Alzheimer’s Disease–Thrombosis Comorbidity: A Growing Body of Evidence from Patients and Animal Models
Abstract
1. Introduction
2. Markers of Platelet Hyperactivity in Animal Models of Dementia
3. Histological Markers of Thrombosis in Animal Models of Dementia
4. Live Imaging Evidence of Brain Hypoperfusion in Animal Models of AD
5. Histological Markers of Thrombosis in Patients with AD
6. Platelet-Associated Markers in Patients with AD
7. Hypercoagulation, Hyperlipidaemia, and Inflammation Markers in the Peripheral Blood of Patients with AD
8. Clinical Imaging Evidence of Brain Hypoperfusion in Patients with AD
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eisenmenger, L.B.; Peret, A.; Famakin, B.M.; Spahic, A.; Roberts, G.S.; Bockholt, J.H.; Johnson, K.M.; Paulsen, J.S. Vascular contributions to Alzheimer’s disease. Transl. Res. 2023, 254, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Snowdon, D.A.; Greiner, L.H.; Mortimer, J.A.; Riley, K.P.; Greiner, P.A.; Markesbery, W.R. Brain infarction and the clinical expression of Alzheimer diseas—The nun study. Jama-J. Am. Med. Assoc. 1997, 277, 813–817. [Google Scholar] [CrossRef]
- Toledo, J.B.; Arnold, S.E.; Raible, K.; Brettschneider, J.; Xie, S.X.; Grossman, M.; Monsell, S.E.; Kukull, W.A.; Trojanowski, J.Q. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 2013, 136, 2697–2706. [Google Scholar] [CrossRef]
- Brenowitz, W.D.; Nelson, P.T.; Besser, L.M.; Heller, K.B.; Kukull, W.A. Cerebral amyloid angiopathy and its co-occurrence with Alzheimer’s disease and other cerebrovascular neuropathologic changes. Neurobiol. Aging 2015, 36, 2702–2708. [Google Scholar] [CrossRef]
- Park, J.H.; Hong, J.H.; Lee, S.W.; Ji, H.D.; Jung, J.A.; Yoon, K.W.; Lee, J.I.; Won, K.S.; Song, B.I.; Kim, H.W. The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer’s disease: A positron emission tomography study in rats. Sci. Rep. 2019, 9, 14102. [Google Scholar] [CrossRef]
- Shang, J.W.; Yamashita, T.; Tian, F.; Li, X.H.; Liu, X.; Shi, X.W.; Nakano, Y.; Tsunoda, K.; Nomura, E.; Sasaki, R.; et al. Chronic cerebral hypoperfusion alters amyloid-β transport related proteins in the cortical blood vessels of Alzheimer’s disease model mouse. Brain Res. 2019, 1723, 146379. [Google Scholar] [CrossRef]
- Shi, X.W.; Ohta, Y.; Liu, X.; Shang, J.W.; Morihara, R.; Nakano, Y.; Feng, T.; Huang, Y.; Sato, K.; Takemoto, M.; et al. Chronic Cerebral Hypoperfusion Activates the Coagulation and Complement Cascades in Alzheimer’s Disease Mice. Neuroscience 2019, 416, 126–136. [Google Scholar] [CrossRef]
- Austin, B.P.; Nair, V.A.; Meier, T.B.; Xu, G.F.; Rowley, H.A.; Carlsson, C.M.; Johnson, S.C.; Prabhakaran, V. Effects of Hypoperfusion in Alzheimer’s Disease. J. Alzheimers Dis. 2011, 26, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Miners, S.; Love, S. Post-mortem assessment of hypoperfusion of cerebral cortex in Alzheimer’s disease and vascular dementia. Brain 2015, 138, 1059–1069. [Google Scholar] [CrossRef]
- Miners, J.S.; Palmer, J.C.; Love, S. Pathophysiology of Hypoperfusion of the Precuneus in Early Alzheimer’s Disease. Brain Pathol. 2016, 26, 533–541. [Google Scholar] [CrossRef]
- van de Haar, H.J.; Jansen, J.F.A.; van Osch, M.J.P.; van Buchem, M.A.; Muller, M.; Wong, S.M.; Hofman, P.A.M.; Burgmans, S.; Verhey, F.R.J.; Backes, W.H. Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging. Neurobiol. Aging 2016, 45, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Alsop, D.C.; Detre, J.A.; Grossman, M. Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann. Neurol. 2000, 47, 93–100. [Google Scholar] [CrossRef]
- Wolters, F.J.; Zonneveld, H.I.; Hofman, A.; van der Lugt, A.; Koudstaal, P.J.; Vernooij, M.W.; Ikram, M.A. Cerebral Perfusion and the Risk of Dementia A Population-Based Study. Circulation 2017, 136, 719–728. [Google Scholar] [CrossRef]
- Chui, H.C.; Ramirez-Gomez, L. Clinical and imaging features of mixed Alzheimer and vascular pathologies. Alzheimers Res. Ther. 2015, 7, 21. [Google Scholar] [CrossRef]
- Custodio, N.; Montesinos, R.; Lira, D.; Herrera-Perez, E.; Bardales, Y.; Valeriano-Lorenzo, L. Mixed dementia: A review of the evidence. Dement. Neuropsychol. 2017, 11, 364–370. [Google Scholar] [CrossRef]
- Stegner, D.; Klaus, V.; Nieswandt, B. Platelets as Modulators of Cerebral Ischemia/Reperfusion Injury. Front. Immunol. 2019, 10, 2505. [Google Scholar] [CrossRef]
- Stellos, K.; Panagiota, V.; Kögel, A.; Leyhe, T.; Gawaz, M.; Laske, C. Predictive value of platelet activation for the rate of cognitive decline in Alzheimer’s disease patients. J. Cereb. Blood Flow Metab. 2010, 30, 1817–1820. [Google Scholar] [CrossRef] [PubMed]
- Kniewallner, K.M.; Foidl, B.M.; Humpel, C. Platelets isolated from an Alzheimer mouse damage healthy cortical vessels and cause inflammation in an organotypic ex vivo brain slice model. Sci. Rep. 2018, 8, 15483. [Google Scholar] [CrossRef] [PubMed]
- González-Sánchez, M.; Díaz, T.; Pascual, C.; Antequera, D.; Martín, A.H.-S.; Llamas-Velasco, S.; Villarejo-Galende, A.; Bartolome, F.; Carro, E. Platelet Proteomic Analysis Revealed Differential Pattern of Cytoskeletal- and Immune-Related Proteins at Early Stages of Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 8815–8825. [Google Scholar] [CrossRef]
- Humpel, C. Platelets: Their Potential Contribution to the Generation of Beta-amyloid Plaques in Alzheimer’s Disease. Curr. Neurovascular Res. 2017, 14, 290–298. [Google Scholar] [CrossRef]
- Prodan, C.I.; Ross, E.D.; Stoner, J.A.; Cowan, L.D.; Vincent, A.S.; Dale, G.L. Coated-platelet levels and progression from mild cognitive impairment to Alzheimer disease. Neurology 2011, 76, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Prodan, C.I.; Ross, E.D.; Vincent, A.S.; Dale, G.L. Rate of progression in Alzheimer’s disease correlates with coated-platelet levels—A longitudinal study. Transl. Res. 2008, 152, 99–102. [Google Scholar] [CrossRef]
- Sevush, S.; Jy, W.; Horstman, L.L.; Mao, W.W.; Kolodny, L.; Ahn, Y.S. Platelet activation in Alzheimer disease. Arch. Neurol. 1998, 55, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Jarre, A.; Gowert, N.S.; Donner, L.; Münzer, P.; Klier, M.; Borst, O.; Schaller, M.; Lang, F.; Korth, C.; Elvers, M. Pre-activated blood platelets and a pro-thrombotic phenotype in APP23 mice modeling Alzheimer’s disease. Cell. Signal. 2014, 26, 2040–2050. [Google Scholar] [CrossRef] [PubMed]
- Kniewallner, K.M.; Ehrlich, D.; Kiefer, A.; Marksteiner, J.; Humpel, C. Platelets in the Alzheimer’s Disease Brain: Do they Play a Role in Cerebral Amyloid Angiopathy? Curr. Neurovascular Res. 2015, 12, 4–14. [Google Scholar] [CrossRef]
- Nieswandt, B.; Pleines, I.; Bender, M. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J. Thromb. Haemost. 2011, 9 (Suppl. 1), 92–104. [Google Scholar] [CrossRef]
- Shen, M.Y.; Hsiao, G.; Fong, T.H.; Chen, H.M.; Chou, D.S.; Lin, C.H.; Sheu, J.R.; Hsu, C.Y. Amyloid beta peptide-activated signal pathways in human platelets. Eur. J. Pharmacol. 2008, 588, 259–266. [Google Scholar] [CrossRef]
- Sonkar, V.K.; Kulkarni, P.P.; Dash, D. Amyloid beta peptide stimulates platelet activation through RhoA-dependent modulation of actomyosin organization. FASEB J. 2014, 28, 1819–1829. [Google Scholar] [CrossRef]
- Canobbio, I.; Guidetti, G.F.; Oliviero, B.; Manganaro, D.; Vara, D.; Torti, M.; Pula, G. Amyloid beta-peptide-dependent activation of human platelets: Essential role for Ca2+ and ADP in aggregation and thrombus formation. Biochem. J. 2014, 462, 513–523. [Google Scholar] [CrossRef]
- Casoli, T.; Di Stefano, G.; Giorgetti, B.; Balietti, M.; Recchioni, R.; Moroni, F.; Marcheselli, F.; Bernardini, G.; Fattoretti, P.; Bertoni-Freddari, C. Platelet as a physiological model to investigate apoptotic mechanisms in Alzheimer beta-amyloid peptide production. Mech. Ageing. Dev. 2008, 129, 154–162. [Google Scholar] [CrossRef]
- Donner, L.; Feige, T.; Freiburg, C.; Toska, L.M.; Reichert, A.S.; Chatterjee, M.; Elvers, M. Impact of Amyloid-beta on Platelet Mitochondrial Function and Platelet-Mediated Amyloid Aggregation in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 9633. [Google Scholar] [CrossRef] [PubMed]
- Gowert, N.S.; Donner, L.; Chatterjee, M.; Eisele, Y.S.; Towhid, S.T.; Munzer, P.; Walker, B.; Ogorek, I.; Borst, O.; Grandoch, M.; et al. Blood platelets in the progression of Alzheimer’s disease. PLoS ONE 2014, 9, e90523. [Google Scholar] [CrossRef]
- Abubaker, A.A.; Vara, D.; Visconte, C.; Eggleston, I.; Torti, M.; Canobbio, I.; Pula, G. Amyloid Peptide beta1-42 Induces Integrin alphaIIbbeta3 Activation, Platelet Adhesion, and Thrombus Formation in a NADPH Oxidase-Dependent Manner. Oxidative Med. Cell. Longev. 2019, 2019, 1050476. [Google Scholar] [CrossRef]
- Visconte, C.; Canino, J.; Vismara, M.; Guidetti, G.F.; Raimondi, S.; Pula, G.; Torti, M.; Canobbio, I. Fibrillar amyloid peptides promote platelet aggregation through the coordinated action of ITAM- and ROS-dependent pathways. J. Thromb. Haemost. 2020, 18, 3029–3042. [Google Scholar] [CrossRef] [PubMed]
- Donner, L.; Gremer, L.; Ziehm, T.; Gertzen, C.G.W.; Gohlke, H.; Willbold, D.; Elvers, M. Relevance of N-terminal residues for amyloid-beta binding to platelet integrin alpha(IIb)beta(3), integrin outside-in signaling and amyloid-beta fibril formation. Cell. Signal. 2018, 50, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Donner, L.; Toska, L.M.; Kruger, I.; Groniger, S.; Barroso, R.; Burleigh, A.; Mezzano, D.; Pfeiler, S.; Kelm, M.; Gerdes, N.; et al. The collagen receptor glycoprotein VI promotes platelet-mediated aggregation of beta-amyloid. Sci. Signal. 2020, 13, eaba9872. [Google Scholar] [CrossRef]
- Elaskalani, O.; Khan, I.; Morici, M.; Matthysen, C.; Sabale, M.; Martins, R.N.; Verdile, G.; Metharom, P. Oligomeric and fibrillar amyloid beta 42 induce platelet aggregation partially through GPVI. Platelets 2018, 29, 415–420. [Google Scholar] [CrossRef]
- Skovronsky, D.M.; Lee, V.M.; Pratico, D. Amyloid precursor protein and amyloid beta peptide in human platelets. Role of cyclooxygenase and protein kinase C. J. Biol. Chem. 2001, 276, 17036–17043. [Google Scholar] [CrossRef]
- Wolska, N.; Celikag, M.; Failla, A.V.; Tarafdar, A.; Renne, T.; Torti, M.; Canobbio, I.; Pula, G. Human platelets release amyloid peptides beta(1-40) and beta(1-42) in response to haemostatic, immune, and hypoxic stimuli. Res. Pract. Thromb. Haemost. 2023, 7, 100154. [Google Scholar] [CrossRef]
- Beura, S.K.; Dhapola, R.; Panigrahi, A.R.; Yadav, P.; Reddy, D.H.; Singh, S.K. Redefining oxidative stress in Alzheimer’s disease: Targeting platelet reactive oxygen species for novel therapeutic options. Life Sci. 2022, 306, 120855. [Google Scholar] [CrossRef]
- Van Dam, D.; Vloeberghs, E.; Abramowski, D.; Staufenbiel, M.; De Deyn, P.P. APP23 mice as a model of Alzheimer’s disease: An example of a transgenic approach to modeling a CNS disorder. CNS Spectr. 2005, 10, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Javonillo, D.I.; Tran, K.M.; Phan, J.; Hingco, E.; Kramar, E.A.; da Cunha, C.; Forner, S.; Kawauchi, S.; Milinkeviciute, G.; Gomez-Arboledas, A.; et al. Systematic Phenotyping and Characterization of the 3xTg-AD Mouse Model of Alzheimer’s Disease. Front. Neurosci. 2022, 15, 785276. [Google Scholar] [CrossRef]
- Davis, J.; Xu, F.; Deane, R.; Romanov, G.; Previti, M.L.; Zeigler, K.; Zlokovic, B.V.; Van Nostrand, W.E. Early-onset and robust cerebral microvascular accumulation of amyloid β-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid β-protein precursor. J. Biol. Chem. 2004, 279, 20296–20306. [Google Scholar] [CrossRef]
- Chishti, M.A.; Yang, D.S.; Janus, C.; Phinney, A.L.; Horne, P.; Pearson, J.; Strome, R.; Zuker, N.; Loukides, J.; French, J.; et al. Early-onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 2001, 276, 21562–21570. [Google Scholar] [CrossRef]
- Knobloch, M.; Konietzko, U.; Krebs, D.C.; Nitsch, R.M. Intracellular Aβ and cognitive deficits precede β-amyloid deposition in transgenic arcAβ mice. Neurobiol. Aging 2007, 28, 1297–1306. [Google Scholar] [CrossRef]
- Radde, R.; Bolmont, T.; Kaeser, S.A.; Coomaraswamy, J.; Lindau, D.; Stoltze, L.; Calhoun, M.E.; Jäggi, F.; Wolburg, H.; Gengler, S.; et al. Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006, 7, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Oakley, H.; Cole, S.L.; Logan, S.; Maus, E.; Shao, P.; Craft, J.; Guillozet-Bongaarts, A.; Ohno, M.; Disterhoft, J.; Van Eldik, L.; et al. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations:: Potential factors in amyloid plaque formation. J. Neurosci. 2006, 26, 10129–10140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.A.; Gao, M.; Chen, B.N.; Shi, L.L.; Wang, Q.Y.; Yu, X.Y.; Xuan, Z.H.; Gao, L.; Du, G.H. Evaluation of Hippocampal Injury and Cognitive Function Induced by Embolization in the Rat Brain. Anat. Rec.-Adv. Integr. Anat. Evol. Biol. 2013, 296, 1207–1214. [Google Scholar] [CrossRef]
- Donner, L.; Krüger, I.; Pfeiler, S.; Gerdes, N.; Schaller, M.; Kelm, M.; Elvers, M. Reduced platelet activation and thrombus formation in male transgenic model mice of Alzheimer’s disease suggests early sex-specific differences in platelet pathophysiology. Mol. Cell. Neurosci. 2024, 130, 103952. [Google Scholar] [CrossRef]
- Canobbio, I.; Visconte, C.; Oliviero, B.; Guidetti, G.; Zarà, M.; Pula, G.; Torti, M. Increased platelet adhesion and thrombus formation in a mouse model of Alzheimer’s disease. Cell. Signal. 2016, 28, 1863–1871. [Google Scholar] [CrossRef]
- Bian, Z.H.; Yamashita, T.; Shi, X.W.; Feng, T.; Yu, H.B.; Hu, X.; Hu, X.R.; Bian, Y.T.; Sun, H.M.; Tadokoro, K.; et al. Accelerated accumulation of fibrinogen peptide chains with Aβ deposition in Alzheimer’s disease (AD) mice and human AD brains. Brain Res. 2021, 1767, 147569. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Canteli, M.; Paul, J.; Norris, E.H.; Bronstein, R.; Ahn, H.J.; Zamolodchikov, D.; Bhuvanendran, S.; Fenz, K.M.; Strickland, S. Fibrinogen and β-Amyloid Association Alters Thrombosis and Fibrinolysis: A Possible Contributing Factor to Alzheimer’s Disease. Neuron 2010, 66, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.J.; Glickman, J.F.; Poon, K.L.; Zamolodchikov, D.; Jno-Charles, O.C.; Norris, E.H.; Strickland, S. A novel Aβ-fibrinogen interaction inhibitor rescues altered thrombosis and cognitive decline in Alzheimer’s disease mice. J. Exp. Med. 2014, 211, 1049–1062. [Google Scholar] [CrossRef]
- Kucheryavykh, L.Y.; Dávila-Rodríguez, J.; Rivera-Aponte, D.E.; Zueva, L.V.; Washington, A.V.; Sanabria, P.; Inyushin, M.Y. Platelets are responsible for the accumulation of β-amyloid in blood clots inside and around blood vessels in mouse brain after thrombosis. Brain Res. Bull. 2017, 128, 98–105. [Google Scholar] [CrossRef]
- Cortes-Canteli, M.; Mattei, L.; Richards, A.T.; Norris, E.H.; Strickland, S. Fibrin deposited in the Alzheimer’s disease brain promotes neuronal degeneration. Neurobiol. Aging 2015, 36, 608–617. [Google Scholar] [CrossRef]
- Lin, A.J.; Liu, G.J.; Castello, N.A.; Yeh, J.J.; Rahimian, R.; Lee, G.; Tsay, V.; Durkin, A.J.; Choi, B.; LaFerla, F.M.; et al. Optical imaging in an Alzheimer’s mouse model reveals amyloid-β-dependent vascular impairment. Neurophotonics 2014, 1, 011005. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.Q.; Rudin, M.; Klohs, J. Cortical hypoperfusion and reduced cerebral metabolic rate of oxygen in the arcAβ mouse model of Alzheimer’s disease. Photoacoustics 2018, 10, 38–47. [Google Scholar] [CrossRef]
- Maier, F.C.; Wehrl, H.F.; Schmid, A.M.; Mannheim, J.G.; Wiehr, S.; Lerdkrai, C.; Calaminus, C.; Stahlschmidt, A.; Ye, L.; Burnet, M.; et al. Longitudinal PET-MRI reveals β-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. Nat. Med. 2014, 20, 1485–1492. [Google Scholar] [CrossRef]
- Tataryn, N.M.; Singh, V.; Dyke, J.P.; Berk-Rauch, H.E.; Clausen, D.M.; Aronowitz, E.; Norris, E.H.; Strickland, S.; Ahn, H.J. Vascular endothelial growth factor associated dissimilar cerebrovascular phenotypes in two different mouse models of Alzheimer’s Disease. Neurobiol. Aging 2021, 107, 96–108. [Google Scholar] [CrossRef]
- DeBay, D.R.; Phi, T.T.; Bowen, C.V.; Burrell, S.C.; Darvesh, S. No difference in cerebral perfusion between the wild-type and the 5XFAD mouse model of Alzheimer’s disease. Sci. Rep. 2022, 12, 22174. [Google Scholar] [CrossRef]
- Cajamarca, S.A.; Norris, E.H.; van der Weerd, L.; Strickland, S.; Ahn, H.J. Cerebral amyloid angiopathy-linked β-amyloid mutations promote cerebral fibrin deposits via increased binding affinity for fibrinogen. Proc. Natl. Acad. Sci. USA 2020, 117, 14482–14492. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, Z.; Capuano, A.W.; Leurgans, S.E.; Bennett, D.A.; Schneider, J.A. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: A cross-sectional study. Lancet Neurol. 2016, 15, 934–943. [Google Scholar] [CrossRef]
- Akiyama, H.; Ikeda, K.; Kondo, H.; McGeer, P.L. Thrombin Accumulation in Brains of Patients with Alzheimers-Disease. Neurosci. Lett. 1992, 146, 152–154. [Google Scholar] [CrossRef]
- Arai, T.; Miklossy, J.; Klegeris, A.; Guo, J.P.; McGeer, P.L. Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J. Neuropathol. Exp. Neurol. 2006, 65, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Grammas, P.; Samany, P.G.; Thirumangalakudi, L. Thrombin and inflammatory proteins are elevated in Alzheimer’s disease microvessels: Implications for disease pathogenesis. J. Alzheimers Dis. 2006, 9, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.L.; Wright, J.; Wall, T.; Grammas, P. Brain Endothelial Cells Synthesize Neurotoxic Thrombin in Alzheimer’s Disease. Am. J. Pathol. 2010, 176, 1600–1606. [Google Scholar] [CrossRef]
- Mari, D.; Parnetti, L.; Coppola, R.; Bottasso, B.; Reboldi, G.P.; Senin, U.; Mannucci, P.M. Hemostasis abnormalities in patients with vascular dementia and Alzheimer’s disease. Thromb. Haemost. 1996, 75, 216–218. [Google Scholar] [CrossRef]
- Stellos, K.; Katsiki, N.; Tatsidou, P.; Bigalke, B.; Laske, C. Association of Platelet Activation with Vascular Cognitive Impairment: Implications in Dementia Development? Curr. Vasc. Pharmacol. 2014, 12, 152–154. [Google Scholar] [CrossRef]
- Wang, R.T.; Jin, D.; Li, Y.; Liang, Q.C. Decreased mean platelet volume and platelet distribution width are associated with mild cognitive impairment and Alzheimer’s disease. J. Psychiatr. Res. 2013, 47, 644–649. [Google Scholar] [CrossRef]
- Framingham Heart Study. Available online: https://www.framinghamheartstudy.org/ (accessed on 2 April 2025).
- Ramos-Cejudo, J.; Johnson, A.D.; Beiser, A.; Seshadri, S.; Salinas, J.; Berger, J.S.; Fillmore, N.R.; Do, N.; Zheng, C.L.; Kovbasyuk, Z.; et al. Platelet Function Is Associated With Dementia Risk in the Framingham Heart Study. J. Am. Heart Assoc. 2022, 11, e023918. [Google Scholar] [CrossRef]
- Kozubski, W.; Swiderek, M.; Kloszewska, I.; Gwozdzinski, K.; Watala, C. Blood platelet membrane fluidity and the exposition of membrane protein receptors in Alzheimer disease (AD) patients—Preliminary study. Alzheimer Dis. Assoc. Disord. 2002, 16, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Forlenza, O.V.; Torres, C.A.; Talib, L.L.; de Paula, V.J.; Joaquim, H.P.; Diniz, B.S.; Gattaz, W.F. Increased platelet GSK3B activity in patients with mild cognitive impairment and Alzheimer’s disease. J. Psychiatr. Res. 2011, 45, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.J.; Lai, X.H.; Huang, Y.; Bao, T.; Yang, J.; Chen, S.H.; Chen, X.P.; Shang, H.F. Meta-analysis and systematic review of peripheral platelet-associated biomarkers to explore the pathophysiology of alzheimer’s disease. BMC Neurol. 2023, 23, 66. [Google Scholar] [CrossRef]
- Gallacher, J.; Bayer, A.; Lowe, G.; Fish, M.; Pickering, J.; Pedro, S.; Dunstan, F.; White, J.; Yarnell, J.; Ben-Shlomo, Y. Is Sticky Blood Bad for the Brain? Hemostatic and Inflammatory Systems and Dementia in the Caerphilly Prospective Study. Arter. Thromb. Vasc. Biol. 2010, 30, 599–604. [Google Scholar] [CrossRef]
- Oh, J.; Lee, H.J.; Song, J.H.; Park, S.I.; Kim, H. Plasminogen activator inhibitor-1 as an early potential diagnostic marker for Alzheimer’s disease. Exp. Gerontol. 2014, 60, 87–91. [Google Scholar] [CrossRef] [PubMed]
- van Oijen, M.; Witteman, J.C.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M.B. Fibrinogen is associated with an increased risk of Alzheimer disease and vascular dementia. Stroke 2005, 36, 2637–2641. [Google Scholar] [CrossRef]
- Stott, D.J.; Robertson, M.; Rumley, A.; Welsh, P.; Sattar, N.; Packard, C.J.; Shepherd, J.; Trompet, S.; Westendorp, R.G.J.; de Craen, A.J.M.; et al. Activation of Hemostasis and Decline in Cognitive Function in Older People. Arter. Thromb. Vasc. Biol. 2010, 30, 605–611. [Google Scholar] [CrossRef]
- Carcaillon, L.; Gaussem, P.; Ducimetière, P.; Giroud, M.; Ritchie, K.; Dartigues, J.F.; Scarabin, P.Y. Elevated plasma fibrin D-dimer as a risk factor for vascular dementia: The Three-City cohort study. J. Thromb. Haemost. 2009, 7, 1972–1978. [Google Scholar] [CrossRef]
- Vishnu, V.Y.; Modi, M.; Garg, V.K.; Mohanty, M.; Goyal, M.K.; Lal, V.; Mittal, B.R.; Prabhakar, S. Role of inflammatory and hemostatic biomarkers in Alzheimer’s and vascular dementia—A pilot study from a tertiary center in Northern India. Asian J. Psychiatry 2017, 29, 59–62. [Google Scholar] [CrossRef]
- Park, J.E.; Lim, D.; Cho, Y.H.; Choi, K.Y.; Lee, J.J.; Kim, B.C.; Lee, K.H.; Lee, J.S. Plasma contact factors as novel biomarkers for diagnosing Alzheimer’s disease. Biomark. Res. 2021, 9, 5. [Google Scholar] [CrossRef]
- Shi, W.Z.; Lu, J.J.; Wei, P.Y.; Ning, P.P.; Fan, J.X.; Huang, S.; Guo, X.Z.; Li, R. The effects of coagulation factors on the risk of Alzheimer’s disease: A Mendelian randomization study. J. Alzheimers Dis. Rep. 2025, 9, 25424823251327674. [Google Scholar] [CrossRef]
- Scipione, C.A.; Koschinsky, M.L.; Boffa, M.B. Lipoprotein(a) in clinical practice: New perspectives from basic and translational science. Crit. Rev. Clin. Lab. Sci. 2018, 55, 33–54. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Panza, F.; D'Introno, A.; Colacicco, A.M.; Capurso, C.; Basile, A.M.; Capurso, A. Lipoprotein(a), apolipoprotein E genotype, and risk of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2002, 72, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Koba, S.; Kawamura, M.; Itokawa, M.; Idei, T.; Nakagawa, Y.; Iguchi, T.; Katagiri, T. Small dense low-density lipoprotein and carotid atherosclerosis in relation to vascular dementia. Metabolism 2004, 53, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.; Watanabe, T.; Suguro, T.; Matsuyama, T.A.; Iso, Y.; Sakai, T.; Sato, R.; Idei, T.; Nakano, Y.; Ota, H.; et al. Increased Plasma Urotensin-II and Carotid Atherosclerosis are Associated with Vascular Dementia. J. Atheroscler. Thromb. 2009, 16, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Emanuele, E.; Peros, E.; Tomaino, C.; Feudatari, E.; Bernardi, L.; Binetti, G.; Maletta, R.; Micieli, G.; Bruni, A.C.; Geroldi, D. Relation of apolipoprotein(a) size to Alzheimer’s disease and vascular dementia. Dement. Geriatr. Cogn. Disord. 2004, 18, 189–196. [Google Scholar] [CrossRef]
- Dukic, L.; Simundic, A.M.; Martinic-Popovic, I.; Kackov, S.; Diamandis, A.; Begcevic, I.; Diamandis, E.P. The role of human kallikrein 6, clusterin and adiponectin as potential blood biomarkers of dementia. Clin. Biochem. 2016, 49, 213–218. [Google Scholar] [CrossRef]
- Murr, J.; Carmichael, P.H.; Julien, P.; Laurin, D. Plasma oxidized low-density lipoprotein levels and risk of Alzheimer’s disease. Neurobiol. Aging 2014, 35, 1833–1838. [Google Scholar] [CrossRef]
- Duits, F.H.; Hernandez-Guillamon, M.; Montaner, J.; Goos, J.D.C.; Montañola, A.; Wattjes, M.P.; Barkhof, F.; Scheltens, P.; Teunissen, C.E.; van der Flier, W.M. Matrix Metalloproteinases in Alzheimer’s Disease and Concurrent Cerebral Microbleeds. J. Alzheimers Dis. 2015, 48, 711–720. [Google Scholar] [CrossRef]
- Johnson, N.A.; Jahng, G.H.; Weiner, M.W.; Miller, B.L.; Chui, H.C.; Jagust, W.J.; Gorno-Tempini, M.L.; Schuff, N. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: Initial experience. Radiology 2005, 234, 851–859. [Google Scholar] [CrossRef]
- Ishiwata, A.; Sakayori, O.; Minoshima, S.; Mizumura, S.; Kitamura, S.; Katayama, Y. Preclinical evidence of Alzheimer changes in progressive mild cognitive impairment: A qualitative and quantitative SPECT study. Acta Neurol. Scand. 2006, 114, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, N.; Tosun, D.; Insel, P.S.; Simonson, A.; Jack, C.R.; Beckett, L.A.; Donohue, M.; Jagust, W.; Schuff, N.; Weiner, M.W. Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment. Brain 2014, 137, 1550–1561. [Google Scholar] [CrossRef] [PubMed]
- Kume, K.; Hanyu, H.; Sato, T.; Hirao, K.; Shimizu, S.; Kanetaka, H.; Sakurai, H.; Iwamoto, T. Vascular risk factors are associated with faster decline of Alzheimer disease: A longitudinal SPECT study. J. Neurol. 2011, 258, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
Mouse Model | Thrombosis Marker | Reference |
---|---|---|
Aged APP23 | Increased platelet activation; Increased thrombi formation; Decreased clotting time in vivo. | Jarre et al. [24] |
Middle-aged APP23 | Decreased platelet activation; Increased number of dense granules; Decreased thrombus stability; Increased clotting time in vivo. | Donner et al. [49] |
3xTg-AD | Increased platelet adhesion; Increased thrombus formation. | Canobbio et al. [50] |
APP_SweDI | Platelet toxicity on healthy cerebrovascular and parenchyma in vitro. | Kniewallner et al. [18] |
APP23 | Fibrinogen polypeptide chains α, β, and γ co-localised with Aβ40. | Bian et al. [51] |
TgCRND8 | Fibrinogen co-localised with Aβ plaques; Decreased clearance of fibrinogen from brain. | Cortes-Cantelli et al. [52] |
Tg6799 | Better cognitive function with fibrinogen-inhibitor treatment. | Ahn et al. [53] |
Post/Ante Mortem | Thrombosis Marker | Reference |
---|---|---|
Post mortem | Increased amount of fibrinogen polypeptide chains; Co-localisation of fibrinogen and Aβ in brain cortex and vessel walls. | Bian et al. [51] |
Post mortem | Co-localisation of fibrinogen and Aβ in brain cortex and vessel walls; Occlusion of vessels with fibrinogen; Increased number of large vessels containing fibrinogen. | Cortes-Canteli et al. [52] |
Post mortem | Increased amount of fibrin chain β; Co-localisation of fibrinogen and Aβ in brain cortex, hippocampus, and vessel walls; Occlusion of vessels with fibrinogen; Location of fibrinogen near synaptic disfunction places. | Cortes-Canteli et al. [55] |
Post mortem | Co-localisation of fibrinogen and Aβ in brain cortex and vessel walls; Dutch and Iowa Aβ mutations, increase in the affinity of Aβ to fibrinogen in CAA patients | Cajamarca et al. [61] |
Post mortem | Increased risk due to atherosclerosis and arteriolosclerosis. | Arvanitakis et al. [62] |
Post mortem | Platelet localisation in brain vessels and Aβ plaques. | Kniewallner et al. [25] |
Post mortem | Thrombin and prothrombin accumulation in Aβ plaques and NFT. | Akiyama et al. [63] |
Post mortem | Thrombin and prothrombin accumulation in NFT. | Arai et al. [64] |
Post mortem | Increased thrombin levels in the microvasculature and cerebrospinal fluid. | Grammas et al. [65] |
Post mortem | Increased thrombin level in cerebrospinal fluid. | Yin et al. [66] |
Ante mortem | Increased platelet activation. | Stellos et al. [17] |
Ante mortem | Increased level of coated platelets | Prodan et al. [22] |
Ante mortem | Decreased mean platelet volume. | Wang et al. [69] |
Ante mortem | Increased response to ADP increases the risk of AD. | Ramos-Cejudo et al. [71] |
Ante mortem | Increased platelet membrane fluidity. | Kozubski et al. [72] |
Ante mortem | Increased APP expression in AD platelets; Increased platelet secretion of Aβ1–40 in advanced AD patients; Talin upregulated in platelets from mild AD patients; Vinculin downregulated in platelets from mild AD patients; Moesin downregulated in mild and advanced AD platelets; C3b downregulated in MCI and advanced AD patient platelets; Rho upregulated in platelets from advanced AD patients. | Gonzalez-Sanchez et al. [19] |
Ante mortem | GSK3B ratio decreased in MCI and AD patient platelets (positive correlation with memory tests). | Forlenza et al. [73] |
Ante mortem | Decreased level of APP ratio in AD platelets; Decreased level of ADAM10 in AD platelets; Increased level of tau protein ratio in AD platelets. | Fu et al. [74] |
Ante mortem | Increased levels of activated factor VII and von Willebrand factor. | Mari et al. [67] |
Ante mortem | Increased levels of factor VIII and PAI-1 increase the risk of VD; Increased levels of fibrinogen increase the risk of VD. | Gallacher et al. [75] |
Ante mortem | Increased level PAI-1 increases the risk of VD. | Oh et al. [76] |
Ante mortem | Increased level of fibrinogen increases the risks of AD and VD. | van Oijen et al. [77] |
Ante mortem | Increased D-dimer and prothrombin fragment 1 + 2 in AD. | Stott et al. [78] |
Ante mortem | Increased level of D-dimer increases the risk of VD. | Carcaillon et al. [79] |
Ante mortem | Increased level of D-dimer increases in VD; Increased level of fibrinogen in VD. | Vishnu et al. [80] |
Ante mortem | Increased level of lipoprotein(a) increases the risk of AD. | Solfrizzi et al. [84] |
Ante mortem | Increased levels of lipoprotein(a), LDL, and lipid peroxide in VD. | Watanabe et al. [85] |
Ante mortem | Increased levels of lipoprotein(a), LDL, lipid peroxide, interleukin-6, and C-reactive protein increase the risk of VD; Higher levels of human UII increase the risk of VD. | Ban et al. [86] |
Ante mortem | Increased level of apolipoprotein increases the risks of AD and VD. | Emanuele et al. [87] |
Ante mortem | Increased level of IL6 in VD. | Dukic et al. [88] |
Ante mortem | Increased level of oxLD does not increase the risks of AD or VD. | Murr et al. [89] |
Ante mortem | Increased level of MMP2 in plasma in AD compared with VD. Increased level of MMP10 in CSF compared with controls. | Duits et al. [90] |
Ante mortem | Increased levels of activated factor XII, activated factor XI, activated factor X, and prekallikrein in AD. | Park et al. [81] |
Ante mortem | Increased levels of protein C, coagulation factor X, and activated partial thromboplastin time increase the risk of AD. Increased level of coagulation factor XI decreases the risk of AD. Von Willebrand factor, coagulation factor VIII, PAI-1, ADAM with thrombospondin type 1 motif, member 13 (ADAMTS13), plasmin, endogenous thrombin potential, and coagulation factor VII are not associated with higher or lower risk of AD. | Shi et al. [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch-Paszkowski, J.; Sennett, C.; Pula, G. Alzheimer’s Disease–Thrombosis Comorbidity: A Growing Body of Evidence from Patients and Animal Models. Cells 2025, 14, 1069. https://doi.org/10.3390/cells14141069
Koch-Paszkowski J, Sennett C, Pula G. Alzheimer’s Disease–Thrombosis Comorbidity: A Growing Body of Evidence from Patients and Animal Models. Cells. 2025; 14(14):1069. https://doi.org/10.3390/cells14141069
Chicago/Turabian StyleKoch-Paszkowski, Joanna, Christopher Sennett, and Giordano Pula. 2025. "Alzheimer’s Disease–Thrombosis Comorbidity: A Growing Body of Evidence from Patients and Animal Models" Cells 14, no. 14: 1069. https://doi.org/10.3390/cells14141069
APA StyleKoch-Paszkowski, J., Sennett, C., & Pula, G. (2025). Alzheimer’s Disease–Thrombosis Comorbidity: A Growing Body of Evidence from Patients and Animal Models. Cells, 14(14), 1069. https://doi.org/10.3390/cells14141069