Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = brain cholesterol metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2361 KiB  
Article
Abelmoschus esculentus Ameliorates Cognitive Impairment in Hyperlipidemic ApoE−/− Mice via Modulation of Oxidative Stress and Neuronal Differentiation
by Chiung-Huei Peng, Hsin-Wen Liang, Chau-Jong Wang, Chien-Ning Huang and Huei-Jane Lee
Antioxidants 2025, 14(8), 955; https://doi.org/10.3390/antiox14080955 - 4 Aug 2025
Viewed by 187
Abstract
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE [...] Read more.
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE in hyperlipidemic ApoE−/− mice treated with streptozotocin (50 mg/kg) and fed a high-fat diet (17% lard oil, 1.2% cholesterol). AE fractions F1 or F2 (0.65 mg/kg) were administered for 8 weeks. AE significantly reduced serum LDL-C, HDL-C, triglycerides, and glucose, improved cognitive and memory function, and protected hippocampal neurons. AE also lowered oxidative stress markers (8-hydroxy-2′-deoxyguanosine, 8-OHdG) and modulated neuronal nuclei (NeuN) and doublecortin (DCX) expression. In vitro, AE promoted neurite outgrowth and neuronal differentiation in retinoic acid (RA)-differentiated human SH-SY5Y cells under metabolic stress (glucose and palmitate), alongside the upregulation of heme oxygenase-1 (HO-1), Nuclear factor-erythroid 2-related factor 2 (Nrf2), and brain-derived neurotrophic factor (BDNF). These findings suggest AE may counter cognitive decline via oxidative stress regulation and the enhancement of neuronal differentiation. Full article
Show Figures

Graphical abstract

17 pages, 916 KiB  
Review
Choline—An Essential Nutrient with Health Benefits and a Signaling Molecule
by Brianne C. Burns, Jitendra D. Belani, Hailey N. Wittorf, Eugen Brailoiu and Gabriela C. Brailoiu
Int. J. Mol. Sci. 2025, 26(15), 7159; https://doi.org/10.3390/ijms26157159 - 24 Jul 2025
Viewed by 696
Abstract
Choline has been recognized as an essential nutrient involved in various physiological functions critical to human health. Adequate daily intake of choline has been established by the US National Academy of Medicine in 1998, considering choline requirements for different ages, sex differences and [...] Read more.
Choline has been recognized as an essential nutrient involved in various physiological functions critical to human health. Adequate daily intake of choline has been established by the US National Academy of Medicine in 1998, considering choline requirements for different ages, sex differences and physiological states (e.g., pregnancy). By serving as a precursor for acetylcholine and phospholipids, choline is important for cholinergic transmission and the structural integrity of cell membranes. In addition, choline is involved in lipid and cholesterol transport and serves as a methyl donor after oxidation to betaine. Extracellular choline is transported across the cell membrane via various transport systems (high-affinity and low-affinity choline transporters) with distinct features and roles. An adequate dietary intake of choline during pregnancy supports proper fetal development, and throughout life supports brain, liver, and muscle functions, while choline deficiency is linked to disease states like fatty liver. Choline has important roles in neurodevelopment, cognition, liver function, lipid metabolism, and cardiovascular health. While its signaling role has been considered mostly indirect via acetylcholine and phosphatidylcholine which are synthesized from choline, emerging evidence supports a role for choline as an intracellular messenger acting on Sigma-1R, a non-opioid intracellular receptor. These new findings expand the cell signaling repertoire and increase the current understanding of the role of choline while warranting more research to uncover the molecular mechanisms and significance in the context of GPCR signaling, the relevance for physiology and disease states. Full article
Show Figures

Figure 1

23 pages, 6611 KiB  
Article
Investigating Lipid and Energy Dyshomeostasis Induced by Per- and Polyfluoroalkyl Substances (PFAS) Congeners in Mouse Model Using Systems Biology Approaches
by Esraa Gabal, Marwah Azaizeh and Priyanka Baloni
Metabolites 2025, 15(8), 499; https://doi.org/10.3390/metabo15080499 - 24 Jul 2025
Viewed by 571
Abstract
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This [...] Read more.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This study investigates metabolic alterations in the liver following PFAS exposure to identify mechanisms leading to hepatoxicity. Methods: We analyzed RNA sequencing datasets of mouse liver tissues exposed to PFAS to identify metabolic pathways influenced by the chemical toxicant. We integrated the transcriptome data with a mouse genome-scale metabolic model to perform in silico flux analysis and investigated reactions and genes associated with lipid and energy metabolism. Results: PFESA-BP2 exposure caused dose- and sex-dependent changes, including upregulation of fatty acid metabolism, β-oxidation, and cholesterol biosynthesis. On the contrary, triglycerides, sphingolipids, and glycerophospholipids metabolism were suppressed. Simulations from the integrated genome-scale metabolic models confirmed increased flux for mevalonate and lanosterol metabolism, supporting potential cholesterol accumulation. GenX and PFOA triggered strong PPARα-dependent responses, especially in β-oxidation and lipolysis, which were attenuated in PPARα−/− mice. Mitochondrial fatty acid transport and acylcarnitine turnover were also disrupted, suggesting impaired mitochondrial dysfunction. Additional PFAS effects included perturbations in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and blood–brain barrier (BBB) function, pointing to broader systemic toxicity. Conclusions: Our findings highlight key metabolic signatures and suggest PFAS-mediated disruption of hepatic and possibly neurological functions. This study underscores the utility of genome-scale metabolic modeling as a powerful tool to interpret transcriptomic data and predict systemic metabolic outcomes of toxicant exposure. Full article
Show Figures

Graphical abstract

37 pages, 1622 KiB  
Review
The Role of APOA-I in Alzheimer’s Disease: Bridging Peripheral Tissues and the Central Nervous System
by Guanfeng Xie, Gege Jiang, Liqin Huang, Shangqi Sun, Yuwei Wan, Fang Li, Bingjie Wu, Ying Zhang, Xiaoyi Li, Bingwan Xiong and Jing Xiong
Pharmaceuticals 2025, 18(6), 790; https://doi.org/10.3390/ph18060790 - 25 May 2025
Viewed by 976
Abstract
Lipid metabolism disorders represent a significant risk factor for the pathogenesis of Alzheimer’s disease (AD). Apolipoprotein E (APOE) has been regarded as a pivotal regulator of lipid homeostasis in the central nervous system (CNS), with polymorphic alleles identified as genetic risk factors for [...] Read more.
Lipid metabolism disorders represent a significant risk factor for the pathogenesis of Alzheimer’s disease (AD). Apolipoprotein E (APOE) has been regarded as a pivotal regulator of lipid homeostasis in the central nervous system (CNS), with polymorphic alleles identified as genetic risk factors for late-onset AD. Despite advances in APOE research and the development of numerous pharmaceutical approaches targeting distinct APOE isoforms, there remain limited treatment approaches for AD that focus on lipid metabolic homeostasis. Consequently, it is necessary to reevaluate the lipid metabolic process in the CNS. Apolipoprotein A1 (APOA-I), a major component of high-density lipoprotein (HDL), plays a crucial role in reverse cholesterol transport from tissues to the liver to maintain lipid homeostasis. Over the past few decades, numerous studies have suggested a connection between reduced APOA-I levels and a higher risk of AD. APOA-I is synthesized exclusively in the liver and intestines, and there is a lack of conclusive evidence supporting its functional significance within the central nervous system, in contrast to APOE, which is produced locally by glial cells and neurons within the CNS. Moreover, APOA-I’s ability to penetrate the blood-brain barrier (BBB) is still poorly understood, which causes its significance in central lipid metabolism and AD pathophysiology to be mainly disregarded. Recent advancements in tracing methodologies have underscored the essential role of APOA-I in regulating lipid metabolism in the CNS. This review aims to elucidate the physiological functions and metabolic pathways of APOA-I, integrating its associations with AD-related pathologies, risk factors, and potential therapeutic targets. Through this discourse, we aim to provide novel insights into the intricate relationship between AD and APOA-I, paving the way for future research in this field. Full article
Show Figures

Graphical abstract

18 pages, 1552 KiB  
Article
Metabolic Pattern of Brain Death—NMR-Based Metabolomics of Cerebrospinal Fluid
by Beata Toczylowska, Piotr Kalinowski, Agata Kacka-Piotrowska, Paulina Duda, Michał Grąt and Elzbieta Zieminska
Int. J. Mol. Sci. 2025, 26(6), 2719; https://doi.org/10.3390/ijms26062719 - 18 Mar 2025
Viewed by 613
Abstract
The aim of this study was to gain insight into the biochemical status of cerebrospinal fluid in the presence of brain death in life-supported patients. The biochemical status was determined via in vitro NMR spectroscopy of cerebrospinal fluid (CSF) obtained by lumbar puncture [...] Read more.
The aim of this study was to gain insight into the biochemical status of cerebrospinal fluid in the presence of brain death in life-supported patients. The biochemical status was determined via in vitro NMR spectroscopy of cerebrospinal fluid (CSF) obtained by lumbar puncture from 22 patients with confirmed brain death and compared with that of 34 control patients (without neurological diseases). Forty-one NMR signals from raw CSF samples and 20 signals from lipid extracts were analyzed using univariate and multivariate statistical methods. ANOVA revealed significant differences in all analyzed signals. No single biochemical marker was found to predict brain death. The CSF metabolic profiles of patients who died differed significantly from those of patients in the control group. There were many statistically significantly different compounds, including amino acids, ketone bodies, lactate, pyruvate, citrate, guanidinoacetate, choline, and glycerophosphocholine. Analysis of lipids revealed significant differences in cholesterol, estriol, and phosphoethanolamine. Discriminant analysis allows the analysis of metabolic profiles instead of single biomarkers of cerebrospinal fluid compounds. The results of our analysis allowed us to split the groups—the control group, which consisted of patients with a normal biochemical CSF composition, and the brain death group—with confirmed brain death. Full article
(This article belongs to the Special Issue Advances in NMR Spectroscopy for Bioactive Small Molecules)
Show Figures

Figure 1

53 pages, 12782 KiB  
Review
Brain Cytochrome P450: Navigating Neurological Health and Metabolic Regulation
by Pradeepraj Durairaj and Zixiang Leonardo Liu
J. Xenobiot. 2025, 15(2), 44; https://doi.org/10.3390/jox15020044 - 14 Mar 2025
Cited by 2 | Viewed by 3770
Abstract
Human cytochrome P450 (CYP) enzymes in the brain represent a crucial frontier in neuroscience, with far-reaching implications for drug detoxification, cellular metabolism, and the progression of neurodegenerative diseases. The brain’s complex architecture, composed of interconnected cell types and receptors, drives unique neuronal signaling [...] Read more.
Human cytochrome P450 (CYP) enzymes in the brain represent a crucial frontier in neuroscience, with far-reaching implications for drug detoxification, cellular metabolism, and the progression of neurodegenerative diseases. The brain’s complex architecture, composed of interconnected cell types and receptors, drives unique neuronal signaling pathways, modulates enzyme functions, and leads to distinct CYP gene expression and regulation patterns compared to the liver. Despite their relatively low levels of expression, brain CYPs exert significant influence on drug responses, neurotoxin susceptibility, behavior, and neurological disease risk. These enzymes are essential for maintaining brain homeostasis, mediating cholesterol turnover, and synthesizing and metabolizing neurochemicals, neurosteroids, and neurotransmitters. Moreover, they are key participants in oxidative stress responses, neuroprotection, and the regulation of inflammation. In addition to their roles in metabolizing psychotropic drugs, substances of abuse, and endogenous compounds, brain CYPs impact drug efficacy, safety, and resistance, underscoring their importance beyond traditional drug metabolism. Their involvement in critical physiological processes also links them to neuroprotection, with significant implications for the onset and progression of neurodegenerative diseases. Understanding the roles of cerebral CYP enzymes is vital for advancing neuroprotective strategies, personalizing treatments for brain disorders, and developing CNS-targeting therapeutics. This review explores the emerging roles of CYP enzymes, particularly those within the CYP1–3 and CYP46 families, highlighting their functional diversity and the pathological consequences of their dysregulation on neurological health. It also examines the potential of cerebral CYP-based biomarkers to improve the diagnosis and treatment of neurodegenerative disorders, offering new avenues for therapeutic innovation. Full article
Show Figures

Figure 1

35 pages, 1682 KiB  
Review
The Cross-Talk Between the Peripheral and Brain Cholesterol Metabolisms
by Ilinca Savulescu-Fiedler, Luiza-Roxana Dorobantu-Lungu, Serban Dragosloveanu, Serban Nicolae Benea, Christiana Diana Maria Dragosloveanu, Ana Caruntu, Andreea-Elena Scheau, Constantin Caruntu and Cristian Scheau
Curr. Issues Mol. Biol. 2025, 47(2), 115; https://doi.org/10.3390/cimb47020115 - 11 Feb 2025
Cited by 2 | Viewed by 3475
Abstract
Cholesterol is an essential element for the development and normal function of the central nervous system. While peripheral cholesterol is influenced by liver metabolism and diet, brain cholesterol metabolism takes place in an isolated system due to the impermeability of the blood–brain barrier [...] Read more.
Cholesterol is an essential element for the development and normal function of the central nervous system. While peripheral cholesterol is influenced by liver metabolism and diet, brain cholesterol metabolism takes place in an isolated system due to the impermeability of the blood–brain barrier (BBB). However, cross-talk occurs between the brain and periphery, specifically through metabolites such as oxysterols that play key roles in regulating cholesterol balance. Several neurodegenerative conditions such as Alzheimer’s disease or Parkinson’s disease are considered to be affected by the loss of this balance. Also, the treatment of hypercholesterolemia needs to consider these discrete interferences between brain and peripheral cholesterol and the possible implications of each therapeutic approach. This is particularly important because of 27-hydroxycholesterol and 24-hydroxycholesterol, which can cross the BBB and are involved in cholesterol metabolism. This paper examines the metabolic pathways of cholesterol metabolism in the brain and periphery and focuses on the complex cross-talk between these metabolisms. Also, we emphasize the regulatory role of the BBB and the need for an integrated approach to cholesterol management. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2024)
Show Figures

Figure 1

32 pages, 2169 KiB  
Review
Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases
by Yusuf Hussain, Mohammad Irfan Dar and Xiaoyue Pan
Metabolites 2024, 14(12), 723; https://doi.org/10.3390/metabo14120723 - 22 Dec 2024
Cited by 1 | Viewed by 2412
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep–wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain’s suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently [...] Read more.
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep–wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain’s suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day–night cycle. Molecular feedback loops, driven by core circadian “clock genes”, such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer’s and Parkinson’s diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders. Full article
(This article belongs to the Special Issue Cellular Metabolism in Neurological Disorders)
Show Figures

Graphical abstract

13 pages, 3689 KiB  
Article
Integrated Analysis of Transcriptome and Metabolome in the Brain After Cold Stress of Red Tilapia During Overwintering
by Chenxi Zhu, Haoran Yang, Wenbin Zhu, Qichen Jiang, Zaijie Dong and Lanmei Wang
Int. J. Mol. Sci. 2024, 25(24), 13372; https://doi.org/10.3390/ijms252413372 - 13 Dec 2024
Cited by 2 | Viewed by 1088
Abstract
Cold stress during overwintering is considered a bottleneck problem limiting the development of the red tilapia (Oreochromis spp.) industry, and the regulation mechanism is currently not well understood. In this study, the fish (initial weight: 72.71 ± 1.32 g) were divided into [...] Read more.
Cold stress during overwintering is considered a bottleneck problem limiting the development of the red tilapia (Oreochromis spp.) industry, and the regulation mechanism is currently not well understood. In this study, the fish (initial weight: 72.71 ± 1.32 g) were divided into the cold stress group (cold) and the control (normal) group. In the control group, the water temperature was maintained at 20 °C, which is basically consistent with the overwintering water temperature in greenhouses of local areas. In the cold group, the water temperature decreased from 20 °C to 8 °C by 2 °C per day during the experiment. At the end of the experiment, the levels of fish serum urea nitrogen, glucose, norepinephrine, alkaline phosphatase, total bilirubin, and total cholesterol in the cold group changed significantly compared with that in the control group (P < 0.05). Then transcriptome sequencing and LC–MS metabolome of brain tissue were further employed to obtain the mRNA and metabolite datasets. We found that the FoxO signaling pathway and ABC transporters played an important role by transcriptome–metabolome association analysis. In the FoxO signaling pathway, the differentially expressed genes were related to cell cycle regulation, apoptosis and immune-regulation, and oxidative stress resistance and DNA repair. In the ABC transporters pathway, the ATP-binding cassette (ABC) subfamily abca, abcb, and abcc gene expression levels, and the deoxycytidine, L-lysine, L-glutamic acid, L-threonine, ornithine, and uridine metabolite contents changed. Our results suggested that the cold stress may promote apoptosis through regulation of the FoxO signaling pathway. The ABC transporters may respond to cold stress by regulating amino acid metabolism. The results provided a comprehensive understanding of fish cold stress during overwintering, which will facilitate the breeding of new cold-resistant varieties of red tilapia in the future. Full article
Show Figures

Figure 1

15 pages, 1252 KiB  
Perspective
Effective Strategies and a Ten-Point Plan for Cardio-Kidney-Metabolic Health in Croatia: An Expert Opinion
by Željko Reiner, Bojan Jelaković, Davor Miličić, Marija Bubaš, Ines Balint, Nikolina Bašić Jukić, Valerija Bralić Lang, Vili Beroš, Ivana Brkić Biloš, Silvija Canecki Varžić, Krunoslav Capak, Verica Kralj, Ana Ljubas, Branko Malojčić, Viktor Peršić, Ivana Portolan Pajić, Dario Rahelić, Alen Ružić, Tomislav Sokol, Ana Soldo and Ivan Pećinadd Show full author list remove Hide full author list
J. Clin. Med. 2024, 13(23), 7028; https://doi.org/10.3390/jcm13237028 - 21 Nov 2024
Cited by 3 | Viewed by 1629
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality worldwide, including in Croatia. Since most patients have multiple disorders and diseases caused largely by the same risk factors, and as it is essential to approach each patient as a person with [...] Read more.
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality worldwide, including in Croatia. Since most patients have multiple disorders and diseases caused largely by the same risk factors, and as it is essential to approach each patient as a person with all disorders, today, we are talking about a new paradigm—cardio-renal-metabolic (CKM) syndrome and cardio-renal-metabolic health, which necessarily includes brain health. Elevated systolic blood pressure, LDL cholesterol, smoking, obesity, diabetes, impaired renal function or chronic kidney disease, which all stem from insufficient physical activity, an unhealthy diet with excessive intake of table salt, and air pollution, are the leading causes of overall morbidity and mortality from CKM diseases, especially mortality from CVD. Experts from various fields key to CKM health have written this document with the aim of integrating it as part of the national plan for the prevention of chronic non-communicable diseases with a focus on CVD, which should become mandatory and be based on the existing guidelines of professional societies. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

18 pages, 7713 KiB  
Article
Neurometabolic Profile in Obese Patients: A Cerebral Multi-Voxel Magnetic Resonance Spectroscopy Study
by Miloš Vuković, Igor Nosek, Johannes Slotboom, Milica Medić Stojanoska and Duško Kozić
Medicina 2024, 60(11), 1880; https://doi.org/10.3390/medicina60111880 - 16 Nov 2024
Cited by 2 | Viewed by 1643
Abstract
Background and Objectives: Obesity-related chronic inflammation may lead to neuroinflammation and neurodegeneration. This study aimed to evaluate the neurometabolic profile of obese patients using cerebral multivoxel magnetic resonance spectroscopy (mvMRS) and assess correlations between brain metabolites and obesity markers, including body mass index [...] Read more.
Background and Objectives: Obesity-related chronic inflammation may lead to neuroinflammation and neurodegeneration. This study aimed to evaluate the neurometabolic profile of obese patients using cerebral multivoxel magnetic resonance spectroscopy (mvMRS) and assess correlations between brain metabolites and obesity markers, including body mass index (BMI), waist circumference, waist-hip ratio, body fat percentage, and indicators of metabolic syndrome (e.g., triglycerides, HDL cholesterol, fasting blood glucose, insulin, and insulin resistance index (HOMA-IR)). Materials and Methods: This prospective study involved 100 participants, stratified into two groups: 50 obese individuals (BMI ≥ 30 kg/m2) and 50 controls (18.5 ≤ BMI < 25 kg/m2). Anthropometric measurements, body fat percentage, and biochemical markers were evaluated. All subjects underwent long- and short-echo mvMRS analysis of the frontal and parietal supracallosal subcortical and deep white matter, as well as the cingulate gyrus, analyzing NAA/Cr, Cho/Cr, and mI/Cr ratios, along with absolute concentrations of NAA and Cho. Results: Obese participants exhibited significantly decreased NAA/Cr and Cho/Cr ratios in the deep white matter of the right cerebral hemisphere (p < 0.001), while absolute concentrations of NAA and Cho did not differ significantly between groups (p > 0.05). NAA levels showed negative correlations with more reliable obesity parameters (waist circumference and waist-to-hip ratio) but not with BMI, particularly in the deep frontal white matter and dorsal anterior cingulate gyrus of the left cerebral hemisphere. Notably, insulin demonstrated a significant negative impact on NAA (ρ = −0.409 and ρ = −0.410; p < 0.01) and Cho levels (ρ = −0.403 and ρ = −0.392; p < 0.01) at these locations in obese individuals. Conclusions: Central obesity and hyperinsulinemia negatively affect specific brain regions associated with cognitive and emotional processing, while BMI is not a reliable parameter for assessing brain metabolism. Full article
(This article belongs to the Special Issue Advances in Clinical Diabetes, Obesity, and Metabolic Diseases)
Show Figures

Figure 1

23 pages, 2006 KiB  
Review
Exploring the Dynamic Changes of Brain Lipids, Lipid Rafts, and Lipid Droplets in Aging and Alzheimer’s Disease
by Michele Cerasuolo, Irene Di Meo, Maria Chiara Auriemma, Giuseppe Paolisso, Michele Papa and Maria Rosaria Rizzo
Biomolecules 2024, 14(11), 1362; https://doi.org/10.3390/biom14111362 - 26 Oct 2024
Cited by 11 | Viewed by 4505
Abstract
Aging induces complex changes in the lipid profiles across different areas of the brain. These changes can affect the function of brain cells and may contribute to neurodegenerative diseases such as Alzheimer’s disease. Research shows that while the overall lipid profile in the [...] Read more.
Aging induces complex changes in the lipid profiles across different areas of the brain. These changes can affect the function of brain cells and may contribute to neurodegenerative diseases such as Alzheimer’s disease. Research shows that while the overall lipid profile in the human brain remains quite steady throughout adulthood, specific changes occur with age, especially after the age of 50. These changes include a slow decline in total lipid content and shifts in the composition of fatty acids, particularly in glycerophospholipids and cholesterol levels, which can vary depending on the brain region. Lipid rafts play a crucial role in maintaining membrane integrity and facilitating cellular signaling. In the context of Alzheimer’s disease, changes in the composition of lipid rafts have been associated with the development of the disease. For example, alterations in lipid raft composition can lead to increased accumulation of amyloid β (Aβ) peptides, contributing to neurotoxic effects. Lipid droplets store neutral lipids and are key for cellular energy metabolism. As organisms age, the dynamics of lipid droplets in the brain change, with evidence suggesting a decline in metabolic activity over time. This reduced activity may lead to an imbalance in lipid synthesis and mobilization, contributing to neurodegenerative processes. In model organisms like Drosophila, studies have shown that lipid metabolism in the brain can be influenced by diet and insulin signaling pathways, crucial for maintaining metabolic balance. The interplay between lipid metabolism, oxidative stress, and inflammation is critical in the context of aging and Alzheimer’s disease. Lipid peroxidation, a consequence of oxidative stress, can lead to the formation of reactive aldehydes that further damage neurons. Inflammatory processes can also disrupt lipid metabolism, contributing to the pathology of AD. Consequently, the accumulation of oxidized lipids can affect lipid raft integrity, influencing signaling pathways involved in neuronal survival and function. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

14 pages, 940 KiB  
Review
Protective Role of High-Density Lipoprotein in Multiple Sclerosis
by Agnieszka Damiza-Detmer, Małgorzata Pawełczyk and Andrzej Głąbiński
Antioxidants 2024, 13(11), 1276; https://doi.org/10.3390/antiox13111276 - 23 Oct 2024
Cited by 2 | Viewed by 2274
Abstract
Multiple sclerosis (MS) is a chronic, progressive demyelinating disease with a most likely autoimmune background and a neurodegenerative component. Besides the demyelinating process caused by autoreactive antibodies, an increased permeability in the blood–brain barrier (BBB) also plays a key role. Recently, there has [...] Read more.
Multiple sclerosis (MS) is a chronic, progressive demyelinating disease with a most likely autoimmune background and a neurodegenerative component. Besides the demyelinating process caused by autoreactive antibodies, an increased permeability in the blood–brain barrier (BBB) also plays a key role. Recently, there has been growing interest in assessing lipid profile alterations in patients with MS. As a result of myelin destruction, there is an increase in the level of cholesterol released from cells, which in turn causes disruptions in lipid metabolism homeostasis both in the central nervous system (CNS) and peripheral tissues. Currently, there is a growing body of evidence suggesting a protective role of HDL in MS through its effect on the BBB by decreasing its permeability. This follows from the impact of HDL on the endothelium and its anti-inflammatory effect, mostly by interacting with adhesion molecules like vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and E-selectin. HDL, through its action via sphingosine-1-phosphate, exerts an inhibitory effect on leukocyte migration, and its antioxidant properties contribute to the improvement of the BBB function. In this review, we want to summarize these studies and focus on HDL as a mediator of the anti-inflammatory response in MS. Full article
(This article belongs to the Special Issue Antioxidant Role of High-Density Lipoprotein)
Show Figures

Figure 1

24 pages, 5309 KiB  
Article
Exploration of Nutraceutical Potentials of Isorhapontigenin, Oxyresveratrol and Pterostilbene: A Metabolomic Approach
by Yu Dai, Jingbo Wang, Yuhui Yang, Hongrui Jin, Feng Liu, Hui Liu, Paul C. Ho and Hai-Shu Lin
Int. J. Mol. Sci. 2024, 25(20), 11027; https://doi.org/10.3390/ijms252011027 - 14 Oct 2024
Cited by 4 | Viewed by 1842
Abstract
Resveratrol (trans-3,5,4′-trihydroxystilbene, RES) is one of the most well-known natural products with numerous health benefits. To explore the nutraceutical potentials of some dietary RES derivatives including isorhapontigenin (trans-3,5,4′-trihydroxy-3′-methoxystilbene, ISO), oxyresveratrol (trans-3,5,2′,4′-tetrahydroxystilbene, OXY) and pterostilbene (trans-3,5-dimethoxy-4′-hydroxystilbene, [...] Read more.
Resveratrol (trans-3,5,4′-trihydroxystilbene, RES) is one of the most well-known natural products with numerous health benefits. To explore the nutraceutical potentials of some dietary RES derivatives including isorhapontigenin (trans-3,5,4′-trihydroxy-3′-methoxystilbene, ISO), oxyresveratrol (trans-3,5,2′,4′-tetrahydroxystilbene, OXY) and pterostilbene (trans-3,5-dimethoxy-4′-hydroxystilbene, PTS), their impacts on metabolism and health were assessed in Sprague Dawley rats after a two-week daily oral administration at the dose of 100 µmol/kg/day. Non-targeted metabolomic analyses were carried out with the liver, heart, brain and plasma samples using gas chromatography–tandem mass spectrometry (GC-MS/MS). Notable in vivo health benefits were observed, as the rats received ISO, PTS or RES showed less body weight gain; the rats received OXY or RES displayed healthier fasting blood glucose levels; while all of the tested stilbenes exhibited cholesterol-lowering effects. Additionally, many important metabolic pathways such as glycolysis, pentose phosphate pathway, tricarboxylic acid cycle and fatty acid oxidation were found to be modulated by the tested stilbenes. Besides the reaffirmation of the well-known beneficial effects of RES in diabetes, obesity, cardiovascular disease and Alzheimer’s disease, the metabolomic analyses also suggest the anti-diabetic, cardio-, hepato- and neuro-protective activities of ISO; the anti-diabetic, cardio-, hepato- and neuro-protective effects of OXY; and the anti-aging, anti-inflammatory, cardio-, hepato- and neuro-protective potential of PTS. Interestingly, although these stilbenes share a similar structure, their biological activities appear to be distinct. In conclusion, similarly to RES, ISO, OXY and PTS have emerged as promising candidates for further nutraceutical development. Full article
(This article belongs to the Special Issue Resveratrol: Improving Human Health and Preventing Diseases)
Show Figures

Figure 1

15 pages, 2576 KiB  
Article
Effects of Environmental Noise Stress on Mouse Metabolism
by Jungmin Lee, Jehoon Yang, Jeyun Kim, Yoonjung Jang, Jisun Lee, Daehyun Han, Hunnyun Kim, Byong Chang Jeong and Je Kyung Seong
Int. J. Mol. Sci. 2024, 25(20), 10985; https://doi.org/10.3390/ijms252010985 - 12 Oct 2024
Cited by 2 | Viewed by 1989
Abstract
Environmental noise is associated with various health outcomes. However, the mechanisms through which these outcomes influence behavior and metabolism remain unclear. This study investigated how environmental noise affects the liver, adipose tissue, and brain metabolic functions, leading to behavioral and body weight changes. [...] Read more.
Environmental noise is associated with various health outcomes. However, the mechanisms through which these outcomes influence behavior and metabolism remain unclear. This study investigated how environmental noise affects the liver, adipose tissue, and brain metabolic functions, leading to behavioral and body weight changes. Mice were divided into a noise group exposed to construction noise and an unexposed (control) group. Behavior and body weight changes were monitored over 50 days. Early changes in response to noise exposure were assessed by measuring plasma cortisol and glial fibrillary acidic protein expression in brain tissues on days 1, 15, and 30. Chronic responses, including changes in lipoprotein and fat metabolism and neurotransmitters, were investigated by analyzing serum lipoprotein levels and body fat mass and evaluating liver, fat, and brain tissue after 50 days. The noise group showed higher locomotor activity and reduced anxiety in the open-field and Y-maze tests. Noise exposure caused an initial weight loss; however, chronic noise increased fat mass and induced adipocyte hypertrophy. Our findings underscore the role of environmental noise-induced stress in augmenting locomotor activity and reducing anxiety in mice through neurotransmitter modulation while increasing the risk of obesity by decreasing HDL cholesterol levels and promoting adipocyte hypertrophy. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

Back to TopTop