Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = boron nitride nanotube (BNNT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2668 KB  
Article
2D Hexagonal Boron Nitride (h-BN) and 1D Boron Nitride Nanotubes (BNNTs): Distinct Effects at the Cellular Level in Fish Cell Lines
by Mona Connolly, Emmanuel Flahaut and José María Navas
J. Xenobiot. 2025, 15(4), 97; https://doi.org/10.3390/jox15040097 - 24 Jun 2025
Viewed by 1540
Abstract
Hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNTs) are emerging advanced nanomaterials with analogous structures to graphene and carbon nanotubes, respectively. However, little is known about what effect replacing carbon atoms with boron and nitrogen will have on the materials’ safety profile. [...] Read more.
Hexagonal boron nitride (h-BN) and boron nitride nanotubes (BNNTs) are emerging advanced nanomaterials with analogous structures to graphene and carbon nanotubes, respectively. However, little is known about what effect replacing carbon atoms with boron and nitrogen will have on the materials’ safety profile. This study’s aim was to first identify if multi-walled nanotubes of BN could produce a hazard profile similar to that evidenced already for multi-walled carbon nanotubes (MWCNTs) and secondly if the material when present in a sheet-like structure increases or decreases the hazard profile. Fish are aquatic organisms sensitive to boron compounds; however, the potential hazard following exposure to BN and especially when present in such nanostructures has not yet been investigated. An in vitro testing platform consisting of multiple cell lines of the rainbow trout, Oncorhynchus mykiss (RTH-149, RTG-2, RTL-W1 and RTgill-W1), was used in a first-hazard screening approach for cytotoxicity and to gain information on material–cellular interaction. Clear differences were evidenced in material uptake, leading to plasma membrane disruption accompanied with a loss in metabolic activity for BNNTs at lower exposure concentrations compared to h-BN. As in the case of carbon nanotubes, close attention must be given to potential interferences with assays based on optical readouts. Full article
Show Figures

Graphical abstract

14 pages, 739 KB  
Article
Variational Principles for Coupled Boron Nitride Nanotubes Undergoing Vibrations, Including Piezoelastic and Surface Effects
by Sarp Adali
Dynamics 2025, 5(2), 21; https://doi.org/10.3390/dynamics5020021 - 8 Jun 2025
Cited by 1 | Viewed by 1027
Abstract
A variational formulation and variationally consistent boundary conditions were derived for a coupled system of two boron nitride nanotubes (BNNTs), with the piezoelectric and surface effects taken into account in the formulation. The coupling between the nanotubes was defined in terms of Winkler [...] Read more.
A variational formulation and variationally consistent boundary conditions were derived for a coupled system of two boron nitride nanotubes (BNNTs), with the piezoelectric and surface effects taken into account in the formulation. The coupling between the nanotubes was defined in terms of Winkler and Pasternak interlayers. The equations governing the vibrations of the coupled system were expressed as a system of four partial differential equations based on nonlocal elastic theory. After deriving the variational principle for the double BNNT system, Hamilton’s principle was expressed in terms of potential and kinetic energies. Next, the differential equations for the free vibration case were presented and the variational form for this case was derived. The Rayleigh quotient was formulated for the vibration frequency, which indicated that piezoelectric and surface effects led to higher vibration frequencies. Next, the variationally consistent boundary conditions were formulated in terms of moment and shear force expressions. It was observed that the presence of the Pasternak interlayer between the nanotubes led to coupled boundary conditions when a shear force and/or a moment was specified at the boundaries. Full article
Show Figures

Figure 1

13 pages, 2985 KB  
Article
Characterization of the Second Harmonic Generation of Boron Nitride Nanotube Macroscopic Assemblies
by Ping Lu, Jingwen Guan, Cyril Hnatovsky, Huimin Ding, Kasthuri De Silva, Liliana Gaburici, Christopher Kingston and Stephen J. Mihailov
Nanomaterials 2025, 15(11), 861; https://doi.org/10.3390/nano15110861 - 3 Jun 2025
Viewed by 1888
Abstract
Boron nitride nanotubes (BNNTs) are predicted to be promising one-dimensional nonlinear optical materials, but to date, only one experimental observation has been made using individual nanotubes. In this work, second harmonic generation (SHG) was achieved from free-standing bulk BNNT sheets and BNNT coatings [...] Read more.
Boron nitride nanotubes (BNNTs) are predicted to be promising one-dimensional nonlinear optical materials, but to date, only one experimental observation has been made using individual nanotubes. In this work, second harmonic generation (SHG) was achieved from free-standing bulk BNNT sheets and BNNT coatings on silica substrates. Focusing femtosecond infrared (fs-IR) laser pulses with a wavelength of 800 nm onto the BNNT assemblies resulted in strong SHG at a wavelength of 400 nm. It was observed that due to the thickness variation of the BNNT assemblies and orientational alignment of BNNTs in the assemblies, the intensity of the second-harmonic (SH) radiation changed dramatically when different locations on the samples were investigated. Among all the BNNT assemblies tested, the localized SH response and its dependence on the polarization of the excitation fs-IR pulses were the strongest in BNNT coatings produced by a dip-coating process. By measuring the SH response, the uniformity, reproducibility, and efficiency of BNNT deposition processes could be assessed. For applications requiring a high SH response from BNNT assemblies, the process of dip coating is preferred. Full article
(This article belongs to the Special Issue Linear and Nonlinear Optical Properties of Nanomaterials)
Show Figures

Figure 1

17 pages, 4866 KB  
Article
Polymer-Derived Carbon Matrix Composites with Boron Nitride Nanotube Reinforcement
by Okunzuwa Austine Ekuase, Qiang Wu, Jin Gyu Park, Jizhe Cai, Zhiyong Liang and Zhibin Yu
J. Compos. Sci. 2025, 9(2), 83; https://doi.org/10.3390/jcs9020083 - 11 Feb 2025
Cited by 1 | Viewed by 2668
Abstract
This study explored the use of boron nitride nanotubes (BNNTs) as reinforcing fillers to enhance the mechanical properties of polymer-derived carbon matrix composites. BNNT-reinforced carbon matrix composites containing 0.5–5 wt% BNNTs were fabricated with pyrolysis conducted at different temperatures. X-ray diffraction and Raman [...] Read more.
This study explored the use of boron nitride nanotubes (BNNTs) as reinforcing fillers to enhance the mechanical properties of polymer-derived carbon matrix composites. BNNT-reinforced carbon matrix composites containing 0.5–5 wt% BNNTs were fabricated with pyrolysis conducted at different temperatures. X-ray diffraction and Raman spectroscopy revealed enhanced crystallinity and reduced defects in carbon matrix composites with BNNT addition. At 1200 °C pyrolysis temperature, sample shrinkage decreased from 28% in the control sample without BNNT addition to 12% with 5 wt% BNNTs, demonstrating BNNTs’ significant influence on the matrix. The density increased by 20.1% with 5 wt% BNNTs. Mechanical testing demonstrated an enhancement in the failure strain from 0.7% to 0.8% and an 87.8% increase in the work of fracture with 5 wt% BNNTs. Furthermore, the flexural strength and modulus improved by 68.7% and 55.6%, respectively, at this BNNT concentration. Increasing the pyrolysis temperature to 1500 °C further boosted the mechanical properties, with the flexural strength increasing by 283.7% and the flexural modulus by 528.6% when comparing samples containing 5 wt% BNNTs to those without BNNT reinforcement. Samples processed at 1500 °C with 5 wt% BNNT composition exhibited optimal performance. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

16 pages, 6039 KB  
Article
Preparations and Thermal Properties of PDMS-AlN-Al2O3 Composites through the Incorporation of Poly(Catechol-Amine)-Modified Boron Nitride Nanotubes
by Arni Gesselle Pornea, Duy Khoe Dinh, Zahid Hanif, Numan Yanar, Ki-In Choi, Min Seok Kwak and Jaewoo Kim
Nanomaterials 2024, 14(10), 847; https://doi.org/10.3390/nano14100847 - 13 May 2024
Cited by 6 | Viewed by 4222
Abstract
As one of the emerging nanomaterials, boron nitride nanotubes (BNNTs) provide promising opportunities for diverse applications due to their unique properties, such as high thermal conductivity, immense inertness, and high-temperature durability, while the instability of BNNTs due to their high surface induces agglomerates [...] Read more.
As one of the emerging nanomaterials, boron nitride nanotubes (BNNTs) provide promising opportunities for diverse applications due to their unique properties, such as high thermal conductivity, immense inertness, and high-temperature durability, while the instability of BNNTs due to their high surface induces agglomerates susceptible to the loss of their advantages. Therefore, the proper functionalization of BNNTs is crucial to highlight their fundamental characteristics. Herein, a simplistic low-cost approach of BNNT surface modification through catechol-polyamine (CAPA) interfacial polymerization is postulated to improve its dispersibility on the polymeric matrix. The modified BNNT was assimilated as a filler additive with AlN/Al2O3 filling materials in a PDMS polymeric matrix to prepare a thermal interface material (TIM). The resulting composite exhibits a heightened isotropic thermal conductivity of 8.10 W/mK, which is a ~47.27% increase compared to pristine composite 5.50 W/mK, and this can be ascribed to the improved BNNT dispersion forming interconnected phonon pathways and the thermal interface resistance reduction due to its augmented compatibility with the polymeric matrix. Moreover, the fabricated composite manifests a fire resistance improvement of ~10% in LOI relative to the neat composite sample, which can be correlated to the thermal stability shift in the TGA and DTA data. An enhancement in thermal permanence is stipulated due to a melting point (Tm) shift of ∼38.5 °C upon the integration of BNNT-CAPA. This improvement can be associated with the good distribution and adhesion of BNNT-CAPA in the polymeric matrix, integrated with its inherent thermal stability, good charring capability, and free radical scavenging effect due to the presence of CAPA on its surface. This study offers new insights into BNNT utilization and its corresponding incorporation into the polymeric matrix, which provides a prospective direction in the preparation of multifunctional materials for electric devices. Full article
(This article belongs to the Special Issue Thermally Conductive Nanomaterials and Their Applications)
Show Figures

Figure 1

15 pages, 3624 KB  
Article
Polymer Nanocomposite Sensors with Improved Piezoelectric Properties through Additive Manufacturing
by Rishikesh Srinivasaraghavan Govindarajan, Zefu Ren, Isabel Melendez, Sandra K. S. Boetcher, Foram Madiyar and Daewon Kim
Sensors 2024, 24(9), 2694; https://doi.org/10.3390/s24092694 - 24 Apr 2024
Cited by 12 | Viewed by 2970
Abstract
Additive manufacturing (AM) technology has recently seen increased utilization due to its versatility in using functional materials, offering a new pathway for next-generation conformal electronics in the smart sensor field. However, the limited availability of polymer-based ultraviolet (UV)-curable materials with enhanced piezoelectric properties [...] Read more.
Additive manufacturing (AM) technology has recently seen increased utilization due to its versatility in using functional materials, offering a new pathway for next-generation conformal electronics in the smart sensor field. However, the limited availability of polymer-based ultraviolet (UV)-curable materials with enhanced piezoelectric properties necessitates the development of a tailorable process suitable for 3D printing. This paper investigates the structural, thermal, rheological, mechanical, and piezoelectric properties of a newly developed sensor resin material. The polymer resin is based on polyvinylidene fluoride (PVDF) as a matrix, mixed with constituents enabling UV curability, and boron nitride nanotubes (BNNTs) are added to form a nanocomposite resin. The results demonstrate the successful micro-scale printability of the developed polymer and nanocomposite resins using a liquid crystal display (LCD)-based 3D printer. Additionally, incorporating BNNTs into the polymer matrix enhanced the piezoelectric properties, with an increase in the voltage response by up to 50.13%. This work provides new insights for the development of 3D printable flexible sensor devices and energy harvesting systems. Full article
(This article belongs to the Special Issue Advanced Sensors Using Smart Materials)
Show Figures

Figure 1

12 pages, 2866 KB  
Article
Eco-Friendly Dispersant-Free Purification Method of Boron Nitride Nanotubes through Controlling Surface Tension and Steric Repulsion with Solvents
by Minsung Kang, Jungmo Kim, Hongjin Lim, Jaehyoung Ko, Hong-Sik Kim, Yongho Joo, Se Youn Moon, Se Gyu Jang, Eunji Lee and Seokhoon Ahn
Nanomaterials 2023, 13(18), 2593; https://doi.org/10.3390/nano13182593 - 19 Sep 2023
Cited by 3 | Viewed by 2940
Abstract
Boron nitride nanotubes (BNNTs) were purified without the use of a dispersant by controlling the surface tension and steric repulsion of solvent molecules. This method effectively enhanced the difference in solubilities of impurities and BNNTs. The purification process involved optimizing the alkyl-chains of [...] Read more.
Boron nitride nanotubes (BNNTs) were purified without the use of a dispersant by controlling the surface tension and steric repulsion of solvent molecules. This method effectively enhanced the difference in solubilities of impurities and BNNTs. The purification process involved optimizing the alkyl-chains of alcohol solvents and adjusting the concentration of alcohol solvent in water to regulate surface tension and steric repulsion. Among the solvents tested, a 70 wt% t-butylalcohol in water mixture exhibited the highest selective isolation of BNNTs from impurities based on differences in solubilities. This favorable outcome was attributed to the surface tension matching with BNNTs, steric repulsion from bulky alkyl chain structures, and differences in interfacial energy between BNNT–liquid and impurity–liquid interfaces. Through this optimized purification process, impurities were removed to an extent of up to 93.3%. Additionally, the purified BNNTs exhibited a distinct liquid crystal phase, which was not observed in the unpurified BNNTs. Full article
(This article belongs to the Special Issue Growth, Characterization and Applications of Nanotubes (2nd Edition))
Show Figures

Graphical abstract

14 pages, 4842 KB  
Article
Quantum Chemical Approaches to the Encapsulation of Parathion, Chlorpyrifos and Coumaphos by Armchair and Zigzag Boron Nitride Nanotubes Doped with Aluminum
by Rong-Lieh Wang and Chia Ming Chang
Crystals 2023, 13(4), 685; https://doi.org/10.3390/cryst13040685 - 17 Apr 2023
Viewed by 2666
Abstract
Boron nitride nanotubes have been widely used as drug delivery vehicles and for the controlled release of targeted therapeutic drugs. In this study, we calculated the encapsulation efficiencies of three organophosphorus pesticides, parathion, chlorpyrifos, and coumaphous, using quantum chemical methods. The results show [...] Read more.
Boron nitride nanotubes have been widely used as drug delivery vehicles and for the controlled release of targeted therapeutic drugs. In this study, we calculated the encapsulation efficiencies of three organophosphorus pesticides, parathion, chlorpyrifos, and coumaphous, using quantum chemical methods. The results show that the encapsulation energy of zigzag BNNT(20,0) is lower than that of armchair BNNT(12,12) to encapsulate parathion. Al doping helps to decrease the encapsulation energy and Al-doped zigzag BNNT(20,0) + parathion has the greatest binding affinity. In addition, the energy gap of armchair BNNT(12,12) encapsulating organophosphorus pesticides changed significantly. Al doping reduces the band gap of boron nitride nanotubes. Al-doped armchair BNNT(12,12) has the strongest electron-accepting ability and is a promising sensor material. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

9 pages, 1847 KB  
Communication
Extrusion of Cell Encapsulated in Boron Nitride Nanotubes Reinforced Gelatin—Alginate Bioink for 3D Bioprinting
by Akesh Babu Kakarla, Ing Kong, Cin Kong, Helen Irving and Colleen J. Thomas
Gels 2022, 8(10), 603; https://doi.org/10.3390/gels8100603 - 21 Sep 2022
Cited by 4 | Viewed by 2804
Abstract
Three-dimensional (3D) bioprinting, an innovative technology, has gained the attention of researchers as a promising technique for the redevelopment of complex tissue or organ structures. Despite significant advancements, a major challenge in 3D bioprinting is the limited number of suitable bioinks that fulfil [...] Read more.
Three-dimensional (3D) bioprinting, an innovative technology, has gained the attention of researchers as a promising technique for the redevelopment of complex tissue or organ structures. Despite significant advancements, a major challenge in 3D bioprinting is the limited number of suitable bioinks that fulfil the physiochemical requirements to produce complicated structures. Therefore, there is a demand for the production of bioinks for 3D bioprinting techniques. In this short communication, THP-1 cells encapsulated in boron nitride nanotubes (BNNTs) reinforced gelatin and alginate bioink was prepared. The study investigated the impact on the cells during printing using a fluorescence cell image. The results showed that the pure polymer bioinks demonstrated poor printability properties with the incorporation of cells. However, BNNT-combined bioink showed a significant increase in structural integrity even after the incorporation of cells. Furthermore, the scaffold structure was successfully printed with the cells incorporated bioink, and a considerable number of live cells were observed. With further studies, BNNTs as a promising nanomaterial for formulating bioink encapsulated with cells can be understood fully. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Gels)
Show Figures

Figure 1

14 pages, 4776 KB  
Article
Thermally Conductive Styrene-Butadiene Rubber/Boron Nitride Nanotubes Composites
by Cristina S. Torres-Castillo and Jason R. Tavares
J. Compos. Sci. 2022, 6(9), 272; https://doi.org/10.3390/jcs6090272 - 14 Sep 2022
Cited by 3 | Viewed by 4025
Abstract
The use of boron nitride nanotubes (BNNTs) for fabrication of thermally conductive composites has been explored in the last years. Their elevated thermal conductivity and high mechanical properties make them ideal candidates for reinforcement in polymeric matrices. However, due to their high tendency [...] Read more.
The use of boron nitride nanotubes (BNNTs) for fabrication of thermally conductive composites has been explored in the last years. Their elevated thermal conductivity and high mechanical properties make them ideal candidates for reinforcement in polymeric matrices. However, due to their high tendency to agglomerate, a physical or chemical treatment is typically required for their successful incorporation into polymer matrices. Our previous study about the dispersibility of BNNTs allowed determination of good solvents for dispersion. Here, we performed a similar characterization on styrene-butadiene rubber (SBR) to determine its solubility parameters. Although these two materials possess different solubility parameters, it was possible to bridge this gap by employing a binary mixture. The solvent casting approach followed by hot pressing was chosen as a suitable method to obtain thermally conductive SBR/BNNT composites. The resulting nanocomposites showed up to 35% of improvement in thermal conductivity and a 235% increase in storage modulus in the frequency sweep, when a BNNT loading of 10 wt% was used. However, the viscoelastic properties in the amplitude sweep showed a negative effect with the increase in BNNT loading. A good balance in thermal conductivity and viscoelastic properties was obtained for the composite at a BNNT loading of 5 wt%. Full article
(This article belongs to the Special Issue Advanced Conductive Polymer Composites)
Show Figures

Figure 1

12 pages, 3080 KB  
Article
Quantum Chemical Approach to the Adsorption of Chlorpyrifos and Fenitrothion on the Carbon-Doped Boron Nitride Nanotube Decorated with Tetrapeptide
by Chien-Lin Lee and Chia Ming Chang
Crystals 2022, 12(9), 1285; https://doi.org/10.3390/cryst12091285 - 11 Sep 2022
Cited by 4 | Viewed by 2810
Abstract
In the present study, four materials based on boron nitride nanotubes—namely pristine BNNT, C-doped BNNT, tetrapeptide/BNNT, and tetrapeptide/C-doped BNNT—were examined to evaluate adsorption of the organophosphorus pesticides chlorpyrifos and fenitrothion. Through a quantum chemical approach to the molecular and electronic structures, the impacts [...] Read more.
In the present study, four materials based on boron nitride nanotubes—namely pristine BNNT, C-doped BNNT, tetrapeptide/BNNT, and tetrapeptide/C-doped BNNT—were examined to evaluate adsorption of the organophosphorus pesticides chlorpyrifos and fenitrothion. Through a quantum chemical approach to the molecular and electronic structures, the impacts of C doping and tetrapeptide modification on boron nitride nanotubes are clarified. The results reveal that the tetrapeptide decoration does have the potential for differential sensing of chlorpyrifos and fenitrothion, but the improvement in the adsorption characteristics is slightly inferior to that of the C doping method. Nanosensors, such as C-doped BNNT and tetrapeptide/C-doped BNNT, are used to monitor chlorpyrifos and fenitrothion in solution phase, respectively. This quantum chemistry investigation has paved the way for the design of differential sensing devices for organophosphorus pesticides. Full article
(This article belongs to the Special Issue Feature Papers in Macromolecular Crystals)
Show Figures

Figure 1

12 pages, 3545 KB  
Article
Density Functional Theory-Based Studies Predict Carbon Nanotubes as Effective Mycolactone Inhibitors
by Nafiu Suleiman, Abu Yaya, Michael D. Wilson, Solomon Aryee and Samuel K. Kwofie
Molecules 2022, 27(14), 4440; https://doi.org/10.3390/molecules27144440 - 11 Jul 2022
Cited by 5 | Viewed by 2611
Abstract
Fullerenes, boron nitride nanotubes (BNNTs), and carbon nanotubes (CNTs) have all been extensively explored for biomedical purposes. This work describes the use of BNNTs and CNTs as mycolactone inhibitors. Density functional theory (DFT) has been used to investigate the chemical properties and interaction [...] Read more.
Fullerenes, boron nitride nanotubes (BNNTs), and carbon nanotubes (CNTs) have all been extensively explored for biomedical purposes. This work describes the use of BNNTs and CNTs as mycolactone inhibitors. Density functional theory (DFT) has been used to investigate the chemical properties and interaction mechanisms of mycolactone with armchair BNNTs (5,5) and armchair CNTs (5,5). By examining the optimized structure and interaction energy, the intermolecular interactions between mycolactone and nanotubes were investigated. The findings indicate that mycolactone can be physically adsorbed on armchair CNTs in a stable condition, implying that armchair CNTs can be potential inhibitors of mycolactone. According to DOS plots and HOMO–LUMO orbital studies, the electronic characteristics of pure CNTs are not modified following mycolactone adsorption on the nanotubes. Because of mycolactone’s large π-π interactions with CNTs, the estimated interaction energies indicate that mycolactone adsorption on CNTs is preferable to that on BNNTs. CNTs can be explored as potentially excellent inhibitors of mycolactone toxins in biological systems. Full article
(This article belongs to the Special Issue Molecular Modeling: Advancements and Applications)
Show Figures

Figure 1

42 pages, 4804 KB  
Review
In Vitro and In Vivo Cytotoxicity of Boron Nitride Nanotubes: A Systematic Review
by Akesh Babu Kakarla and Ing Kong
Nanomaterials 2022, 12(12), 2069; https://doi.org/10.3390/nano12122069 - 15 Jun 2022
Cited by 32 | Viewed by 5860
Abstract
Boron nitride nanotubes (BNNTs) are an exciting class of nanomaterials due to their unique chemical and physical characteristics. In recent decades, BNNTs have gained huge attention in research and development for various applications, including as nano-fillers for composites, semiconductor devices, hydrogen storage, and [...] Read more.
Boron nitride nanotubes (BNNTs) are an exciting class of nanomaterials due to their unique chemical and physical characteristics. In recent decades, BNNTs have gained huge attention in research and development for various applications, including as nano-fillers for composites, semiconductor devices, hydrogen storage, and as an emerging material in biomedical and tissue engineering applications. However, the toxicity of BNNTs is not clear, and the biocompatibility is not proven yet. In this review, the role of BNNTs in biocompatibility studies is assessed in terms of their characteristics: cell viability, proliferation, therapeutic outcomes, and genotoxicity, which are vital elements for their prospective use in biomedical applications. A systematic review was conducted utilising the databases Scopus and Web of Science (WOS) (2008–2022). Additional findings were discovered manually by snowballing the reference lists of appropriate reviews. Only English-language articles were included. Finally, the significant analysis and discussion of the chosen articles are presented. Full article
(This article belongs to the Special Issue Boron Nitride-Based Nanomaterials)
Show Figures

Figure 1

10 pages, 4187 KB  
Article
Characterizing the Effect of Adding Boron Nitride Nanotubes on the Mechanical Properties of Electrospun Polymer Nanocomposite Microfibers Mesh
by Ohood Alsmairat and Nael Barakat
Materials 2022, 15(5), 1634; https://doi.org/10.3390/ma15051634 - 22 Feb 2022
Cited by 1 | Viewed by 2413
Abstract
Electrospun fibrous meshes have a variety of applications such as filtration, drug delivery, energy storage, and engineered tissues due to their high surface area to mass ratio. Therefore, understanding the mechanical properties of these continuously evolving meshes is critical to expand and improve [...] Read more.
Electrospun fibrous meshes have a variety of applications such as filtration, drug delivery, energy storage, and engineered tissues due to their high surface area to mass ratio. Therefore, understanding the mechanical properties of these continuously evolving meshes is critical to expand and improve their performance. In this study, the effect of adding Boron Nitride Nanotube (BNNT) to Polymethylmethacrylate (PMMA) composite meshes on the mechanical properties of the polymer is studied. Electrospinning is used to fabricate microfiber meshes of PMMA and BNNT-PMMA. The fabricated meshes are tested experimentally with a uniaxial tensile tester. In addition, a theoretical model is introduced to investigate the effect of the number of fibers and the diameter of fiber inside the mesh on Young’s Modulus and Tensile Strength of the PMMA mesh. By adding 0.5% BNNT to the PMMA, Young’s Modulus and Tensile Strength of the PMMA mesh improved by 62.4% and 9.3%, respectively. Furthermore, simulated results show enhanced mesh properties when increasing the number of fibers and the single fiber diameter inside the mesh. The findings of this study help in understanding the mechanical properties of the nanocomposite electrospun meshes which expands and improves its utilization in different applications. Full article
Show Figures

Figure 1

10 pages, 2806 KB  
Article
Mechanical Behaviour Evaluation of Porous Scaffold for Tissue-Engineering Applications Using Finite Element Analysis
by Akesh Babu Kakarla, Ing Kong, Satya Guha Nukala and Win Kong
J. Compos. Sci. 2022, 6(2), 46; https://doi.org/10.3390/jcs6020046 - 1 Feb 2022
Cited by 22 | Viewed by 6971
Abstract
In recent years, finite element analysis (FEA) models of different porous scaffold shapes consisting of various materials have been developed to predict the mechanical behaviour of the scaffolds and to address the initial goals of 3D printing. Although mechanical properties of polymeric porous [...] Read more.
In recent years, finite element analysis (FEA) models of different porous scaffold shapes consisting of various materials have been developed to predict the mechanical behaviour of the scaffolds and to address the initial goals of 3D printing. Although mechanical properties of polymeric porous scaffolds are determined through FEA, studies on the polymer nanocomposite porous scaffolds are limited. In this paper, FEA with the integration of material designer and representative volume elements (RVE) was carried out on a 3D scaffold model to determine the mechanical properties of boron nitride nanotubes (BNNTs)-reinforced gelatin (G) and alginate (A) hydrogel. The maximum stress regions were predicted by FEA stress distribution. Furthermore, the analysed material model and the boundary conditions showed minor deviation (4%) compared to experimental results. It was noted that the stress regions are detected at the zone close to the pore areas. These results indicated that the model used in this work could be beneficial in FEA studies on 3D-printed porous structures for tissue engineering applications. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume II)
Show Figures

Figure 1

Back to TopTop