Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = boreal and temperate forests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 783 KiB  
Review
Ecological Roles and Forest Management Implications of Small Terrestrial Mammals in Temperate and Boreal Forests—A Review
by Ladislav Čepelka and Martina Dokulilová
Forests 2025, 16(6), 994; https://doi.org/10.3390/f16060994 - 12 Jun 2025
Viewed by 421
Abstract
Small terrestrial mammals (STMs) are vital components of forest ecosystems. They serve as seed dispersers, herbivores, prey, and vectors of pathogens. The STM community structure responds dynamically to forest composition, disturbance, and management regimes. However, despite their central ecological functions and frequent occurrence, [...] Read more.
Small terrestrial mammals (STMs) are vital components of forest ecosystems. They serve as seed dispersers, herbivores, prey, and vectors of pathogens. The STM community structure responds dynamically to forest composition, disturbance, and management regimes. However, despite their central ecological functions and frequent occurrence, STMs remain underestimated. This narrative review aims to comprehensively synthesize existing literature on the reciprocal interactions between STMs, temperate and boreal ecosystems, and forest management. Specifically, we (1) define a group of STMs and their specificities; (2) discuss the influence of forest structure, disturbance, and management on STM populations; and (3) analyze the known direct and indirect effects of STMs on forest ecosystems and forestry. Full article
(This article belongs to the Section Forest Biodiversity)
17 pages, 2250 KiB  
Article
Long-Term Carbon Sequestration and Climatic Responses of Plantation Forests Across Jiangsu Province, China
by Yuxue Cui, Miaomiao Wu, Zhongyi Lin, Yizhao Chen and Honghua Ruan
Forests 2025, 16(5), 756; https://doi.org/10.3390/f16050756 - 28 Apr 2025
Viewed by 483
Abstract
Plantation forests (PFs) play a crucial role in China’s climate change mitigation strategy due to their significant capacity to sequestrate carbon (C). Understanding the long-term trend in PFs’ C uptake capacity and the key drivers influencing it is crucial for optimizing PF management [...] Read more.
Plantation forests (PFs) play a crucial role in China’s climate change mitigation strategy due to their significant capacity to sequestrate carbon (C). Understanding the long-term trend in PFs’ C uptake capacity and the key drivers influencing it is crucial for optimizing PF management and planning for climate mitigation. In this study, we quantified the long-term (1981–2019) C sequestration of PFs in Jiangsu Province, where PFs have expanded considerably in recent decades, particularly since 2015. Seasonal and interannual variations in gross primary productivity (GPP), net primary productivity (NPP), and net ecosystem productivity (NEP) were assessed using the boreal ecosystem productivity simulator (BEPS), a process-based terrestrial biogeochemical model. The model integrates multiple sources of remote-sensing datasets, such as leaf area index and land cover data, to simulate the critical biogeochemical processes governing land surface dynamics, enabling the quantification of vegetation and soil C stocks and nutrient cycling patterns. The results indicated a significant increasing trend in GPP, NPP, and NEP over the past four decades, suggesting enhanced C sequestration by PFs across the study region. The interannual variability in these indicators was associated with that of nitrogen (N) deposition in recent years, implying that nutrient availability could be a limiting factor for plantation productivity. Seasonal GPP and NPP exhibited peak values in spring (April to May) or late summer (August to September), with increases in growing season productivity in recent years. In contrast, NEP peaked in spring (April to May) but declined to negative values in early summer (July to August), indicating a seasonal C source–sink transition. All three indicators showed a general negative correlation with late-growing-season temperature (August to September), suggesting that summer droughts probably highly constrained the C sequestration of the existing PFs. These findings provide insights for the strategic implementation and management of PFs, particularly in regions with a warm temperate climate undergoing afforestation expansion. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

23 pages, 3141 KiB  
Review
Forest Fragmentation and Forest Mortality—An In-Depth Systematic Review
by Debebe Dana Feleha, Luiza Tymińska-Czabańska and Paweł Netzel
Forests 2025, 16(4), 565; https://doi.org/10.3390/f16040565 - 24 Mar 2025
Cited by 2 | Viewed by 982
Abstract
In recent decades, forest fragmentation has been shown to directly increase forest mortality by increasing stress, damaging habitats, and heightening vulnerability to disturbances. It also disrupts local climates and ecological processes across various regions. Therefore, we aim to summarize the literature on forest [...] Read more.
In recent decades, forest fragmentation has been shown to directly increase forest mortality by increasing stress, damaging habitats, and heightening vulnerability to disturbances. It also disrupts local climates and ecological processes across various regions. Therefore, we aim to summarize the literature on forest fragmentation and forest mortality. The Web of Science Core Collection (WoSCC) database was searched using the PRISMA 2020 framework. We searched for publications from 1990 to 2023 and included research articles that reported on fragmentation and mortality. Out of the 159 articles found, we selected 119 research articles for systematic review. Our review documents that most studies on forest fragmentation and forest mortality tend to be relatively short-term, focused on a local or regional scale, and based on ground survey data. We identified articles from 35 countries and major hotspots for research on forest fragmentation and mortality. The results identified that the most underrepresented biomes are Mediterranean forests, woodlands and shrubs, boreal forests, and tropical and subtropical dry broadleaf forests. The longer the time horizon of the studies, the more neutral and positive effects of forest fragmentation are reported. These positive effects are more likely to be reported for temperate biomes and studies using field measurements. The study highlighted the importance of adopting a global perspective and integrating diverse methodologies to advance our understanding of forest fragmentation and mortality. Based on our findings, we recommend that future research on forest fragmentation and mortality should have a consistent geographic distribution, use varied methodologies, and perform the efficient integration of existing data types to improve the comparability and reliability of the results. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 3375 KiB  
Article
Growth Characteristics and Freezing Tolerance of Ectomycorrhizal and Saprotrophic Fungi: Responses to Normal and Freezing Temperatures
by Hangyu Lan, Markus Gorfer, Burenjargal Otgonsuren and Douglas L. Godbold
Forests 2025, 16(2), 191; https://doi.org/10.3390/f16020191 - 21 Jan 2025
Viewed by 3001
Abstract
In boreal and temperate forests, symbiotroph and saprotroph soil fungi must survive months of low temperatures or freezing during winter. In the temperate biome, this is particularly the case for high-elevation mountain forests. Soil freezing is thus an important stress factor in these [...] Read more.
In boreal and temperate forests, symbiotroph and saprotroph soil fungi must survive months of low temperatures or freezing during winter. In the temperate biome, this is particularly the case for high-elevation mountain forests. Soil freezing is thus an important stress factor in these forests. The objective of this study was to assess how temperature and freezing conditions affect the growth and survival of symbiotic and saprotrophic fungi. To assess the cold and freezing tolerance of ectomycorrhizal (EM) and saprotrophic (SAP) fungi, we conducted a study from 2021 to 2023, using isolates from forests located at lower and high-elevation mountain sites, as well as from forests in Mongolia, at altitudes ranging from 525 m to 1800 m. The isolates were grown in vitro at temperatures of 22, 15, and 4 °C and exposed to freezing conditions at −4 or −18 °C. The response to temperature and freezing was determined based on radial growth. Triphenyltetrazolium chloride (TTC) reduction was used to measure relative metabolic activity and viability. Fungi that originated from higher-elevation mountain sites, and thus colder climate conditions, tended to have a lower response to temperature and a higher tolerance to freezing. We could find no evidence of a higher freezing tolerance among different exploration types of ectomycorrhizal fungi. Sensitivity to low temperatures appears to be taxa-specific rather than exploration-type-specific. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

26 pages, 4751 KiB  
Article
Long-Term Cumulative Effect of Management Decisions on Forest Structure and Biodiversity in Hemiboreal Forests
by Teele Paluots, Jaan Liira, Mare Leis, Diana Laarmann, Eneli Põldveer, Jerry F. Franklin and Henn Korjus
Forests 2024, 15(11), 2035; https://doi.org/10.3390/f15112035 - 18 Nov 2024
Viewed by 1042
Abstract
We evaluated the long-term impacts of various forest management practices on the structure and biodiversity of Estonian hemiboreal forests, a unique ecological transition zone between temperate and boreal forests, found primarily in regions with cold winters and moderately warm summers, such as the [...] Read more.
We evaluated the long-term impacts of various forest management practices on the structure and biodiversity of Estonian hemiboreal forests, a unique ecological transition zone between temperate and boreal forests, found primarily in regions with cold winters and moderately warm summers, such as the northern parts of Europe, Asia, and North America. The study examined 150 plots across stands of different ages (65–177 years), including commercial forests and Natura 2000 habitat 9010* “Western Taiga”. These plots varied in stand origin—multi-aged (trees of varying ages) versus even-aged (uniform tree ages), management history—historical (practices before the 1990s) and recent (post-1990s practices), and conservation status—protected forests (e.g., Natura 2000 areas) and commercial forests focused on timber production. Data on forest structure, including canopy tree diameters, deadwood volumes, and species richness, were collected alongside detailed field surveys of vascular plants and bryophytes. Management histories were assessed using historical maps and records. Statistical analyses, including General Linear Mixed Models (GLMMs), Multi-Response Permutation Procedures (MRPP), and Indicator Species Analysis (ISA), were used to evaluate the effects of origin, management history, and conservation status on forest structure and species composition. Results indicated that multi-aged origin forests had significantly higher canopy tree diameters and deadwood volumes compared to even-aged origin stands, highlighting the benefits of varied-age management for structural diversity. Historically managed forests showed increased tree species richness, but lower deadwood volumes, suggesting a biodiversity–structure trade-off. Recent management, however, negatively impacted both deadwood volume and understory diversity, reflecting short-term forestry consequences. Protected areas exhibited higher deadwood volumes and bryophyte richness compared to commercial forests, indicating a small yet persistent effect of conservation strategies in sustaining forest complexity and biodiversity. Indicator species analysis identified specific vascular plants and bryophytes as markers of long-term management impacts. These findings highlight the ecological significance of integrating historical legacies and conservation priorities into modern management to support forest resilience and biodiversity. Full article
Show Figures

Figure 1

16 pages, 2928 KiB  
Article
Satellites Reveal Global Migration Patterns of Natural Mountain Treelines during Periods of Rapid Warming
by Yong Zhang and Chengbang An
Forests 2024, 15(10), 1780; https://doi.org/10.3390/f15101780 - 10 Oct 2024
Cited by 1 | Viewed by 1361
Abstract
Profound global transformations in the Anthropocene epoch are hastening shifts in species ranges, with natural mountain treeline migration playing a crucial role in this overarching species movement. The varied reactions of mountain treelines to climatic conditions across diverse climatic zones, when compounded by [...] Read more.
Profound global transformations in the Anthropocene epoch are hastening shifts in species ranges, with natural mountain treeline migration playing a crucial role in this overarching species movement. The varied reactions of mountain treelines to climatic conditions across diverse climatic zones, when compounded by local disturbances, result in distinct migration patterns. Usually, warming encourages mountain treelines to migrate to higher elevations. Nevertheless, in a period of rapid warming, it remains unclear whether the natural mountain treeline in global thermal climatic zones and subclimatic zones has expedited its upward movement. Here, we employed remote sensing observations and the random forest algorithm to investigate the natural treeline dynamics across 24 major mountain ranges worldwide amidst a period of rapid warming (1990–2020). Our research shows substantial disparities in the migration patterns of natural mountain treelines across the global thermal zone. The natural mountain treeline in tropical and subtropical zones descends by an average of 1.1 and 0.8 m per year, respectively. Only 18.8 and 35.5% of the natural mountain treelines in these regions had undergone upward migration, respectively. The average migration rates of natural mountain treelines in temperate and boreal zones were 0.7 m per year. Correspondingly, 47 and 33.2% of the natural mountain treelines in these zones had already shifted to higher elevations. The highest average migration rate of natural mountain treelines occurs in temperate continental climates (1.7 m per year). The loss or degradation of alpine species habitats, a direct consequence of the upward movement of the treeline, highlights the necessity for increased monitoring and protection of alpine species in temperate and boreal zones in the future. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

15 pages, 2133 KiB  
Article
Influence of Climate Change on Carbon Sequestration in Pine Forests of Central Spain
by Álvaro Enríquez-de-Salamanca
Atmosphere 2024, 15(10), 1178; https://doi.org/10.3390/atmos15101178 - 30 Sep 2024
Cited by 1 | Viewed by 1508
Abstract
Climate change influences carbon sequestration by forests, either positively or negatively. In the Mediterranean region, this effect is predominantly negative, although it seems to be compensated by the elevation. This study aims to analyse the impact of climate change on carbon sequestration in [...] Read more.
Climate change influences carbon sequestration by forests, either positively or negatively. In the Mediterranean region, this effect is predominantly negative, although it seems to be compensated by the elevation. This study aims to analyse the impact of climate change on carbon sequestration in five pine species—Pinus halepensis, P. nigra, P. pinaster, P. pinea, and P. sylvestris—growing across an altitudinal gradient from 573 to 1743 m a.s.l. in central Spain. Data from 300 forest inventory plots in ten forests were used to first calculate carbon sequestration in 2024. To estimate future carbon sequestration, the expected values of precipitation and temperature for 2100 were determined, based on regionalised climate scenarios for RCP4.5 and RCP8.5. Values from 13 meteorological stations located around the forests, at different elevations, were analysed, conducting a statistical analysis to determine whether variations were significant. A statistically significant variation was detected for temperature and precipitation changes only under the RCP8.5 scenario. Using temperature and precipitation data for 2024 and 2100, net potential productivity in both years was established, considering its variation ratio equivalent as equivalent to that of growth and carbon sequestration. An inflection point was detected in 2100 at 1646 m a.s.l., with a decrease in productivity below and an increase above that elevation. Results reflect a decline in carbon sequestration in all the species, ranging from 6% in P. sylvestris to 28% in P. halepensis, conditioned by the elevation. Regionally, the average decrease would be 16.4%. In temperate and boreal regions, forest growth is expected to increase due to climate change, but the Mediterranean region will experience a significant decrease, except in mountain areas. To maintain current levels of carbon sequestration, it would be necessary to increase the existing carbon sinks through new plantations and the restoration of degraded forests. Full article
(This article belongs to the Special Issue Climate Change and Forest Environment (2nd Edition))
Show Figures

Figure 1

16 pages, 1506 KiB  
Article
Temporal Changes in Bank Vole Populations Indicate Species Decline
by Linas Balčiauskas, Marius Jasiulionis, Vitalijus Stirkė and Laima Balčiauskienė
Diversity 2024, 16(9), 546; https://doi.org/10.3390/d16090546 - 4 Sep 2024
Cited by 3 | Viewed by 1239
Abstract
Because of their wide distribution, short life cycle, rapid reproduction, and sensitivity to the environment, rodents can indicate changes in habitat quality and climate variables. Long-term studies are needed to verify these changes and assumptions about their causes. We analyzed small mammal trapping [...] Read more.
Because of their wide distribution, short life cycle, rapid reproduction, and sensitivity to the environment, rodents can indicate changes in habitat quality and climate variables. Long-term studies are needed to verify these changes and assumptions about their causes. We analyzed small mammal trapping data in Lithuania, covering the period 1975–2023, with 1821 trapping sites and 57,426 small mammal individuals, with a focus on the bank vole (Clethrionomys glareolus). The aim of this study was to assess temporal changes in the relative abundance and proportion of this species in small mammal communities in relation to their habitats. With 21,736 captured individuals, C. glareolus was a dominant species in the country; its proportion in general was 37.9%, with 60.0% in forests. Open habitats, meadows and agricultural land were characterized by the lowest species proportions. Our main findings were the confirmation of decreasing abundances and proportions of C. glareolus since the 1990s, the absence of cyclical fluctuations in the relative abundances of the species in general and in forest habitats, and the introduction of a south–north cline in species proportions. The status of this temperate and boreal forest species is subject to change, with implications for the diversity of the mid-latitude small mammal community. Full article
(This article belongs to the Special Issue Diversity in 2024)
Show Figures

Graphical abstract

26 pages, 10877 KiB  
Article
Phytosociological Analysis of the Boreal Oligotrophic Pine Forests in the Southern Ural Region (Russia)
by Vasiliy Martynenko, Pavel Shirokikh, Elvira Baisheva, Albert Muldashev, Nikolay Fedorov, Svetlana Zhigunova and Leniza Naumova
Forests 2024, 15(8), 1461; https://doi.org/10.3390/f15081461 - 20 Aug 2024
Viewed by 1233
Abstract
Floristic composition and syntaxonomy of the boreal oligotrophic pine forests covering vast areas in the boreal, hemiboreal, and temperate zones of continental Eurasia still remain poorly studied in the Southern Ural region. Using the Braun–Blanquet approach and TURBOVEG and JUICE software, the phytocoenotic [...] Read more.
Floristic composition and syntaxonomy of the boreal oligotrophic pine forests covering vast areas in the boreal, hemiboreal, and temperate zones of continental Eurasia still remain poorly studied in the Southern Ural region. Using the Braun–Blanquet approach and TURBOVEG and JUICE software, the phytocoenotic diversity of boreal oligotrophic pine forests of the Southern Ural region was studied, and their position in the system of ecological and floristic classification of Eurasian vegetation was determined. Geobotanical data on boreal oligotrophic pine forests of Europe, including the European part of Russia; the Southern Urals; and Siberia were compared. A new alliance of oligotrophic boreal pine forests Brachypodio pinnati-Pinion sylvestris all. nov. hoc loco is described. The communities of this new alliance (i.e., five associations from the Southern Ural region) are characterized by a special floristic composition, occupying an intermediate position between the typical European oligotrophic pine forests of the alliance Dicrano-Pinion (Libbert 1933) Matuszkiewicz 1962 and oligotrophic (mainly psammophilous) South Siberian pine forests of the alliance Hieracio-Pinion Anenkhonov et Chytrý 1998. The communities of the alliance Brachypodio pinnati-Pinion sylvestris prefer to grow on poor soils with different moisture conditions. Due to intensive forestry activities, the distribution area of these forests has decreased, and these communities have been replaced by secondary birch forests. We have proposed a set of conservation measures to preserve these communities. A new association of oligotrophic pine forests Psephello sumensis-Pinetum sylvestris ass. nov. hoc loco is also described. These communities from the Kurgan region of Western Siberia were ordered into the alliance Dicrano-Pinion. It confirms the idea that the distribution area of this alliance may reach Siberia. Unlike the Southern Ural pine forests of the alliance Brachypodio pinnati-Pinion sylvestris, the recovery of these West Siberian pine forests after felling is quite high, and these communities do not require special measures for their protection. Full article
(This article belongs to the Special Issue Forest Biodiversity Conservation)
Show Figures

Figure 1

19 pages, 5426 KiB  
Article
Biomass Allocation of China’s Forests as Indicated by a Literature-Based Allometry Database
by Yajie Hao, Zhongyi Sun and Zheng-Hong Tan
Forests 2024, 15(6), 942; https://doi.org/10.3390/f15060942 - 29 May 2024
Cited by 1 | Viewed by 1431
Abstract
Allometry reflects the quantitative relationship between the allocation of resources among different organs. Understanding patterns of forest biomass allocation is critical to comprehending global climate change and the response of terrestrial vegetation to climate change. By collecting and reorganizing the existing allometric models [...] Read more.
Allometry reflects the quantitative relationship between the allocation of resources among different organs. Understanding patterns of forest biomass allocation is critical to comprehending global climate change and the response of terrestrial vegetation to climate change. By collecting and reorganizing the existing allometric models of tree species in China, we established a database containing over 3000 empirical allometric models. Based on this database, we analyzed the model parameters and the effect of climate on forest biomass allocation under the context of ‘optimal allocation theory’. We showed that (1) the average and median exponent of power functions for above-ground biomass were 2.344 and 2.385, respectively, which significantly deviated from the theoretical prediction of 2.667 by metabolic theory (p < 0.01). (2) The parameters of the allometric model were not constant, and not significantly correlated with temperature, precipitation, latitude, and elevation (p > 0.05), but were more closely related to individual size (p < 0.01). (3) Among different types of forests, the proportion of above-ground biomass in tropical rainforests and subtropical evergreen rainforests was significantly higher than that in temperate forests and boreal forests (p < 0.05). The proportion of trunk and branch biomass allocated to tropical rainforest was significantly higher than that of boreal forest (p < 0.05), while the proportion of root and leaf biomass allocated to tropical rainforest was significantly lower than that of boreal forest (p < 0.05). (4) The abiotic environment plays a crucial role in determining the allocation of plant biomass. The ratio of below-ground/above-ground biomass is significantly and negatively correlated with both temperature and rainfall (p < 0.01), and significantly and positively correlated with altitude and latitude (p < 0.01). This means that as temperature and rainfall increase, there is a decrease in the amount of biomass allocated to below-ground structures such as roots. On the other hand, as altitude and latitude increase, there is an increase in below-ground biomass allocation. These findings highlight the importance of considering the influence of abiotic factors on plant growth and development. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

47 pages, 14175 KiB  
Article
A Taxonomic and Phylogenetic Contribution on Inosperma Section Inosperma (Agaricales, Inocybaceae) in Europe: Calamistratum and Geraniodorum Groups
by Fernando Esteve-Raventós, Ellen Larsson, Fermín Pancorbo, Enrico Bizio, Alberto Altés, Yolanda Turégano, Gabriel Moreno and Ibai Olariaga
J. Fungi 2024, 10(6), 374; https://doi.org/10.3390/jof10060374 - 23 May 2024
Cited by 1 | Viewed by 2799
Abstract
The aim of this study is to carry out a taxonomic revision of the groups Calamistratum and Geraniodorum of the genus Inosperma sect. Inosperma in Europe. For this purpose, a multigenic phylogenetic analysis was carried out using the ITS, LSU, RPB1 and RPB2 [...] Read more.
The aim of this study is to carry out a taxonomic revision of the groups Calamistratum and Geraniodorum of the genus Inosperma sect. Inosperma in Europe. For this purpose, a multigenic phylogenetic analysis was carried out using the ITS, LSU, RPB1 and RPB2 markers, covering a total of 111 sequences, including those generated from the existing type-material collections. This analysis led to the recognition of nine clades or terminal groups for the European continent, correlating with nine morphological species. Three of them, I. calamistratum, I. neohirsutum sp. nov. and I. turietoense sp. nov., are distributed in humid and temperate forests, whereas I. geminum sp. nov., I. geraniodorum, I. gracilentum sp. nov., I. praetermissum comb. nov., I. subhirsutum and I. veliferum seem to be restricted to the colder altimontane, boreal and alpine climates. It is concluded that the study of morphological and ecological characteristics allows the recognition of species without the need for an often-subjective interpretation of organoleptic characteristics. Inocybe hirsuta is considered a synonym of Inosperma calamistratum, Inosperma praetermissum as a different species from I. calamistratum, and Inocybe geraniodora var. gracilenta f. salicis-herbaceae as a synonym of I. praetermissum. Four new species and one new combination are proposed. A key for the recognition of the European species is provided. Illustrations and photographs of macro- and micromorphological characters and SEM spores of all species are presented. Full article
(This article belongs to the Special Issue Taxonomy, Systematics and Evolution of Forestry Fungi, 2nd Edition)
Show Figures

Figure 1

15 pages, 2855 KiB  
Article
The Relationships between Biomass and Soil Respiration across Different Forest Management Practices
by Chen Hu, Jing-Pin Lei and Ji-Zhong Wan
Forests 2024, 15(4), 712; https://doi.org/10.3390/f15040712 - 17 Apr 2024
Cited by 1 | Viewed by 1595
Abstract
Soil respiration (Rs) is a widely monitored parameter in global forest management that results in activities that contribute to ecosystem functions. Rs can vary depending on different disturbance levels and ecosystem types as a result of changes in forest management practices. Understanding the [...] Read more.
Soil respiration (Rs) is a widely monitored parameter in global forest management that results in activities that contribute to ecosystem functions. Rs can vary depending on different disturbance levels and ecosystem types as a result of changes in forest management practices. Understanding the mechanisms through which different forest management practices affect Rs can provide a general reference for ecological management and restoration practices. However, the global drivers of Rs across different forest management practices have not been sufficiently studied in the literature. In this study, we investigated the changing trends in Rs based on the relationships evident between biomass and Rs across different forest management practices. We used simple linear models to explore the relationships between biomass (aboveground and belowground biomasses) and Rs at a global scale based on different types of forest management practices and biomes. We observed significant differences in the mean values of Rs among various forest management practices. Furthermore, significant positive relationships between forest biomass and Rs were evident globally. Soil temperature had a significant effect on Rs, but the influences of soil temperature and moisture on Rs changed with the variations in forest management practices. Biome type can regulate the relationships between forest biomass and Rs across different forest management practices. We observed that the relationships between forest biomass and Rs were the strongest for naturally regenerating forests, both with and without signs of management, in tropical and subtropical coniferous and temperate broadleaf and mixed forests. Forest plantations and agroforestry can favor the establishment of similar positive relationships in temperate forest biomes (i.e., temperate conifer forests and boreal forests/taiga). Our results show that aboveground and belowground biomasses can be applied as effective ecological indicators for monitoring Rs levels, depending on different forest management practices and biomes. In this study, we provide evidence for monitoring Rs levels under different forest management practices globally. Full article
(This article belongs to the Special Issue Implications for Soil Respiration in Forest Carbon Sequestration)
Show Figures

Figure 1

20 pages, 2094 KiB  
Article
The Distribution Characteristics of Vegetation in the Subrange of the Altai Mountains, Xinjiang
by Qiumei Cao, Yan Wei, Wenjun Li, Ying Feng and Ozodbek S. Abduraimov
Plants 2023, 12(22), 3915; https://doi.org/10.3390/plants12223915 - 20 Nov 2023
Cited by 11 | Viewed by 2060
Abstract
The Altai Mountains are an important center of biodiversity and are a major habitat for threatened and endemic species in Asia. Moreover, the Altai Mountains are a valuable site for the study of the evolution of central Asian vegetation. The Xinjiang Altai subrange [...] Read more.
The Altai Mountains are an important center of biodiversity and are a major habitat for threatened and endemic species in Asia. Moreover, the Altai Mountains are a valuable site for the study of the evolution of central Asian vegetation. The Xinjiang Altai subrange represents the largest part of the southern Altai Mountains and has many unique plant communities. After conducting a thorough literature review and field investigation, we utilized the Chinese vegetation categorization system to identify the dominant plant communities in the Xinjiang Altai subrange and report their composition and distribution characteristics. Our results show that (1) the natural plant communities present in the Xinjiang Altai subrange can be divided into eight vegetation types, eighteen vegetation subtypes, and 50 communities. Among these, two communities—Form. Calligonum rubicundum and Form. Seriphidium borotalense-Festuca valesiaca—are present only in the Xinjiang Altai subrange. (2) The Xinjiang Altai subrange is located at the junction of three major biomes containing unique vegetation types (coniferous forest, temperate broadleaf forest, and desert). Thus, the Xinjiang Altai subrange is distinct in its staggered transition from mountainous boreal taiga to temperate desert. This research provides textual data to contextualize the cultural heritage of the Xinjiang Altai subrange and also provides a scientific basis for the protection and sustainable management of natural resources found in the Xinjiang Altai. Full article
(This article belongs to the Special Issue Mapping Asia Plants)
Show Figures

Figure 1

26 pages, 16436 KiB  
Article
Reconstructing the Paleoenvironmental Evolution of Lake Kolon (Hungary) through Palaeoecological, Statistical and Historical Analyses
by Tamás Zsolt Vári, Elemér Pál-Molnár and Pál Sümegi
Diversity 2023, 15(10), 1095; https://doi.org/10.3390/d15101095 - 20 Oct 2023
Cited by 1 | Viewed by 1827
Abstract
The research utilizes an interdisciplinary approach, combining geological, ecological, and historical methods. It delves into the environmental evolution of Lake Kolon over a span of 17,700 years, shedding light on the intricate interplay between geological processes and ecological changes. The historical, statistical (PCA, [...] Read more.
The research utilizes an interdisciplinary approach, combining geological, ecological, and historical methods. It delves into the environmental evolution of Lake Kolon over a span of 17,700 years, shedding light on the intricate interplay between geological processes and ecological changes. The historical, statistical (PCA, DCA), and palaeoecological analyses centers on a core sequence situated in the heart of the lake, building upon previous research endeavors (pollen, malacological, macrobotanical and sedimentological analyses with radiocarbon dating). Forest fires occurred at the end of the Last Glacial Maximum (LGM); the boreal forest–steppe environment changed into temperate deciduous forest at the Pleistocene–Holocene boundary; human-induced environmental change into open parkland occurred; and from medieval times, communities used the land as pasture. This type of reconstruction is crucial for understanding how ecosystems respond to climate change over time, which has broader implications for modern-day conservation efforts and managing ecosystems in the face of ongoing climate change. Full article
(This article belongs to the Special Issue Diversity Hotspots)
Show Figures

Figure 1

19 pages, 14483 KiB  
Article
Local Topography Has Significant Impact on Dendroclimatic Response of Picea jezoensis and Determines Variation of Factors Limiting Its Radial Growth in the Southern Sikhote-Alin
by Olga Ukhvatkina, Alexander Omelko and Alexander Zhmerenetsky
Forests 2023, 14(10), 2050; https://doi.org/10.3390/f14102050 - 13 Oct 2023
Cited by 1 | Viewed by 1585
Abstract
Climate change significantly influences forest communities, even leading to their complete transformation. In the case of boreal and temperate forests, it is particularly important to understand how dominant tree species respond to climate changes, as they largely determine the structure of forest communities. [...] Read more.
Climate change significantly influences forest communities, even leading to their complete transformation. In the case of boreal and temperate forests, it is particularly important to understand how dominant tree species respond to climate changes, as they largely determine the structure of forest communities. In this study, we focus on the Jezo spruce (Picea jezoensis (Siebold & Zucc.) Carriere), which is widespread in Northeast Asia. We investigated the climate parameters affecting the radial growth of Jezo spruce and how their influence changes along environmental gradients. For the research, 500 tree cores were collected from 10 sites located at elevations ranging from 460 to 1060 m. We found a negative response of Jezo spruce radial growth to precipitation in July–August and SPEI in July of the current year, maximum temperatures in July–August and November of the previous year. On the other hand, we observed a positive response to the maximum temperatures in January of the current year. Furthermore, we established that the influence of these climatic parameters depends on local topography, with 74.3% of the variance in response values being explained by elevation, slope, and the Topographic Position Index. The results obtained demonstrate that the reaction of Jezo spruce radial growth to climate change will be complex, and the balance between negative and positive effects will depend significantly on local topography. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

Back to TopTop