstract
Herpes simplex virus type 1 (HSV-1) is a globally prevalent pathogen that can infect a variety of animal species as well as humans. However, existing antiviral therapies are constrained in their capacity to effectively target viral latency and prevent recurrent infections. Antimicrobial peptides [...] Read more.
Herpes simplex virus type 1 (HSV-1) is a globally prevalent pathogen that can infect a variety of animal species as well as humans. However, existing antiviral therapies are constrained in their capacity to effectively target viral latency and prevent recurrent infections. Antimicrobial peptides (AMPs), particularly cathelicidins, as part of innate immune system have demonstrated broad-spectrum efficacy against viral pathogens. In this study, four peptides derived from Elephas maximus cathelicidin EM were designed and optimized (EM-1 to EM-4). We identified low toxicity peptide derivatives through hemolytic and cytotoxicity assays, quantified their anti-HSV-1 activity by determining IC50. Antiviral mechanisms were investigated using RT-qPCR and antiviral efficacy was ultimately validated in C57BL/6J mice through viral load quantification in brain, lung, and heart tissues. Our findings revealed that EM-1 significantly inhibited HSV-1 replication in U251 cells. In a murine footpad inoculation model, EM-1 administration substantially reduced viral loads and alleviated inflammatory responses. Histological assessment demonstrated that EM-1 treatment mitigated HSV-1 induced tissue damage in infected mice. We also found that EM-1 exerted its antiviral effects by upregulating the expression of interferon-gamma and its downstream genes, such as ISG15 and MX1. These findings indicated that EM-1 is a dual function peptide that inhibits replication of HSV-1 as well as enhances host antiviral immunity. Collectively, this study highlights the therapeutic potential of elephant cathelicidin derived peptides in antiviral development. Full article
(This article belongs to the Special Issue The Discovery of Novel Antimicrobial Agents to Combat Infections)
Show Figures

Figure 1

Back to TopTop