Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = boron carbide nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6109 KiB  
Article
The Impact of Boron Carbide Nanoparticle (B4C-NPs) Toxicity on Caenorhabditis elegans Models
by Sen-Ting Huang, Erin P. Bulaon, Kai-Jie Yang, Adriana Taw, Lemmuel L. Tayo, Ping-Heng Hsieh, Jen-Hsiung Tsai, Jian-He Lu, Jheng-Jie Jiang, Hsing-Hsien Wu and How-Ran Chao
Toxics 2025, 13(6), 492; https://doi.org/10.3390/toxics13060492 - 12 Jun 2025
Viewed by 609
Abstract
Boron carbide (B4C) is a widely recognized ceramic prized for its remarkable properties, including exceptional hardness, low density, and excellent chemical and mechanical stability. To date, limited research has explored the possible health risks associated with B4C nanoparticles (B4C-NPs). This study utilized a [...] Read more.
Boron carbide (B4C) is a widely recognized ceramic prized for its remarkable properties, including exceptional hardness, low density, and excellent chemical and mechanical stability. To date, limited research has explored the possible health risks associated with B4C nanoparticles (B4C-NPs). This study utilized a Caenorhabditis elegans (C. elegans) in vivo model to investigate the toxicological effects of B4C-NPs at concentrations of 40, 80, 160, and 320 mg/L. Larval nematodes were subjected to prolonged exposure, and their locomotion (head thrashing and body bending), reproduction (brood size), development (body length), lifespan, and gene expression (linked to oxidative stress, metal detoxification, apoptosis, and neurotransmitter synthesis) were assessed. Regarding survival rates, lethality was significantly increased to 5.41% at 320 mg/L of B4C-NPs and lifespan was significantly shortened across all concentrations compared with the controls. Development and reproduction showed slight reductions between 40 and 320 mg/L, while locomotion was markedly impaired at the doses from 80 to 320 mg/L. Gene expression related to antioxidants, apoptosis, cell cycle arrest, neurotransmitter synthesis, and metal detoxification rose significantly at 160–320 mg/L in C. elegans, suggesting that B4C-NPs may induce reproductive and neurological toxicity, delay development, reduce lifespan, and potentially cause genotoxicity in C. elegans. Full article
(This article belongs to the Special Issue Toxicity Assessment and Safety Management of Nanomaterials)
Show Figures

Figure 1

15 pages, 6206 KiB  
Article
Surface-Modified Ceramic Boron Carbide as a Platform for Specific Targeting in Tumour Environments
by Dawid Kozień, Karolina Krygowska, Paulina Żeliszewska, Agnieszka Szczygieł, Anna Rudawska, Bożena Szermer-Olearnik, Piotr Rusiniak, Katarzyna Wątor, Katarzyna Węgierek-Ciura, Piotr Jeleń, Jakub Marchewka, Katarzyna Pasiut, Janusz Partyka, Elżbieta Pajtasz-Piasecka and Zbigniew Pędzich
Appl. Sci. 2025, 15(5), 2734; https://doi.org/10.3390/app15052734 - 4 Mar 2025
Cited by 1 | Viewed by 787
Abstract
Boron Neutron Capture Therapy (BNCT) is a therapeutic approach used to treat malignancies that are difficult to localise and typically inoperable. This therapy involves two stages: the administration of the boron (10B) isotope, which selectively enters cancer cells without affecting healthy [...] Read more.
Boron Neutron Capture Therapy (BNCT) is a therapeutic approach used to treat malignancies that are difficult to localise and typically inoperable. This therapy involves two stages: the administration of the boron (10B) isotope, which selectively enters cancer cells without affecting healthy tissue, followed by irradiation of the tumour with a neutron beam. In this study, boron carbide (B4C), a ceramic material with exceptional physical and chemical properties, was used as a nanoparticle platform for BNCT. The surface of the boron carbide nanoparticles was optimised by modifying them with compounds such as dextrin, dextran T70, sorbitol, lysine, and arginine. Boron carbide was synthesised directly from boron and carbon and then subjected to grinding, washing, and centrifugation. The unmodified and modified samples were analysed for their particle size, zeta potential, and toxicity against glioblastoma T98G cells. Additionally, FTIR spectroscopy confirmed the successful surface modifications. The results demonstrate that boron carbide, as a ceramic material, can be effectively functionalised with biocompatible compounds. Among the tested modifications, B4C-dextrin and B4C-dextran T70 exhibited the highest toxicity towards cancer cells, demonstrating the potential of ceramic platforms in biomedical applications. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

23 pages, 6407 KiB  
Article
Pull-Out Properties of Nano-Processed Para-Aramid Fabric Materials in Soft Ballistic: An Experimental Analysis
by Nedim Erman Bilisik, Gulhan Erdogan and Kadir Bilisik
Appl. Sci. 2025, 15(5), 2260; https://doi.org/10.3390/app15052260 - 20 Feb 2025
Cited by 1 | Viewed by 1091
Abstract
Single and multiple pull-out properties of a nano-processed para-aramid fabric structure were investigated. The nano pull-out behavior exhibited three distinct regions, namely crimp extension, interlacement rupture, and stick-slip. Multiple yarn pull-out tests demonstrated a significantly higher pull-out force compared to single-yarn pull-out, primarily [...] Read more.
Single and multiple pull-out properties of a nano-processed para-aramid fabric structure were investigated. The nano pull-out behavior exhibited three distinct regions, namely crimp extension, interlacement rupture, and stick-slip. Multiple yarn pull-out tests demonstrated a significantly higher pull-out force compared to single-yarn pull-out, primarily attributed to the incorporation of nanoparticles. Furthermore, it was observed that an increase in fabric length resulted in an approximately linear increase in both yarn crimp extension and pull-out force. The highest pull-out force was obtained in the nano-hexagonal boron carbide (nh-B4C, 0.3%) para-aramid structure, followed by multiwalled carbon nanotube (MWCNT, 0.3%) para-aramids. This is because of the enhancement of filament-to-filament friction, especially in the interlacement zone of fabric, alongside the cumulative frictional interactions among the nanoparticles. Additionally, the findings highlight an improvement in crimp extension energy absorption facilitated by nanoparticle incorporation in soft fabric. Notably, the improvement in the energy absorption capacity of yarns within the fabric, without disintegration, is considered significant at this stage. These results indicate a promising potential for performance enhancement in prospective soft ballistic applications. Full article
(This article belongs to the Special Issue Advances in Nanomaterials and Their Applications)
Show Figures

Figure 1

16 pages, 7589 KiB  
Article
Effect of Hybrid Addition of Boron Nitride and Vanadium Carbide on Microstructure, Tribological, and Mechanical Properties of the AA6061 Al-Based Composites Fabricated by FSP
by Ahmad H. Milyani, Ahmed O. Mosleh and Essam B. Moustafa
J. Compos. Sci. 2024, 8(12), 500; https://doi.org/10.3390/jcs8120500 - 1 Dec 2024
Viewed by 1317
Abstract
This work investigates the impact of friction stir processing (FSP) on the microstructure and mechanical characteristics of AA 6061 alloy and its composites, which are strengthened with boron nitride nanoparticles and vanadium carbide microparticles. Composite samples were created using different proportions of reinforcing [...] Read more.
This work investigates the impact of friction stir processing (FSP) on the microstructure and mechanical characteristics of AA 6061 alloy and its composites, which are strengthened with boron nitride nanoparticles and vanadium carbide microparticles. Composite samples were created using different proportions of reinforcing particles, including mono and hybrid composites. The efficacy of FSP as a technological method for enhancing the grain size of AA 6061 alloy and its composites has been proven. Adding reinforcing particles led to enhanced grain refinement, especially when using VC particles, which demonstrated greater efficacy than BN particles; thus, mono composite AA6061/VC shows the highest percentage reduction (94.29%) in grain size. Hybrid composites with a higher concentration of VC particles exhibited a more symmetrical microhardness profile. The microhardness of hybrid composites with a larger concentration of VC particles (40 vol.%BN + 60 vol.%VC) shows the most significant enhancement, with an increase of 51.61%. The Young’s and shear modulus of all composite samples processed by (FSP) had greater values than the wrought AA 6061 alloy. The investigated composite samples, especially 60% BN and 40% VC, enhanced the tribological properties of AA6061 and reduced the wear rate by about 52%. The observed characteristics may be due to BN and VC particles in the hybrid compost. This is because these particles effectively prevent grain elongation and inconsistent movement. This is because reinforcing particles can be tailored to have specific properties for specific applications. Full article
(This article belongs to the Section Metal Composites)
Show Figures

Figure 1

15 pages, 2590 KiB  
Article
Synthesis and Characterization of B4C-Based Multifunctional Nanoparticles for Boron Neutron Capture Therapy Applications
by Maria Paola Demichelis, Agustina Mariana Portu, Mario Alberto Gadan, Agostina Vitali, Valentina Forlingieri, Silva Bortolussi, Ian Postuma, Andrea Falqui, Elena Vezzoli, Chiara Milanese, Patrizia Sommi and Umberto Anselmi-Tamburini
Appl. Nano 2024, 5(2), 33-47; https://doi.org/10.3390/applnano5020004 - 25 Mar 2024
Cited by 1 | Viewed by 2510
Abstract
Nanoparticles composed of inorganic boron-containing compounds represent a promising candidate as 10B carriers for BNCT. This study focuses on the synthesis, characterization, and assessment of the biological activity of composite nanomaterials based on boron carbide (B4C). Boron carbide is a [...] Read more.
Nanoparticles composed of inorganic boron-containing compounds represent a promising candidate as 10B carriers for BNCT. This study focuses on the synthesis, characterization, and assessment of the biological activity of composite nanomaterials based on boron carbide (B4C). Boron carbide is a compelling alternative to borated molecules due to its high volumetric B content, prolonged retention in biological systems, and low toxicity. These attributes lead to a substantial accumulation of B in tissues, eliminating the need for isotopically enriched compounds. In our approach, B4C nanoparticles were included in composite nanostructures with ultrasmall superparamagnetic nanoparticles (SPIONs), coated with poly (acrylic acid), and further functionalized with the fluorophore DiI. The successful internalization of these nanoparticles in HeLa cells was confirmed, and a significant uptake of 10B was observed. Micro-distribution studies were conducted using intracellular neutron autoradiography, providing valuable insights into the spatial distribution of the nanoparticles within cells. These findings strongly indicate that the developed nanomaterials hold significant promise as effective carriers for 10B in BNCT, showcasing their potential for advancing cancer treatment methodologies. Full article
Show Figures

Figure 1

17 pages, 10706 KiB  
Article
Wear Behavior of Epoxy Resin Reinforced with Ceramic Nano- and Microparticles
by Juana Abenojar, Yolanda Ballesteros, Mohsen Bahrami, Miguel Angel Martínez and Juan Carlos del Real
Polymers 2024, 16(7), 878; https://doi.org/10.3390/polym16070878 - 22 Mar 2024
Cited by 7 | Viewed by 2243
Abstract
Cavitation erosion poses a significant challenge in fluid systems like hydraulic turbines and ship propellers due to pulsed pressure from collapsing vapor bubbles. To combat this, various materials and surface engineering methods are employed. In this study, nano and micro scale particles of [...] Read more.
Cavitation erosion poses a significant challenge in fluid systems like hydraulic turbines and ship propellers due to pulsed pressure from collapsing vapor bubbles. To combat this, various materials and surface engineering methods are employed. In this study, nano and micro scale particles of silicon carbide (SiC) or boron carbide (B4C) were incorporated as reinforcement at 6% and 12% ratios, owing to their exceptional resistance to abrasive wear and high hardness. Microparticles were incorporated to assess the damage incurred during the tests in comparison to nanoparticles. Wear tests were conducted on both bulk samples and coated aluminum sheets with a 1mm of composite. Additionally, cavitation tests were performed on coated aluminum tips until stability of mass loss was achieved. The results indicated a distinct wear behavior between the coatings and the bulk samples. Overall, wear tended to be higher for the coated samples with nanocomposites than bulk, except for the nano-composite material containing 12% SiC and pure resin. With the coatings, higher percentages of nanometric particles correlated with increased wear. The coefficient of friction remained within the range of 0.4 to 0.5 for the coatings. Regarding the accumulated erosion in the cavitation tests for 100 min, it was observed that for all nanocomposite materials, it was lower than in pure resin. Particularly, the composite with 6% B4C was slightly lower than the rest. In addition, the erosion rate was also lower for the composites. Full article
(This article belongs to the Special Issue Modification and Study on the Properties of Epoxy Resin)
Show Figures

Figure 1

17 pages, 7434 KiB  
Article
Synthesis and Characterization of Boron Carbide Nanoparticles as Potential Boron-Rich Therapeutic Carriers
by Dawid Kozień, Paulina Żeliszewska, Bożena Szermer-Olearnik, Zbigniew Adamczyk, Anna Wróblewska, Agnieszka Szczygieł, Katarzyna Węgierek-Ciura, Jagoda Mierzejewska, Elżbieta Pajtasz-Piasecka, Tomasz Tokarski, Grzegorz Cios, Stanisław Cudziło and Zbigniew Pędzich
Materials 2023, 16(19), 6534; https://doi.org/10.3390/ma16196534 - 2 Oct 2023
Cited by 9 | Viewed by 2600
Abstract
Boron carbide is one of the hardest materials in the world which can be synthesized by various methods. The most common one is a carbothermic or magnesiothermic reduction of B2O3 performed at high temperatures, where the obtained powder still requires [...] Read more.
Boron carbide is one of the hardest materials in the world which can be synthesized by various methods. The most common one is a carbothermic or magnesiothermic reduction of B2O3 performed at high temperatures, where the obtained powder still requires grinding and purification. The goal of this research is to present the possibility of synthesizing B4C nanoparticles from elements via vapor deposition and modifying the morphology of the obtained powders, particularly those synthesized at high temperatures. B4C nanoparticles were synthesized in the process of direct synthesis from boron and carbon powders heated at the temperature of 1650 °C for 2 h under argon and characterized by using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray diffraction analysis, and dynamic light scattering measurements. The physicochemical characteristics of B4C nanoparticles were determined, including the diffusion coefficients, hydrodynamic diameter, electrophoretic mobilities, and zeta potentials. An evaluation of the obtained B4C nanoparticles was performed on several human and mouse cell lines, showing the relation between the cytotoxicity effect and the size of the synthesized nanoparticles. Assessing the suitability of the synthesized B4C for further modifications in terms of its applicability in boron neutron capture therapy was the overarching goal of this research. Full article
Show Figures

Figure 1

17 pages, 6051 KiB  
Article
Synthesis and Characterization of Gd-Functionalized B4C Nanoparticles for BNCT Applications
by Agostina Vitali, Maria Paola Demichelis, Greta Di Martino, Ian Postuma, Silva Bortolussi, Andrea Falqui, Chiara Milanese, Chiara Ferrara, Patrizia Sommi and Umberto Anselmi-Tamburini
Life 2023, 13(2), 429; https://doi.org/10.3390/life13020429 - 2 Feb 2023
Cited by 4 | Viewed by 2436
Abstract
Inorganic nanoparticles of boron-rich compounds represent an attractive alternative to boron-containing molecules, such as boronophenylalanine or boranes, for BNCT applications. This work describes the synthesis and biological activity of multifunctional boron carbide nanoparticles stabilized with polyacrylic acid (PAA) and a gadolinium (Gd [...] Read more.
Inorganic nanoparticles of boron-rich compounds represent an attractive alternative to boron-containing molecules, such as boronophenylalanine or boranes, for BNCT applications. This work describes the synthesis and biological activity of multifunctional boron carbide nanoparticles stabilized with polyacrylic acid (PAA) and a gadolinium (Gd)-rich solid phase. A fluorophore (DiI) was included in the PAA functionalization, allowing the confocal microscopy imaging of the nanoparticles. Analysis of the interaction and activity of these fluorescent Gd-containing B4C nanoparticles (FGdBNPs) with cultured cells was appraised using an innovative correlative microscopy approach combining intracellular neutron autoradiography, confocal, and SEM imaging. This new approach allows visualizing the cells, the FGdBNP, and the events deriving from the nuclear process in the same image. Quantification of 10B by neutron autoradiography in cells treated with FGdBNPs confirmed a significant accumulation of NPs with low levels of cellular toxicity. These results suggest that these NPs might represent a valuable tool for achieving a high boron concentration in tumoral cells. Full article
(This article belongs to the Section Radiobiology and Nuclear Medicine)
Show Figures

Figure 1

12 pages, 6385 KiB  
Article
Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes
by Hasan Türkez, Özge Çağlar Yıldırım, Sena Öner, Abdurrahim Kadı, Abdulkadir Mete, Mehmet Enes Arslan, İrfan Oğuz Şahin, Ömer Erkan Yapça and Adil Mardinoğlu
Pharmaceutics 2023, 15(1), 149; https://doi.org/10.3390/pharmaceutics15010149 - 31 Dec 2022
Cited by 13 | Viewed by 3932
Abstract
Complications of chronic non-healing wounds led to the emergence of nanotechnology-based therapies to enhance healing, facilitate tissue repair, and prevent wound-related complications like infections. Here, we design alpha lipoic acid (ALA) conjugated hexagonal boron nitride (hBN) and boron carbide (B4C) nanoparticles [...] Read more.
Complications of chronic non-healing wounds led to the emergence of nanotechnology-based therapies to enhance healing, facilitate tissue repair, and prevent wound-related complications like infections. Here, we design alpha lipoic acid (ALA) conjugated hexagonal boron nitride (hBN) and boron carbide (B4C) nanoparticles (NPs) to enhance wound healing in human dermal fibroblast (HDFa) cell culture and characterize its antimicrobial properties against Staphylococcus aureus (S. aureus, gram positive) and Escherichia coli (E. coli, gram negative) bacterial strains. ALA molecules are integrated onto hBN and C4B NPs through esterification procedure, and molecular characterizations are performed by using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-vis spectroscopy. Wound healing and antimicrobial properties are investigated via the use of cell viability assays, scratch test, oxidative stress, and antimicrobial activity assays. Based on our analysis, we observe that ALA-conjugated hBN NPs have the highest wound-healing feature and antimicrobial activity compared to ALA-B4C. On the other hand, hBN, ALA-B4C, and ALA compounds showed promising regenerative and antimicrobial properties. Also, we find that ALA conjugation enhances wound healing and antimicrobial potency of hBN and B4C NPs. We conclude that the ALA-hBN conjugate is a potential candidate to stimulate regeneration process for injuries. Full article
Show Figures

Figure 1

14 pages, 2314 KiB  
Article
In-Situ Doping B4C Nanoparticles in Mesophase Pitch for Preparing Carbon Fibers with High Thermal Conductivity by Boron Catalytic Graphitization
by Yue Liu, Jiahao Liu, Jianxiao Yang, Xiao Wu, Jun Li, Kui Shi, Bo Liu and Ruixuan Tan
Molecules 2022, 27(16), 5132; https://doi.org/10.3390/molecules27165132 - 12 Aug 2022
Cited by 7 | Viewed by 2896
Abstract
The boron carbide (B4C) nanoparticles doping mesophase pitch (MP) was synthesized by the in-situ doping method with tetrahydrofuran solvent, and the corresponding MP−based carbon fibers (CFs) were successfully prepared through the melt−spinning, stabilization, carbonization and graphitization processes. The structural evolution and [...] Read more.
The boron carbide (B4C) nanoparticles doping mesophase pitch (MP) was synthesized by the in-situ doping method with tetrahydrofuran solvent, and the corresponding MP−based carbon fibers (CFs) were successfully prepared through the melt−spinning, stabilization, carbonization and graphitization processes. The structural evolution and properties of boron−containing pitches and fibers in different processes were investigated for exploring the effect of B4C on mechanical, electrical and thermal properties of CFs. The results showed that the B4C was evenly dispersed in pitch fibers to provide active sites of oxygen, resulting in a homogeneous stabilization and ameliorating the split−ting microstructures of CFs. Moreover, the thermal conductivity of B1−MP−CF prepared with 1 wt.% B4C increased to 1051 W/m•K, which was much higher than that of B0−MP−CF prepared without B4C (659 W/m•K). While the tensile strength of B4C−doped CFs was lower than that of pristine CFs. In addition, a linear relationship equation between the graphite microcrystallite parameter (ID/IG) calculated from Raman spectra and the thermal conductivity (λ) calculated according to the electrical resistivity was found, which was beneficial to understand the thermal properties of CFs. Therefore, the doping B4C nanoparticles in MP did play a significant role in reducing the graphitization temperatures due to the boron catalytic graphitization but decreasing the mechanical properties due to the introduction of impurities. Full article
Show Figures

Graphical abstract

15 pages, 8339 KiB  
Article
Influence of Ultrasonic Vibration towards the Microstructure Refinement and Particulate Distribution of AA7150-B4C Nanocomposites
by Pagidi Madhukar, Vipin Mishra, Nagamuthu Selvaraj, Chilakalapalli Surya Prakasa Rao, Veeresh Kumar Gonal Basavaraja, Rathlavath Seetharam, Murthy Chavali, Faruq Mohammad and Ahmed A. Soleiman
Coatings 2022, 12(3), 365; https://doi.org/10.3390/coatings12030365 - 9 Mar 2022
Cited by 14 | Viewed by 2706
Abstract
Aluminum-based metal matrix composites with single or multiple ceramic reinforcements are finding application in the aerospace and automobile industries. In this research work, novel AA7150-B4C (aluminium7150 alloy–Boron carbide) nanocomposites were successfully fabricated, through the liquid metallurgy route via stir casting method, with the [...] Read more.
Aluminum-based metal matrix composites with single or multiple ceramic reinforcements are finding application in the aerospace and automobile industries. In this research work, novel AA7150-B4C (aluminium7150 alloy–Boron carbide) nanocomposites were successfully fabricated, through the liquid metallurgy route via stir casting method, with the incorporation of B4C nanoparticles with different weight percentages using a novel sequence of a vortex technique and a double stir casting process with ultrasonication. The formed composites have been thoroughly studied for microstructure refinement, nano-particulate distribution, and bonding with the matrix by making use of the optical microscopy (OM) and scanning electron microscopy (SEM) studies (respectively). In addition, the composites were analyzed for the density, porosity, and elemental composition. Further, the composites were tested for the investigation of mechanical properties, like micro-hardness and tensile strength, to investigate the influence of ultrasonic vibration on the arrangement of B4C nano-particulates. The analysis indicated that the mechanical properties of the AA7150-B4C nanocomposites in as-cast condition significantly improved with a gain of 57.7% in strength and 24.5% in hardness compared to the native AA7150 material. Full article
Show Figures

Figure 1

12 pages, 5491 KiB  
Article
The Effect of Incorporating Ceramic Particles with Different Morphologies on the Microstructure, Mechanical and Tribological Behavior of Hybrid TaC_ BN/AA2024 Nanocomposites
by Emad Ismat Ghandourah, Essam B. Moustafa, Hossameldin Hussein and Ahmed O. Mosleh
Coatings 2021, 11(12), 1560; https://doi.org/10.3390/coatings11121560 - 18 Dec 2021
Cited by 10 | Viewed by 2819
Abstract
Improving the mechanical durability and wear resistance of aluminum alloys is a research challenge that can be solved by their reinforcement with ceramics. This article is concerned with the improvement of the mechanical properties and wear resistance of the AA2024 aluminum alloy surface. [...] Read more.
Improving the mechanical durability and wear resistance of aluminum alloys is a research challenge that can be solved by their reinforcement with ceramics. This article is concerned with the improvement of the mechanical properties and wear resistance of the AA2024 aluminum alloy surface. Surface composites were prepared by incorporating a hybrid of heavy particles (tantalum carbide (TaC), light nanoparticles, and boron nitride (BN)) into the AA2024 alloy using the friction stir process (FSP) approach. Three pattern holes were milled in the base metal to produce the composites with different volume fractions of the reinforcements. The effects of the FSP and the reinforcements on the microstructure, mechanical properties, and wear resistance are investigated. In addition to the FSP, the reinforced particles contributed to greater grain refinement. The rolled elongated grains became equiaxed ultrafine grains reaching 6 ± 1 µm. The refinement and acceptable distribution in the reinforcements significantly improved the hardness and wear resistance of the produced composites. Overall, the hardness was increased by 60% and the wear resistance increased by 40 times compared to the base alloy. Full article
Show Figures

Figure 1

18 pages, 102401 KiB  
Article
A Novel Comparative Study Based on the Economic Feasibility of the Ceramic Nanoparticles Role’s in Improving the Properties of the AA5250 Nanocomposites
by Waheed Sami Abushanab, Essam B. Moustafa, Ammar A. Melaibari, Anton D. Kotov and Ahmed O. Mosleh
Coatings 2021, 11(8), 977; https://doi.org/10.3390/coatings11080977 - 17 Aug 2021
Cited by 22 | Viewed by 3244
Abstract
In this paper, AA5250 aluminum sheets are reinforced with boron nitride (BN), silicon carbide (SiC), aluminum oxide (Al2O3), and vanadium carbide (VC). The nanocomposites metal matrix are manufactured using friction stir processing (FSP). A novel analytical comparison based on [...] Read more.
In this paper, AA5250 aluminum sheets are reinforced with boron nitride (BN), silicon carbide (SiC), aluminum oxide (Al2O3), and vanadium carbide (VC). The nanocomposites metal matrix are manufactured using friction stir processing (FSP). A novel analytical comparison based on an assessment of mechanical, physical properties and the cost of manufactured materials was conducted to help the engineers and designers choose the most economically feasible nanocomposite. The results revealed extra grain refining for all composites in the stirred zone (SZ) due to the Zener-pinning mechanism. The smallest grain size was obtained in AA5250/BN, and it decreased 20 times that of the base metal (BM). The highest wear resistance was achieved in AA5250/SiC, followed by AA5250/VC and AA5250/BN. The lowest coefficient of friction was obtained for AA5250/BN due to the self-lubrication property of BN; which was μ = 0.28. SiC AA5250 had the highest hardness, increasing three times more than the base metal in terms of its hardness. There was a detailed discussion of the probable explanations for the improvements. However, the outstanding characteristics of the BN nanoparticles, the AA5250/BN was reported to be lower than the AA5250/SiC. In comparison, the AA5250/SiC nanocomposite exhibits the optimum value due to its fitting for different properties relative to the cost. Full article
Show Figures

Graphical abstract

13 pages, 4462 KiB  
Article
Boron-Rich Boron Carbide Nanoparticles as a Carrier in Boron Neutron Capture Therapy: Their Influence on Tumor and Immune Phagocytic Cells
by Dawid Kozień, Bożena Szermer-Olearnik, Andrzej Rapak, Agnieszka Szczygieł, Natalia Anger-Góra, Janusz Boratyński, Elżbieta Pajtasz-Piasecka, Mirosław M. Bućko and Zbigniew Pędzich
Materials 2021, 14(11), 3010; https://doi.org/10.3390/ma14113010 - 2 Jun 2021
Cited by 15 | Viewed by 3349
Abstract
The aim of the work was to study the interaction between boron-rich boron carbide nanoparticles and selected tumor and immune phagocytic cells. Experiments were performed to investigate the feasibility of the application of boron carbide nanoparticles as a boron carrier in boron neutron [...] Read more.
The aim of the work was to study the interaction between boron-rich boron carbide nanoparticles and selected tumor and immune phagocytic cells. Experiments were performed to investigate the feasibility of the application of boron carbide nanoparticles as a boron carrier in boron neutron capture therapy. Boron carbide powder was prepared by the direct reaction between boron and soot using the transport of reagents through the gas phase. The powder was ground, and a population of nanoparticles with an average particle size about 80 nm was selected by centrifugation. The aqueous suspension of the nanoparticles was functionalized with human immunoglobulins or FITC-labeled human immunoglobulins and was then added to the MC38 murine colon carcinoma and to the RAW 264.7 cell line of mouse macrophages. Flow cytometry analysis was used to determine interactions between the functionalized boron carbide nanoparticles and respective cells. It was shown that B4C–IgG nanoconjugates may bind to phagocytic cells to be internalized by them, at least partially, whereas such nanoconjugates can only slightly interact with molecules on the cancer cells’ surface. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

8 pages, 2908 KiB  
Article
Formation of Fractal Dendrites by Laser-Induced Melting of Aluminum Alloys
by Alexey Kucherik, Vlad Samyshkin, Evgeny Prusov, Anton Osipov, Alexey Panfilov, Dmitry Buharov, Sergey Arakelian, Igor Skryabin, Alexey Vitalievich Kavokin and Stella Kutrovskaya
Nanomaterials 2021, 11(4), 1043; https://doi.org/10.3390/nano11041043 - 19 Apr 2021
Cited by 10 | Viewed by 2623
Abstract
We report on the fabrication of fractal dendrites using laser-induced melting of aluminum alloys. We target boron carbide (B4C), which is one of the most effective radiation-absorbing materials characterized by a low coefficient of thermal expansion. Due to the high fragility [...] Read more.
We report on the fabrication of fractal dendrites using laser-induced melting of aluminum alloys. We target boron carbide (B4C), which is one of the most effective radiation-absorbing materials characterized by a low coefficient of thermal expansion. Due to the high fragility of B4C crystals, we were able to introduce its nanoparticles into a stabilization aluminum matrix of AA385.0. The high-intensity laser field action led to the formation of composite dendrite structures under the effect of local surface melting. Modelling the dendrite cluster growth confirms its fractal nature and sheds light on the pattern behavior of the resulting quasicrystal structure. Full article
Show Figures

Figure 1

Back to TopTop