Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = borehole radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3372 KiB  
Article
Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing
by Qing He, Hehe Liu, Lu Wei, Jing Ding, Heling Sun and Zhen Zhang
Appl. Sci. 2025, 15(14), 7991; https://doi.org/10.3390/app15147991 - 17 Jul 2025
Viewed by 305
Abstract
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution [...] Read more.
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution of land subsidence from 2018 to 2024. A total of 207 Sentinel-1 SAR images were first processed using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to generate high-resolution surface deformation time series. Subsequently, the seasonal-trend decomposition using the LOESS (STL) model was applied to extract annual cyclic deformation components from the InSAR-derived time series. To quantitatively assess the delayed response of land subsidence to groundwater level changes and subsurface strain evolution, time-lagged cross-correlation (TLCC) analysis was performed between surface deformation and both groundwater level data and distributed fiber-optic strain measurements within the 5–50 m depth interval. The strain data was collected using a borehole-based automated distributed fiber-optic sensing system. The results indicate that land subsidence is primarily concentrated in the urban core, with annual cyclic amplitudes ranging from 10 to 18 mm and peak values reaching 22 mm. The timing of surface rebound shows spatial variability, typically occurring in mid-February in residential areas and mid-May in agricultural zones. The analysis reveals that surface deformation lags behind groundwater fluctuations by approximately 2 to 3 months, depending on local hydrogeological conditions, while subsurface strain changes generally lead surface subsidence by about 3 months. These findings demonstrate the strong predictive potential of distributed fiber-optic sensing in capturing precursory deformation signals and underscore the importance of integrating InSAR, hydrological, and geotechnical data for advancing the understanding of subsidence mechanisms and improving monitoring and mitigation efforts. Full article
Show Figures

Figure 1

16 pages, 4559 KiB  
Article
Subsurface Cavity Imaging Based on UNET and Cross–Hole Radar Travel–Time Fingerprint Construction
by Hui Cheng, Yonghui Zhao and Kunwei Feng
Remote Sens. 2025, 17(12), 1986; https://doi.org/10.3390/rs17121986 - 8 Jun 2025
Viewed by 546
Abstract
As a significant geological hazard in large–scale engineering construction, deep subsurface voids demand effective and precise detection methods. Cross–hole radar tomography overcomes depth limitations by transmitting/receiving electromagnetic (EM) waves between boreholes, enabling the accurate determination of the spatial distribution and EM properties of [...] Read more.
As a significant geological hazard in large–scale engineering construction, deep subsurface voids demand effective and precise detection methods. Cross–hole radar tomography overcomes depth limitations by transmitting/receiving electromagnetic (EM) waves between boreholes, enabling the accurate determination of the spatial distribution and EM properties of subsurface cavities. However, conventional inversion approaches, such as travel–time/attenuation tomography and full–waveform inversion, still face challenges in terms of their stability, accuracy, and computational efficiency. To address these limitations, this study proposes a deep learning–based imaging method that introduces the concept of travel–time fingerprints, which compress raw radar data into structured, low–dimensional inputs that retain key spatial features. A large synthetic dataset of irregular subsurface cavity models is used to pre–train a UNET model, enabling it to learn nonlinear mapping, from fingerprints to velocity structures. To enhance real–world applicability, transfer learning (TL) is employed to fine–tune the model using a small amount of field data. The refined model is then tested on cross–hole radar datasets collected from a highway construction site in Guizhou Province, China. The results demonstrate that the method can accurately recover the shape, location, and extent of underground cavities, outperforming traditional tomography in terms of clarity and interpretability. This approach offers a high–precision, computationally efficient solution for subsurface void detection, with strong engineering applicability in complex geological environments. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Figure 1

22 pages, 14134 KiB  
Article
Borehole Radar Experiment in a 7500 m Deep Well
by Huanyu Yang, Kaihua Wang, Yajie Liu, Cheng Guo and Qing Zhao
Sensors 2025, 25(10), 2991; https://doi.org/10.3390/s25102991 - 9 May 2025
Viewed by 451
Abstract
This paper presents the world’s first radar detection experiment conducted in a 7500-m ultra-deep well. By applying ground-penetrating radar technology to petroleum logging, the developed borehole radar system successfully achieved stratigraphic information detection in the 7200–7500 m section of Shunbei Well No. 2. [...] Read more.
This paper presents the world’s first radar detection experiment conducted in a 7500-m ultra-deep well. By applying ground-penetrating radar technology to petroleum logging, the developed borehole radar system successfully achieved stratigraphic information detection in the 7200–7500 m section of Shunbei Well No. 2. Utilizing electromagnetic wave reflection principles, the system acquires echo signals carrying medium characteristics through transmit–receive antenna arrays coupled with field-programmable gate array (FPGA)-based high-speed acquisition for real-time downhole data transmission. Experimental results demonstrate high consistency in Gamma Ray (GR) curves (correlation coefficient: 0.92) between radar data and Sinopec’s geological drilling data, particularly in key stratigraphic features such as casing reflections at a 7250-m depth (error of 0.013%). This breakthrough validates the operational stability and detection accuracy of borehole radar in complex subsurface environments, providing an innovative technological approach for ultra-deep hydrocarbon exploration. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

19 pages, 6020 KiB  
Article
Numerical Simulation Study on the Impact of Blind Zones in Ground Penetrating Radar
by Wentian Wang, Wei Du, Siyuan Cheng and Jia Zhuo
Sensors 2025, 25(4), 1252; https://doi.org/10.3390/s25041252 - 18 Feb 2025
Cited by 2 | Viewed by 595
Abstract
Ground-penetrating radar (GPR) is an effective geophysical method for rapid and non-destructive detection. Directional borehole radar is the application of GPR in a borehole, which can determine the depth, orientation, and distance of the target from the borehole. The borehole radar azimuth recognition [...] Read more.
Ground-penetrating radar (GPR) is an effective geophysical method for rapid and non-destructive detection. Directional borehole radar is the application of GPR in a borehole, which can determine the depth, orientation, and distance of the target from the borehole. The borehole radar azimuth recognition algorithm is based on the assumption of far-field plane waves. Therefore, in the near-field area where the target is closer to the borehole, the electromagnetic waves reflected by the target cannot be regarded as plane waves but will have a certain curvature. The plane wave assumption is not valid in this area, so the azimuth recognition algorithm will have significant errors, forming blind zones for directional borehole radar detection. This article uses the finite-difference time-domain (FDTD) algorithm to numerically simulate how blind zones affect directional borehole radar systems, identify the impact patterns, and minimize them. After calculation and numerical simulation verification, it has been found that when the center frequency of the antenna is 1 GHz, within 2 m of the target from the borehole, there is a significant error in azimuth recognition, which can be defined as the near-field region. Similarly, through numerical simulation verification, the optimal antenna center frequency is between 600 MHz and 1100 MHz. Oil-based mud is superior to water-based mud. The optimal antenna center frequency decreases as the target distance increases. Full article
Show Figures

Figure 1

23 pages, 8809 KiB  
Article
An Integrated Study of Highway Pavement Subsidence Using Ground-Based Geophysical and Satellite Methods
by Michael Frid, Amit Helman, Dror Sharf, Vladi Frid, Wafa Elias and Dan G. Blumberg
Appl. Sci. 2025, 15(4), 1758; https://doi.org/10.3390/app15041758 - 9 Feb 2025
Cited by 2 | Viewed by 1290
Abstract
This study investigates highway pavement subsidence along Road 431, Israel, using an integrated geophysical framework that combines Interferometric Synthetic Aperture Radar (InSAR), Ground Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT). These methods address the limitations of standalone techniques by correlating surface subsidence [...] Read more.
This study investigates highway pavement subsidence along Road 431, Israel, using an integrated geophysical framework that combines Interferometric Synthetic Aperture Radar (InSAR), Ground Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT). These methods address the limitations of standalone techniques by correlating surface subsidence patterns with subsurface anomalies. InSAR identified surface subsidence rates of up to −2.7 cm/year, pinpointing subsidence hotspots, while GPR detected disintegrated fill layers and air voids, and ERT revealed resistivity anomalies at depths of 50–100 m linked to karstic cavities and water infiltration. Validation through borehole drilling confirmed structural heterogeneity, specifically identifying karstic voids in limestone layers and weathered chalk layers that align with the geophysical findings. The findings highlight the complex interplay of geological and hydrological processes driving ground instability, exacerbated by groundwater fluctuations. This study demonstrates the novelty of combining surface and subsurface monitoring methods, offering a detailed diagnostic framework for understanding and mitigating geotechnical risks in transportation infrastructure. Full article
(This article belongs to the Special Issue New Technology for Road Surface Detection)
Show Figures

Figure 1

25 pages, 4306 KiB  
Article
Adaptive Variational Mode Decomposition and Principal Component Analysis-Based Denoising Scheme for Borehole Radar Data
by Ding Yang, Cheng Guo, Raffaele Persico, Yajie Liu, Handing Liu, Changjin Bai, Chao Lian and Qing Zhao
Remote Sens. 2025, 17(3), 525; https://doi.org/10.3390/rs17030525 - 3 Feb 2025
Viewed by 1490
Abstract
To address the significant impact of noise on the target detection performance of borehole radar (BHR), a key type of ground-penetrating radar (GPR), a denoising scheme based on the whale optimization algorithm (WOA) for adaptive variational mode decomposition (VMD) and multiscale principal component [...] Read more.
To address the significant impact of noise on the target detection performance of borehole radar (BHR), a key type of ground-penetrating radar (GPR), a denoising scheme based on the whale optimization algorithm (WOA) for adaptive variational mode decomposition (VMD) and multiscale principal component analysis (MSPCA) is proposed. This study initially conducts the modal decomposition of BHR data using an improved adaptive VMD method based on the WOA; it then automatically selects modes meeting specific frequency band standards. The correlation coefficients between these modes and the original signal are computed, discarding weakly correlated modes before signal reconstruction. Finally, MSPCA further suppresses noise, yielding denoised BHR data. Simulations show that the proposed scheme increases the signal-to-noise ratio by 17.964 dB or higher, surpassing the more established denoising techniques of robust principal component analysis (RPCA), MSPCA, and empirical mode decomposition (EMD), and obtains the most favorable results in terms of the RMSE and MSE metrics. The experimental results demonstrate that the proposed scheme more effectively suppresses vertical and random noise signals in BHR data. Both the numerical simulations and experimental results confirm the effectiveness of this scheme in noise reduction for BHR data. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Graphical abstract

15 pages, 941 KiB  
Article
Sidewall Roughness Measurement and Bearing Performance Simulation of Rock-Socketed Piles Based on Laser Scanning Point Cloud
by Junbao Zhang, Yule Hu, Yiteng Wang and Di Zhang
Appl. Sci. 2025, 15(2), 889; https://doi.org/10.3390/app15020889 - 17 Jan 2025
Viewed by 763
Abstract
Rock-socketed piles are commonly used in pile foundations for large buildings because of their excellent load-bearing characteristics. The roughness of the pile–rock interface affects the load transfer and the ultimate side resistance of the pile. In this work, a laser radar system is [...] Read more.
Rock-socketed piles are commonly used in pile foundations for large buildings because of their excellent load-bearing characteristics. The roughness of the pile–rock interface affects the load transfer and the ultimate side resistance of the pile. In this work, a laser radar system is developed to measure the surface roughness of a dry bored pile and the shape of the borehole, and a three-dimensional model of the borehole is reconstructed based on the laser point cloud. The 3D surface model was used to extract the vertical contour lines in different directions and thus calculate the roughness of the pile. A numerical simulation of the real measured 3D model using FLAC3D is presented. A borehole of a real rock-socketed pile was measured and simulated. The results show that, although the working load is carried by both the side and base resistances, the former plays a major role. The slow-varying load-settlement curve indicates that the pile has a superior load–bearing capacity, and the maximum allowable settlement should be considered in the application. The simulations, using the actual piles tested, produced a more realistic load response and were able to predict the load-bearing performance of the piles more accurately. Furthermore, this approach offers a reference for the design of rock-socketed piles. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

25 pages, 12592 KiB  
Article
Effect of the Outer Pipe on Reducing Direct Coupling of the Thin Borehole Radar Probe in Thick Water-Filled Borehole
by Satoshi Ebihara, Raiki Masui, Koki Koyama, Yuki Tsujikawa and Yuto Nishida
Remote Sens. 2025, 17(1), 100; https://doi.org/10.3390/rs17010100 - 30 Dec 2024
Viewed by 893
Abstract
We propose an outer pipe to reduce a direct wave in a thin single-hole borehole radar probe in a thick water-filled borehole. The outer pipe replaces the medium, such as water inside the borehole, with low-permittivity materials, such as air and plastics. According [...] Read more.
We propose an outer pipe to reduce a direct wave in a thin single-hole borehole radar probe in a thick water-filled borehole. The outer pipe replaces the medium, such as water inside the borehole, with low-permittivity materials, such as air and plastics. According to numerical calculations, the cylindrical water layer makes the direct wave from the transmitting loop antenna to the receiving one have significant power and narrow frequency bandwidth. This is caused by the low attenuation of the TE01 surface wave when there is a cylindrical water layer. The MoM analysis showed that wearing the outer pipe on the radar probe decreased the direct wave’s power more than the reflected wave from the subsurface objects, improving the detection of that reflected wave. We realized the radar system with the outer pipe by attaching the two acrylic pipes with different diameters. With this outer pie, we conducted field experiments to estimate the position of metal ore near the borehole in skarn with the loop antenna array type borehole radar. The direct wave having oscillation prevented the detection of the reflected wave from the sphalerite vein in the time domain without the outer pipe. However, attaching the outer pipe highlighted that reflected wave. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Graphical abstract

21 pages, 29111 KiB  
Article
GPR in Damage Identification of Concrete Elements—A Case Study of Diagnostics in a Prestressed Bridge
by Piotr Łaziński, Marcin Jasiński, Mateusz Uściłowski, Dawid Piotrowski and Łukasz Ortyl
Remote Sens. 2025, 17(1), 35; https://doi.org/10.3390/rs17010035 - 26 Dec 2024
Cited by 1 | Viewed by 1547
Abstract
Effective placement and compaction of the concrete mixture within the spans of prestressed bridges are essential for the proper anchoring and prestressing of tendons. The high density of reinforcement and location of the cable ducts present significant challenges, increasing the risk of void [...] Read more.
Effective placement and compaction of the concrete mixture within the spans of prestressed bridges are essential for the proper anchoring and prestressing of tendons. The high density of reinforcement and location of the cable ducts present significant challenges, increasing the risk of void formation and structural irregularities, which can lead to failures during the prestressing process. Ground Penetrating Radar (GPR) emerges as a pivotal non-destructive testing method for diagnosing such complex prestressed structures. Utilizing high-frequency electromagnetic waves, GPR accurately detects and maps anomalies within hardened concrete, enabling precise identification of defect locations and their dimensions. The detailed imaging provided by GPR facilitates the development of targeted repair strategies and allows for the exclusion of concrete voids through selective invasive inspections in designated boreholes. This study presents the use of GPR for the investigation of anomalies and damage in prestressing tendons of a newly built concrete bridge. It underscores the critical role of GPR in enhancing the diagnostic and maintenance programs for prestressed bridge structures, thereby improving their overall integrity and longevity. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

20 pages, 6325 KiB  
Article
Sustainable Management of Landslides in Ecuador: Leveraging Geophysical Surveys for Effective Risk Reduction
by Olegario Alonso-Pandavenes, Francisco Javier Torrijo Echarri and Julio Garzón-Roca
Sustainability 2024, 16(24), 10797; https://doi.org/10.3390/su162410797 - 10 Dec 2024
Cited by 1 | Viewed by 1810
Abstract
The present work explores the use of geophysical surveys as valuable tools for the study and sustainable management of landslides, with a particular focus on Ecuador. As an Andean country, Ecuador’s geomorphology and geology are dominated by volcano-sedimentary materials and processes, which confers [...] Read more.
The present work explores the use of geophysical surveys as valuable tools for the study and sustainable management of landslides, with a particular focus on Ecuador. As an Andean country, Ecuador’s geomorphology and geology are dominated by volcano-sedimentary materials and processes, which confers a high susceptibility to landslides. In the last few years, a number of landslide events (such as those at La Josefina, Alausí, and Chunchi) have given rise to disasters with significant material damage and loss of life. Climatic events, affected by climate change, earthquakes, and human activity, are the main landslide triggers. Geophysical surveys, like seismic refraction, electrical resistivity tomography (ERT), and ground-penetrating radar (GPR), are easy and low-cost techniques that provide valuable and critical subsurface data. They can help define the failure surface, delimit the mobilized materials, describe the internal structure, and identify the hydrological and geotechnical parameters that complement any direct survey (like boreholes and laboratory tests). As a result, they can be used in assessing landslide susceptibility and integrated into early warning systems, mapping, and zoning. Some case examples of large landslide events in Ecuador (historical and recent) are analyzed, showing how geophysical surveys can be a valuable tool to monitor landslides, mitigate their effects, and/or develop solutions. Combined or isolated geophysical techniques foster sustainable management, improve hazard characterization, help protect the most vulnerable regions, promote community awareness for greater safety and resilience against landslides, and support governmental actions and policies. Full article
(This article belongs to the Special Issue Geological Engineering and Sustainable Environment)
Show Figures

Figure 1

21 pages, 70582 KiB  
Article
Deformation Analysis and Reinforcement Effect Evaluation for the No. 65 Slope on the Shangsan Expressway Based on SBAS-InSAR
by Dongxin Bai, Guangyin Lu, Huihua Hu, Hang Lin, Changfu Chen and Xuan Wang
Buildings 2024, 14(11), 3582; https://doi.org/10.3390/buildings14113582 - 11 Nov 2024
Cited by 1 | Viewed by 1036
Abstract
The deformation of the No. 65 slope on the Shangsan Expressway poses a potential threat to road safety. In July 2021, the deformation rate of this slope accelerated significantly, leading to the implementation of reinforcement measures in 2022. To comprehensively analyze the historical [...] Read more.
The deformation of the No. 65 slope on the Shangsan Expressway poses a potential threat to road safety. In July 2021, the deformation rate of this slope accelerated significantly, leading to the implementation of reinforcement measures in 2022. To comprehensively analyze the historical deformation characteristics of the slope and evaluate the effectiveness of the reinforcement measures, this study employs Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology to calculate and analyze the historical deformation characteristics of the slope and the adjacent hillside for two periods: from 10 January 2018 to 22 August 2021, and from 3 September 2021 to 22 December 2023. The SBAS-InSAR monitoring results were compared with in situ data from borehole inclinometers to verify the reliability of the calculations. The SBAS-InSAR results indicate that before reinforcement, the slope exhibited slow movement; however, after the implementation of the reinforcement measures, the displacement significantly decreased, demonstrating the success and effectiveness of the interventions. The consistency between the SBAS-InSAR results, borehole inclinometer data, and surface observations confirms the substantial potential of SBAS-InSAR technology for slope engineering monitoring. Full article
(This article belongs to the Special Issue New Reinforcement Technologies Applied in Slope and Foundation)
Show Figures

Figure 1

32 pages, 18414 KiB  
Article
La Palma 2021 Eruption (Canary Islands): Measurements and Modelling of Lava Flow Cooling Rates and Applications for Infrastructure Reconstruction and Risk Mitigation
by Luis González-de-Vallejo, Aaron Álvarez-Hernández, Mercedes Ferrer, John P. Lockwood, Nemesio M. Pérez, Pedro A. Hernández, Ana Miranda-Hardisson, José A. Rodríguez-Losada, David Afonso-Falcón, Héctor de-los-Ríos, Javier Páez-Padilla and Luis E. Hernández-Gutiérrez
GeoHazards 2024, 5(4), 1093-1124; https://doi.org/10.3390/geohazards5040052 - 4 Oct 2024
Cited by 2 | Viewed by 4768
Abstract
On 19 September 2021, a strombolian volcanic eruption began on the island of La Palma in the Canary Islands. This event resulted in the destruction of 73 km of roads, urban infrastructure, numerous houses, and agricultural crops, affecting approximately 7200 people and causing [...] Read more.
On 19 September 2021, a strombolian volcanic eruption began on the island of La Palma in the Canary Islands. This event resulted in the destruction of 73 km of roads, urban infrastructure, numerous houses, and agricultural crops, affecting approximately 7200 people and causing losses exceeding 1.2 billion euros. Around 12 km2 were covered by aa and pahoehoe lava flows, which reached thicknesses of over 70 m. Following the end of the eruption, thermal, geological, and geotechnical site investigations were carried out for the reconstruction and territorial and urban planning, with the main objectives focused on opening roads through hot lava, constructing new urban settlements in areas covered by lava flows, and facilitating the agricultural recovery. The primary challenges to reconstruction included the very slow cooling rate of the lava, resulting in persistent high temperatures, exceeding 500 °C, its highly heterogeneous geotechnical properties with numerous cavities and lava caves, and the presence of toxic gases. Site investigations included geotechnical boreholes, seismic geophysics and ground-penetration radar, and temperature measurements of lava flows using drones and thermocouple devices inside boreholes. To estimate the cooling rates of the lava flows, two physical cooling models were developed based on thermal behavior and geological–geotechnical data. The results indicated that lava cooling durations in some areas exceed practical waiting times for commencing reconstruction. This led to the development of geological engineering solutions that permit road construction and urban and agricultural reconstruction to begin sooner than estimated by the cooling models. On the other hand, potential hazards arising from the eruption process have also been taken into account. Stability analyses of the 200 m high volcanic cone formed during the eruption indicate the possibility of failure in the event of heavy rain and consequently lahar hazards. The results of the investigations carried out and their applications to post-disaster reconstruction may be useful for other volcanic regions, contributing to minimizing risk to infrastructure and urban settlements. Full article
Show Figures

Figure 1

19 pages, 11916 KiB  
Article
Ground Penetrating Radar (GPR) Investigations in Urban Areas Affected by Gravity-Driven Deformations
by Nicola Angelo Famiglietti, Pietro Miele, Bruno Massa, Antonino Memmolo, Raffaele Moschillo, Luigi Zarrilli and Annamaria Vicari
Geosciences 2024, 14(8), 222; https://doi.org/10.3390/geosciences14080222 - 20 Aug 2024
Cited by 3 | Viewed by 2294
Abstract
The 1980 Ms 6.9 Irpinia earthquake was responsible for the activation or reactivation of numerous gravitative deformations mainly hosted by clayey lithotypes, affecting wide areas of Benevento Province and the Sele and Ofanto R. Valleys. The case of Calitri offers valuable insights into [...] Read more.
The 1980 Ms 6.9 Irpinia earthquake was responsible for the activation or reactivation of numerous gravitative deformations mainly hosted by clayey lithotypes, affecting wide areas of Benevento Province and the Sele and Ofanto R. Valleys. The case of Calitri offers valuable insights into a methodological approach to studying mass movements affecting human settlements. Post-earthquake investigations in Calitri involved extensive geognostic boreholes and in situ surveys, providing substantial data for lithological characterization and landslide modeling. Additionally, over the past two decades, satellite-based techniques have supported the mapping and characterization of ground deformations in this area, improving our understanding of spatiotemporal evolution. Despite these efforts, a detailed subsurface comprehensionof the tectono-stratigraphy and geometriesof gravity-induced deformation remains incomplete. This study aims to enhance our knowledge of gravity-driven deformations affecting urban areas by using deep-penetrating GroundPenetrating Radar (GPR) surveys to identify landslide-related structures, rupture surfaces, and lithological characterization of the involved lithotypes. The integration of GPR surveys with classical morphotectonic analysis led to the delineation of the main subsurface discontinuities (stratigraphy, tectonics, and gravity-related), correlating them with available geognostic data. This approach provided non-invasive, detailed insights into subsurface features and stands out as one of the rare case studies in Italy that employed the GPR method for landslide investigations. Full article
Show Figures

Figure 1

23 pages, 50566 KiB  
Article
Integrated Remote Sensing Investigation of Suspected Landslides: A Case Study of the Genie Slope on the Tibetan Plateau, China
by Wenlong Yu, Weile Li, Zhanglei Wu, Huiyan Lu, Zhengxuan Xu, Dong Wang, Xiujun Dong and Pengfei Li
Remote Sens. 2024, 16(13), 2412; https://doi.org/10.3390/rs16132412 - 1 Jul 2024
Cited by 2 | Viewed by 1616
Abstract
The current deformation and stable state of slopes with historical shatter signs is a concern for engineering construction. Suspected landslide scarps were discovered at the rear edge of the Genie slope on the Tibetan Plateau during a field investigation. To qualitatively determine the [...] Read more.
The current deformation and stable state of slopes with historical shatter signs is a concern for engineering construction. Suspected landslide scarps were discovered at the rear edge of the Genie slope on the Tibetan Plateau during a field investigation. To qualitatively determine the current status of the surface deformation of this slope, this study used high-resolution optical remote sensing, airborne light detection and ranging (LiDAR), and interferometric synthetic aperture radar (InSAR) technologies for comprehensive analysis. The interpretation of high-resolution optical and airborne LiDAR data revealed that the rear edge of the slope exhibits three levels of scarps. However, no deformation was detected with differential InSAR (D-InSAR) analysis of ALOS-1 radar images from 2007 to 2008 or with Stacking-InSAR and small baseline subset InSAR (SBAS-InSAR) processing of Sentinel-1A radar images from 2017 to 2020. This study verified the credibility of the InSAR results using the standard deviation of the phase residuals, as well as in-borehole displacement monitoring data. A conceptual model of the slope was developed by combining field investigation, borehole coring, and horizontal exploratory tunnel data, and the results indicated that the slope is composed of steep anti-dip layered dolomite limestone and that the scarps at the trailing edges of the slope were caused by historical shallow toppling. Unlike previous remote sensing studies of deformed landslides, this paper argues that remote sensing results with reliable accuracy are also applicable to the study of undeformed slopes and can help make preliminary judgments about the stability of unexplored slopes. The study demonstrates that the long-term consistency of InSAR results in integrated remote sensing can serve as an indicator for assessing slope stability. Full article
(This article belongs to the Topic Landslides and Natural Resources)
Show Figures

Figure 1

23 pages, 28193 KiB  
Article
Using Ground-Penetrating Radar (GPR) to Investigate the Exceptionally Thick Deposits from the Storegga Tsunami in Northeastern Scotland
by Charlie S. Bristow, Lucy K. Buck and Rishi Shah
Remote Sens. 2024, 16(11), 2042; https://doi.org/10.3390/rs16112042 - 6 Jun 2024
Viewed by 2009
Abstract
A submarine landslide on the edge of the Norwegian shelf that occurred around 8150 ± 30 cal. years BP triggered a major ocean-wide tsunami, the deposits of which are recorded around the North Atlantic, including Scotland. Ground-penetrating radar (GPR) was used here to [...] Read more.
A submarine landslide on the edge of the Norwegian shelf that occurred around 8150 ± 30 cal. years BP triggered a major ocean-wide tsunami, the deposits of which are recorded around the North Atlantic, including Scotland. Ground-penetrating radar (GPR) was used here to investigate tsunami sediments within estuaries on the coast of northeastern Scotland where the tsunami waves were funnelled inland. Around the Dornoch Firth, the tsunami deposits are up to 1.6 m thickness, which is exceptionally thick for tsunami deposits and about twice the thickness of the 2004 IOT or 2011 Tohoku-oki tsunami deposits. The exceptional thickness is attributed to a high sediment supply within the Dornoch Firth. At Ardmore, the tsunami appears to have overtopped a beach ridge with a thick sand layer deposited inland at Dounie and partly infilled a valley. Later, fluvial activity eroded the tsunami sediments locally, removing the sand layer. At Creich, on the north side of the Dornoch Firth, the sand layer varies in thickness; mapping of the sand layer with GPR shows lateral thickness changes of over 1 m attributed to a combination of infilling an underlying topography, differential compaction, and later reworking by tidal inlets. Interpretation of the GPR profiles at Wick suggests that there has been a miscorrelation of Holocene stratigraphy based on boreholes. Changes in the stratigraphy of spits at Ardmore are attributed to the balance between sediment supply and sea-level change with washovers dominating a spit formed during the early Holocene transgression, while spits formed during the subsequent mid-Holocene high-stand are dominated by progradation. Full article
(This article belongs to the Collection Feature Papers for Section Environmental Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop