Ecological Roles and Forest Management Implications of Small Terrestrial Mammals in Temperate and Boreal Forests—A Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Geographical Scope
2.2. Methodology
2.3. Limits of the Approach
3. What Are Small Terrestrial Mammals?
4. What Makes Small Terrestrial Mammals Special?
4.1. Small Size
4.2. Adaptability
4.3. Reproduction
5. Why Study Small Terrestrial Mammals?
5.1. Models
5.2. Bioindicators
6. Effects of Forests and Forestry on Small Terrestrial Mammals
- Forest-dependent species (e.g., Apodemus flavicollis, A. argenteus, Clethrionomys/Myodes spp.).
- Forest-tolerant species that can persist in forested habitats during at least some stages (e.g., Apodemus sylvaticus, A. agrarius, Arvicola spp., Microtus pinetorum, M. oeconomus, Peromyscus spp., Sorex spp.).
- Forest-avoiding species, often synanthropic rodents or species of steppe origin (e.g., Apodemus microps, Microtus arvalis, M. pennsylvanicus, Mus musculus, Rattus norvegicus, Rattus rattus).
6.1. Forest Area
6.2. Forest Stand Structure
6.3. Forest Stages
6.3.1. Disturbance—Gap
6.3.2. Regeneration
6.3.3. Establishment
6.3.4. Optimum (Masting)
6.3.5. Terminal and Decay
6.3.6. Summary of Forest Stages
6.4. Silviculture
6.4.1. Silvicultural Practices
- Speeding up forest regeneration (e.g., soil preparation, planting, sowing).
- Ensuring successful stand establishment (e.g., control of competing vegetation, application of repellents, or fencing to minimize browsing damage).
- Stand tending during growth (e.g., thinning).
- Harvest operations (e.g., size of harvested areas and the type and amount of retained wood and logging residues).
6.4.2. Decaying Wood
6.4.3. Effects on Diversity
6.4.4. Effects on Abundance
7. Effects of Small Terrestrial Mammals on Forests and Forestry
7.1. Soil
7.2. Vegetation and Fungi
7.3. Woody Plants
7.3.1. Seeds
7.3.2. Seedlings
7.3.3. Saplings
7.4. Invertebrates
7.5. Vertebrates and Humans
7.5.1. Food Source
7.5.2. Zoonoses
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pearce, J.; Venier, L. Small Mammals as Bioindicators of Sustainable Boreal Forest Management. For. Ecol. Manag. 2005, 208, 153–175. [Google Scholar] [CrossRef]
- Oettel, J.; Lapin, K. Linking Forest Management and Biodiversity Indicators to Strengthen Sustainable Forest Management in Europe. Ecol. Indic 2021, 122, 107275. [Google Scholar] [CrossRef]
- Carey, A.B.; Harrington, C.A. Small Mammals in Young Forests: Implications for Management for Sustainability. For. Ecol. Manag. 2001, 154, 289–309. [Google Scholar] [CrossRef]
- Ecke, F.; Löfgren, O.; Sörlin, D. Population Dynamics of Small Mammals in Relation to Forest Age and Structural Habitat Factors in Northern Sweden. J. Appl. Ecol. 2002, 39, 781–792. [Google Scholar] [CrossRef]
- Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995; ISBN 0521479800. [Google Scholar]
- Seliger, A.; Ammer, C.; Kreft, H.; Zerbe, S. Changes of Vegetation in Coniferous Monocultures in the Context of Conversion to Mixed Forests in 30 Years—Implications for Biodiversity Restoration. J. Environ. Manag. 2023, 343, 118199. [Google Scholar] [CrossRef]
- Keith, D.A.; Brummitt, N.A.; Essl, F.; Faber-Langendoen, D. T2.2 Deciduous Temperate Forests. In The IUCN Global Ecosystem Typology 2.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups; Keith, D.A., Ferrer-Paris, J.R., Nicholson, E., Kingsford, R.T., Eds.; IUCN: Gland, Switzerland, 2020; p. 45. ISBN 978-2-8317-2077-7. [Google Scholar]
- Keith, D.A.; Faber-Langendoen, D.; Kontula, T.; Franklin, J.; Brummitt, N.A. T2.1 Boreal and Temperate Montane Forests and Woodlands. In The IUCN Global Ecosystem Typology 2.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups; Keith, D.A., Ferrer-Paris, J.R., Nicholson, E., Kingsford, R.T., Eds.; IUCN: Gland, Switzerland, 2020; p. 44. ISBN 978-2-8317-2077-7. [Google Scholar]
- Begon, M.; Townsend, C.R.; Harper, J.L. Ecology: From Individuals to Ecosystems, 2nd.; Wiley-Blackwell: Oxford, UK, 2005; ISBN 978-1-405-11117-1. [Google Scholar]
- Kimmins, J.P. Forest Ecology: A Foundation for Sustainable Forest Management and Environment Ethics in Forestry, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2004. [Google Scholar]
- McCleery, R.; Monadjem, A.; Conner, L.M.; Austin, J.D.; Taylor, P.J. Methods for Ecological Research on Terrestrial Small Mammals; JHU Press: Baltimore, MD, USA, 2022; ISBN 1421442124. [Google Scholar]
- Stoddart, D.M. Ecology of Small Mammals; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-94-009-5772-5. [Google Scholar]
- Merritt, J.F. The Biology of Small Mammals; The Johns Hopkins University Press: Baltimore, MD, USA, 2010; ISBN 978-0-8018-7950-0. [Google Scholar]
- Wilson, D.E.; Lacher, T.E.; Mittermeier, R.A. Handbook of the Mammals of the World, Volume 6 and 7: Lagomorphs and Rodents I and II; Wilson, D.E., Lacher, T.E., Mittermeier, R.A., Eds.; Lynx: Cleveland, OH, USA, 2017. [Google Scholar]
- Butet, A.; Delettre, Y.R. Diet Differentiation between European Arvicolinae and Murinae Rodents. Acta Theriol. 2011, 56, 297–304. [Google Scholar] [CrossRef]
- Churchfield, S.; Rychlik, L. Diets and Coexistence in Neomys and Sorex Shrews in Bialowieza Forest, Eastern Poland. J. Zool. 2006, 269, 381–390. [Google Scholar] [CrossRef]
- Bromham, L.; Cardillo, M. Why Are Most Species Small? In Origins of Biodiversity: An Introduction to Macroevolution and Macroecology; Oxford University Press: Oxford, UK, 2019; ISBN 9780199608713. [Google Scholar]
- Jablonski, D. Body-Size Evolution in Cretaceous Molluscs and the Status of Cope’s Rule. Nature 1997, 385, 250–252. [Google Scholar] [CrossRef]
- Morgan Ernest, S.K.; Enquist, B.J.; Brown, J.H.; Charnov, E.L.; Gillooly, J.F.; Savage, V.M.; White, E.P.; Smith, F.A.; Hadly, E.A.; Haskell, J.P.; et al. Thermodynamic and Metabolic Effects on the Scaling of Production and Population Energy Use. Ecol. Lett. 2003, 6, 990–995. [Google Scholar] [CrossRef]
- Brown, J.H.; Maurer, B.A. Macroecology—The Division of Food and Space among Species on the Continents. Science 1979 1989, 243, 1145–1150. [Google Scholar] [CrossRef]
- Jenkins, D.G.; Brescacin, C.R.; Duxbury, C.V.; Elliott, J.A.; Evans, J.A.; Grablow, K.R.; Hillegass, M.; Lyon, B.N.; Metzger, G.A.; Olandese, M.L.; et al. Does Size Matter for Dispersal Distance? Glob. Ecol. Biogeogr. 2007, 16, 415–425. [Google Scholar] [CrossRef]
- Savage, V.M.; Gillooly, J.F.; Brown, J.H.; West, G.B.; Charnov, E.L. Effects of Body Size and Temperature on Population Growth. Am. Nat. 2004, 163, 429–441. [Google Scholar] [CrossRef]
- Kearney, M.R.; Domingos, T.; Nisbet, R. Dynamic Energy Budget Theory: An Efficient and General Theory for Ecology. Bioscience 2014, 65, 341. [Google Scholar] [CrossRef]
- Pineda-Munoz, S.; Alroy, J. Dietary Characterization of Terrestrial Mammals. Proc. R Soc. B Biol. Sci. 2014, 281, 1173. [Google Scholar] [CrossRef] [PubMed]
- Verde Arregoitia, L.D.; D’Elía, G. Classifying Rodent Diets for Comparative Research. Mamm. Rev. 2021, 51, 51–65. [Google Scholar] [CrossRef]
- Kozyra, K.; Zaj, T.M.; Stopka, P. Late Pleistocene Expansion of Small Murid Rodents across the Palearctic in Relation to the Past Environmental Changes. Genes 2021, 12, 642. [Google Scholar] [CrossRef]
- Batzli, G.O. Dynamics of Small Mammal Populations: A Review. In Wildlife 2001: Populations; McCullough, D.R., Barrett, R.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 831–850. [Google Scholar]
- Stenseth, N.C. Population Cycles in Voles and Lemmings: Density Dependence and Phase Dependence in a Stochastic World. Oikos 1999, 87, 427. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Long-Term Changes in Abundance and Composition of Forest-Floor Small Mammal Communities in a Landscape with Cumulative Clearcutting. Ecologies 2022, 3, 446–466. [Google Scholar] [CrossRef]
- Weldy, M.J.; Epps, C.W.; Lesmeister, D.B.; Manning, T.; Linnell, M.A.; Forsman, E.D. Abundance and Ecological Associations of Small Mammals. J. Wildl. Manag. 2019, 83, 902–915. [Google Scholar] [CrossRef]
- Zejda, J. Energy Flow through the Small Mammal Community of a Floodplain Forest. In Floodplain forest ecosystem I. Before Water Management Measures; Penka, M., Vyskot, M., Klimo, E., Vašíček, F., Eds.; Academia: Prague, Czech Republic, 1985; pp. 357–371. [Google Scholar]
- Shchipanov, N.A.; Kouptsov, A.V.; Kalinin, A.A.; Demidova, T.B.; Oleinichenko, V.Y.; Lyapina, M.G.; Aleksandrov, D.Y.; Raspovova, A.A.; Pavlova, S.V.; Tumasyan, P.A. Small Mammals at the Southeast of Tver Oblast. Brief Note 2. Diversity, Population Density and Biomass. Contemp. Probl. Ecol. 2012, 5, 92–96. [Google Scholar] [CrossRef]
- Clark, J.E.; Hellgren, E.C.; Parsons, J.L.; Jorgensen, E.E.; Engle, D.M.; Leslie, D.M. Nitrogen Outputs from Fecal and Urine Deposition of Small Mammals: Implications for Nitrogen Cycling. Oecologia 2005, 144, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Sobral, M.; Silvius, K.M.; Overman, H.; Oliveira, L.F.B.; Raab, T.K.; Fragoso, J.M.V. Mammal Diversity Influences the Carbon Cycle through Trophic Interactions in the Amazon. Nat. Ecol. Evol. 2017, 1, 1670–1676. [Google Scholar] [CrossRef] [PubMed]
- Lacher, T.E.; Davidson, A.D.; Fleming, T.H.; Gómez-Ruiz, E.P.; McCracken, G.F.; Owen-Smith, N.; Peres, C.A.; Vander Wall, S.B. The Functional Roles of Mammals in Ecosystems. J. Mammal. 2019, 100, 942–964. [Google Scholar] [CrossRef]
- Sieg, C.H. Small Mammals: Pests or Vital Components of the Ecosystem. Great Plains Wildlife Damage Control Workshop Proceedings; US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1987; Volume 97, pp. 88–92.
- Kollberg, I.; Bylund, H.; Huitu, O.; Björkman, C. Regulation of Forest Defoliating Insects through Small Mammal Predation: Reconsidering the Mechanisms. Oecologia 2014, 176, 975–983. [Google Scholar] [CrossRef]
- Torre, I.; Balčiauskas, L. The Abundance and Dynamics of Small Mammals and Their Predators: An Editorial. Life 2024, 14, 41. [Google Scholar] [CrossRef]
- Wilske, B.; Eccard, J.A.; Zistl-Schlingmann, M.; Hohmann, M.; Methler, A.; Herde, A.; Liesenjohann, T.; Dannenmann, M.; Butterbach-Bahl, K.; Breuer, L. Effects of Short Term Bioturbation by Common Voles on Biogeochemical Soil Variables. PLoS ONE 2015, 10, e0126011. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Sommer, M. Relationships between Land Snail Assemblage Patterns and Soil Properties in Temperate-Humid Forest Ecosystems. J. Biogeogr. 2004, 31, 531–545. [Google Scholar] [CrossRef]
- Leishman, M.R.; Wright, I.J.; Moles, A.T.; Westoby, M. The Evolutionary Ecology of Seed Size; CAB International: Wallingford, UK, 2000; pp. 31–58. [Google Scholar]
- Borgmann-Winter, B.W.; Stephens, R.B.; Anthony, M.A.; Frey, S.D.; D’Amato, A.W.; Rowe, R.J. Wind and Small Mammals Are Complementary Fungal Dispersers. Ecology 2023, 104, e4039. [Google Scholar] [CrossRef]
- Stephens, R.B.; Rowe, R.J. The Underappreciated Role of Rodent Generalists in Fungal Spore Dispersal Networks. Ecology 2020, 101, e02972. [Google Scholar] [CrossRef]
- Balčiauskas, L.; Benedek, A.M. Advances in Diversity and Conservation of Terrestrial Small Mammals. Diversity 2023, 15, 884. [Google Scholar] [CrossRef]
- Pradel, J.; Bouilloud, M.; Loiseau, A.; Piry, S.; Galan, M.; Artige, E.; Castel, G.; Ferrero, J.; Gallet, R.; Thuel, G.; et al. Small Terrestrial Mammals (Rodentia and Soricomorpha) along a Gradient of Forest Anthropisation (Reserves, Managed Forests, Urban Parks) in France. Biodivers. Data J. 2022, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, S.; Shang, L.; Zhang, W.; Yan, Y.; Huang, Z.; Hu, Y.; Liang, J.; Ji, S.; Zhao, Z.; et al. Small Mammals as a Bioindicator of Mercury in a Biodiversity Hotspot—The Hengduan Mountains, China. Ecol. Indic. 2023, 154, 110892. [Google Scholar] [CrossRef]
- Pacifici, M.; Santini, L.; Di Marco, M.; Baisero, D.; Francucci, L.; Marasini, G.G.; Visconti, P.; Rondinini, C. Generation Length for Mammals. Nat. Conserv. 2013, 5, 87–94. [Google Scholar] [CrossRef]
- Torre, I.; Arrizabalaga, A.; Flaquer, C. Three Methods for Assessing Richness and Composition of Small Mammal Communities. J. Mammal. 2004, 85, 524–530. [Google Scholar] [CrossRef]
- Bryda, E.C. The Mighty Mouse: The Impact of Rodents on Advances in Biomedical Research. Mo. Med. 2013, 110, 207–211. [Google Scholar]
- Rowe, R.J.; Terry, R.C. Small Mammal Responses to Environmental Change: Integrating Past and Present Dynamics. J. Mammal. 2014, 95, 1157–1174. [Google Scholar] [CrossRef]
- Torre, I.; Gracia-Quintas, L.; Arrizabalaga, A.; Baucells, J.; Díaz, M. Are Recent Changes in the Terrestrial Small Mammal Communities Related to Land Use Change? A Test Using Pellet Analyses. Ecol. Res. 2015, 30, 813–819. [Google Scholar] [CrossRef]
- Kelt, D.A.; Heske, E.J.; Lambin, X.; Oli, M.K.; Orrock, J.L.; Ozgul, A.; Pauli, J.N.; Prugh, L.R.; Sollmann, R.; Sommer, S. Advances in Population Ecology and Species Interactions in Mammals. J. Mammal. 2019, 100, 965–1007. [Google Scholar] [CrossRef]
- Kamler, J.; Homolka, M.; Barančeková, M.; Krojerová-Prokešová, J. Reduction of Herbivore Density as a Tool for Reduction of Herbivore Browsing on Palatable Tree Species. Eur. J. For. Res. 2010, 129, 155–162. [Google Scholar] [CrossRef]
- Krojerová-Prokešová, J.; Homolka, M.; Heroldová, M.; Barančeková, M.; Baňař, P.; Kamler, J.; Modlinger, R.; Purchart, L.; Zejda, J.; Suchomel, J. Patterns of Vole Gnawing on Saplings in Managed Clearings in Central European Forests. For. Ecol. Manag. 2018, 408, 137–147. [Google Scholar] [CrossRef]
- Heroldová, M.; Šipoš, J.; Suchomel, J.; Zejda, J. Agriculture, Ecosystems and Environment Influence of Crop Type on Common Vole Abundance in Central European Agroecosystems. Agric. Ecosyst. Environ. 2021, 315, 107443. [Google Scholar] [CrossRef]
- Suchomel, J.; Šipoš, J.; Čepelka, L.; Heroldová, M. The Impact of Microtus arvalis and Lepus europaeus on Apple Trees by Trunk Bark Gnawing. Plant Prot. Sci. 2019, 55, 142–147. [Google Scholar] [CrossRef]
- Vávrová, M.; Zlámalová Gargošová, H.; Šucman, E.; Večerek, V.; Kořinek, P.; Zukal, J.; Zejda, J.; Sebestiánová, N.; Kubištová, I. Game Animals and Small Terrestrial Mammals—Suitable Bioindicators for the Pollution Assessment in Agrarian Ecosystems. Fresenius Environ. Bull. 2003, 12, 165–172. [Google Scholar]
- Demir, F.T.; Yavuz, M. Heavy Metal Accumulation and Genotoxic Effects in Levant Vole (Microtus guentheri) Collected from Contaminated Areas Due to Mining Activities. Environ. Pollut. 2019, 256, 113378. [Google Scholar] [CrossRef]
- Víchová, B.; Stanko, M.; Miterpáková, M.; Hurníková, Z.; Syrota, Y.; Schmer-Jakšová, P.; Komorov, P.; Vargová, L.; Veronika, B.; Zubriková, S.; et al. Current Research in Parasitology & Vector-Borne Diseases Small Mammals as Hosts of Vector-Borne Pathogens in the High Tatra Mountains Region in Slovakia, Central Europe. Curr. Res. Parasitol. Vector-Borne Dis. 2025, 7, 6. [Google Scholar] [CrossRef]
- White, R.J.; Razgour, O. Emerging Zoonotic Diseases Originating in Mammals: A Systematic Review of Effects of Anthropogenic Land-Use Change. Mamm. Rev. 2020, 50, 336–352. [Google Scholar] [CrossRef] [PubMed]
- Senf, C.; Seidl, R. Mapping the Forest Disturbance Regimes of Europe. Nat. Sustain. 2021, 4, 63–70. [Google Scholar] [CrossRef]
- Hilmers, T.; Friess, N.; Bässler, C.; Heurich, M.; Brandl, R.; Pretzsch, H.; Seidl, R.; Müller, J. Biodiversity along Temperate Forest Succession. J. Appl. Ecol. 2018, 55, 2756–2766. [Google Scholar] [CrossRef]
- Frelich, L.E.; Jõgiste, K.; Stanturf, J.A.; Parro, K.; Baders, E. Natural Disturbances and Forest Management: Interacting Patterns on the Landscape. In Ecosystem Services from Forest Landscapes: Broadscale Considerations; Perera, A.H., Peterson, U., Pastur, G.M., Iverson, L.R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 221–248. ISBN 978-3-319-74515-2. [Google Scholar]
- Andrén, H. Effects of Habitat Fragmentation on Birds and Mammals in Landscapes with Different Proportions of Suitable Habitat: A Review. Oikos 1994, 71, 355–366. [Google Scholar] [CrossRef]
- Fonseca, G.A.B.; Robinson, J.G. Forest Size and Structure: Competitive and Predatory Effects on Small Mammal Communities. Biol. Conserv. 1990, 53, 265–294. [Google Scholar] [CrossRef]
- Suchomel, J.; Purchart, L.; Čepelka, L. Structure and Diversity of Small-Mammal Communities of Lowland Forests in the Rural Central European Landscape. Eur. J. For. Res. 2012, 131, 1933–1941. [Google Scholar] [CrossRef]
- Carey, A.B.; Johnson, M.L. Small Mammals in Managed, Naturally Young, and Old-Growth Forests. Ecol. Appl. 1995, 5, 336–352. [Google Scholar] [CrossRef]
- Ancillotto, L.; Sozio, G.; Mortelliti, A. Acorns Were Good until Tannins Were Found: Factors Affecting Seed-Selection in the Hazel Dormouse (Muscardinus avellanarius). Mamm. Biol. 2015, 80, 135–140. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B. Stand Structure and the Abundance and Diversity of Plants and Small Mammals in Natural and Intensively Managed Forests. For. Ecol. Manag. 2009, 258, 127–141. [Google Scholar] [CrossRef]
- Dueser, R.D.; Shugart, H.H., Jr. Microhabitats in a Forest-Floor Small Mammal Fauna. Ecology 1978, 59, 89–98. [Google Scholar] [CrossRef]
- Stevens, R.D.; Rowe, R.J.; Badgley, C. Gradients of Mammalian Biodiversity through Space and Time. J. Mammal. 2019, 100, 1069–1086. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity Is a Vital Element of Landscape Structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef]
- Franklin, I.A. Evolutionary Change in Small Population. In Conservation Biology, an Evolutionary-Ecological Perspective; Soul, M.E., Wilcox, B.A., Eds.; Sinauer Associates Inc: Sunderland, MA, USA, 1980. [Google Scholar]
- Traill, L.W.; Bradshaw, C.J.A.; Brook, B.W. Minimum Viable Population Size: A Meta-Analysis of 30 Years of Published Estimates. Biol. Conserv. 2007, 139, 159–166. [Google Scholar] [CrossRef]
- Clarke, S.H.; Lawrence, E.R.; Matte, M.; Gallagher, B.K.; Salisbury, S.J.; Michaelides, S.N.; Koumrouyan, R.; Ruzzante, D.E.; Grant, J.W.A.; Fraser, D.J. Global Assessment of Effective Population Sizes: Consistent Taxonomic Differences in Meeting the 50/500 Rule. Mol. Ecol. 2024, 33, 17353. [Google Scholar] [CrossRef]
- Santini, L.; Isaac, N.J.B.; Francesco, G. TetraDENSITY: A Database of Population Density Estimates in Terrestrial Vertebrates. Glob. Ecol. Biogeogr. 2018, 27, 787–791. [Google Scholar] [CrossRef]
- Santini, L.; Benítez-López, A.; Dormann, C.F.; Huijbregts, M.A.J. Population Density Estimates for Terrestrial Mammal Species. Glob. Ecol. Biogeogr. 2022, 31, 978–994. [Google Scholar] [CrossRef]
- Niedziałlkowska, M.; Koczak, J.; Czarnomska, S.; Jędrzejewska, B. Species Diversity and Abundance of Small Mammals in Relation to Forest Productivity in Northeast Poland. Ecoscience 2010, 17, 109–119. [Google Scholar] [CrossRef]
- Mortelliti, A.; Amori, G.; Boitani, L. The Role of Habitat Quality in Fragmented Landscapes: A Conceptual Overview and Prospectus for Future Research. Oecologia 2010, 163, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Barbier, S.; Gosselin, F.; Balandier, P. Influence of Tree Species on Understory Vegetation Diversity and Mechanisms Involved-A Critical Review for Temperate and Boreal Forests. For. Ecol. Manag. 2008, 254, 1–15. [Google Scholar] [CrossRef]
- Fernow, B.E. A Brief History of Forestry: In Europe, the United States and Other Countries; DigiCat: Jaipur, India, 2022. [Google Scholar]
- Peterken, G.F. Natural Woodland: Ecology and Conservation in Northern Temperate Regions; Cambridge University Press: Cambridge, UK, 1996; ISBN 0521367921. [Google Scholar]
- Bauhus, J.; van der Meer, P.; Kanninen, M. Ecosystem Goods and Services from Plantation Forests; Routledge: London, UK, 2010; ISBN 1136532285. [Google Scholar]
- Zenner, E.K.; Peck, J.L.E.; Hobi, M.L.; Commarmot, B. Validation of a Classification Protocol: Meeting the Prospect Requirement and Ensuring Distinctiveness When Assigning Forest Development Phases. Appl. Veg. Sci. 2016, 19, 541–552. [Google Scholar] [CrossRef]
- Luisa, B.G. The Ecology of Natural Disturbance and Patch Dynamics; Academic Press: Cambridge, MA, USA, 2012; ISBN 0323138934. [Google Scholar]
- Buma, B. Disturbance Interactions: Characterization, Prediction, and the Potential for Cascading Effects. Ecosphere 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Fisher, J.T.; Wilkinson, L. The Response of Mammals to Forest Fire and Timber Harvest in the North American Boreal Forest. Mamm. Rev. 2005, 35, 51–81. [Google Scholar] [CrossRef]
- Klenner, W.; Sullivan, T.P. Partial and Clear-Cut Harvesting of High-Elevation Spruce-Fir Forests: Implications for Small Mammal Communities. Can. J. For. Res. 2003, 33, 2283–2296. [Google Scholar] [CrossRef]
- Savola, S.; Henttonen, H.; Lindén, H. Vole Population Dynamics During the Succession of a Commercial Forest in Northern Finland. Ann. Zool. Fenn. 2013, 50, 79–88. [Google Scholar] [CrossRef]
- Suchomel, J.; Purchart, L.; Čepelka, L.; Heroldová, M. Structure and Diversity of Small Mammal Communities of Mountain Forests in Western Carpathians. Eur. J. For. Res. 2014, 133, 481–490. [Google Scholar] [CrossRef]
- Suchomel, J.; Purchart, L.; Čepelka, L.; Heroldová, M. Factors Influencing Vole Bark Damage Intensity in Managed Mountain-Forest Plantations of Central Europe. Eur. J. For. Res. 2016, 135, 331–342. [Google Scholar] [CrossRef]
- Benedek, A.M.; Sîrbu, I.; Lazăr, A. Responses of Small Mammals to Habitat Characteristics in Southern Carpathian Forests. Sci. Rep. 2021, 11, 12031. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.F.; Spies, T.A.; Van Pelt, R.; Carey, A.B.; Thornburgh, D.A.; Berg, D.R.; Lindenmayer, D.B.; Harmon, M.E.; Keeton, W.S.; Shaw, D.C.; et al. Disturbances and Structural Development of Natural Forest Ecosystems with Silvicultural Implications, Using Douglas-Fir Forests as an Example. For. Ecol. Manag. 2002, 155, 399–423. [Google Scholar] [CrossRef]
- Oliver, C.D.; Larson, B.C. Forest Stand Dynamics; Wiley New York: New York, NY, USA, 1996; ISBN 9780471138334. [Google Scholar]
- Sullivan, T.P.; Sullivan, D.S. Infleunce of Variable Retention Harvests on Forest Ecosystems. II. Diversity and Population Dynamis of Small Mammals. J. Appl. Ecol. 2001, 38, 1234–1252. [Google Scholar] [CrossRef]
- Jasiulionis, M.; Čepukiene, A.; Balčiauskas, L. Small Mammal Community Changes during Succession of the Planted Forest. Acta Zool. Litu. 2011, 21, 293–300. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B. Stand Structure and Small Mammals in Intensively Managed Forests: Scale, Time, and Testing Extremes. For. Ecol. Manag. 2013, 310, 1071–1087. [Google Scholar] [CrossRef]
- Zejda, J. Winter Breeding in the Bank Vole, Clethrionomys glareolus Schreb. Zool. Listy 1962, 11, 309–322. [Google Scholar]
- Hansson, L. Small Rodent Food, Feeding and Population Dynamics: A Comparison between Granivorous and Herbivorous Species in Scandinavia. Oikos 1971, 22, 183–198. [Google Scholar] [CrossRef]
- Čepelka, L.; Šipoš, J.; Suchomel, J.; Heroldová, M. Can We Detect Response Differences among Dominant Rodent Species to Climate and Acorn Crop in a Central European Forest Environment? Eur. J. For. Res. 2020, 139, 539–548. [Google Scholar] [CrossRef]
- Saitoh, T.; Osawa, J.; Takanishi, T.; Hayakashi, S.; Ohmori, M.; Morita, T.; Uemura, S.; Vik, J.O.; Stenseth, N.C.; Maekawa, K. Effects of Acorn Masting on Population Dynamics of Three Forest-Dwelling Rodent Species in Hokkaido, Japan. Popul. Ecol. 2007, 49, 249–256. [Google Scholar] [CrossRef]
- Selås, V.; Framstad, E.; Spidsø, T.K. Effects of Seed Masting of Bilberry, Oak and Spruce on Sympatric Populations of Bank Vole (Clethrionomys glareolus) and Wood Mouse (Apodemus sylvaticus) in Southern Norway. J. Zool. 2002, 258, 459–468. [Google Scholar] [CrossRef]
- Jolly, S.R.; Gilbert, J.H.; Woodford, J.E.; Eklund, D.; Pauli, J.N. Seasonal Dynamics of Small Mammal Populations: Resource Availability and Cold Exposure. Can. J. Zool. 2024, 102, 907–921. [Google Scholar] [CrossRef]
- Šipoš, J.; Suchomel, J.; Purchart, L.; Kindlmann, P. Main Determinants of Rodent Population Fluctuations in Managed Central European Temperate Lowland Forests. Mamm. Res. 2017, 62, 283–295. [Google Scholar] [CrossRef]
- Tian, A.; Halik, Ü.; Fu, W.; Sawirdin, S.; Cheng, S.; Lei, J. Research History of Forest Gap as Small-Scale Disturbances in Forest Ecosystems. Forests 2024, 15, 21. [Google Scholar] [CrossRef]
- Battles, J.J.; Fahey, T.J. Gap dynamics following forest decline: A case study of red spruce forests. Ecol. Appl. 2000, 10, 760–774. [Google Scholar] [CrossRef]
- Ecke, F.; Löfgren, O.; Hörnfeldt, B.; Eklund, U.; Ericsson, P.; Sörlin, D. Abundance and Diversity of Small Mammals in Relation to Structural Habitat Factors. Ecol. Bull. 2001, 49, 165–171. [Google Scholar]
- Zegadło, E.; Zegadło, P.; Jancewicz, E. Impact of Coarse Woody Debris on Habitat Use of Two Sympatric Rodent Species in the Temperate Białowieza. Forestry 2024, 98, 380–393. [Google Scholar] [CrossRef]
- Fauteux, D.; Imbeau, L.; Drapeau, P.; Mazerolle, M.J. Small Mammal Responses to Coarse Woody Debris Distribution at Different Spatial Scales in Managed and Unmanaged Boreal Forests. For. Ecol. Manag. 2012, 266, 194–205. [Google Scholar] [CrossRef]
- Pardini, R.; De Souza, S.M.; Braga-Neto, R.; Metzger, J.P. The Role of Forest Structure, Fragment Size and Corridors in Maintaining Small Mammal Abundance and Diversity in an Atlantic Forest Landscape. Biol. Conserv. 2005, 124, 253–266. [Google Scholar] [CrossRef]
- Saito, M.; Koike, F. Distribution of Wild Mammal Assemblages along an Urban-Rural-Forest Landscape Gradient in Warm-Temperate East Asia. PLoS ONE 2013, 8, 0065464. [Google Scholar] [CrossRef]
- Gasperini, S.; Mortelliti, A.; Bartolommei, P.; Bonacchi, A.; Manzo, E.; Cozzolino, R. Effects of Forest Management on Density and Survival in Three Forest Rodent Species. For. Ecol. Manag. 2016, 382, 151–160. [Google Scholar] [CrossRef]
- Čepelka, L.; Purchart, L.; Suchomel, J. Small Mammal Community of Forest Stands in Drahanská Vrchovina Upland (Czech Republic). Beskydy 2015, 8, 91–100. [Google Scholar] [CrossRef]
- Zwolak, R. A Meta-Analysis of the Effects of Wildfire, Clearcutting, and Partial Harvest on the Abundance of North American Small Mammals. For. Ecol. Manag. 2009, 258, 539–545. [Google Scholar] [CrossRef]
- Bremer, L.L.; Farley, K.A. Does Plantation Forestry Restore Biodiversity or Create Green Deserts? A Synthesis of the Effects of Land-Use Transitions on Plant Species Richness. Biodivers. Conserv. 2010, 19, 3893–3915. [Google Scholar] [CrossRef]
- He, X.; Wen, Z.; Zhang, D.; Yang, Q.; Yin, X.; Chen, X.; Ran, J. Low Impact of Forest Conversion on Biodiversity: Evidence from Small Mammals in Contrasting Forests of Mt. Liangshan. Ecosphere 2023, 14, 4570. [Google Scholar] [CrossRef]
- Čepelka, L.; Suchomel, J.; Purchart, L.; Heroldová, M. Small Mammal Diversity in the Beskydy Mts. Forest Ecosystems Subject to Different Forms of Management. Besdydy 2011, 4, 101–108. [Google Scholar]
- Bogdziewicz, M.; Zwolak, R. Responses of Small Mammals to Clear-Cutting in Temperate and Boreal Forests of Europe: A Meta-Analysis and Review. Eur. J. For. Res. 2014, 133, 1–11. [Google Scholar] [CrossRef]
- Suchomel, J.; Šipoš, J.; Košulič, O. Management Intensity and Forest Successional Stages as Significant Determinants of Small Mammal Communities in a Lowland Floodplain Forest. Forests 2020, 11, 1320. [Google Scholar] [CrossRef]
- Daniel Edge, W.; Wolff, J.O.; Carey, R.L. Density-Dependent Responses of Gray-Tailed Voles to Mowing. J. Wildl. Manag. 1995, 59, 245–251. [Google Scholar] [CrossRef]
- Borowski, Z.; Bartoń, K.; Staniszewski, J. Is Mowing Effective in Reducing Rodent Damage to Forest Plantations? Pest. Manag. Sci. 2023, 80, 5519–5526. [Google Scholar] [CrossRef]
- Santillo, D.J.; Leslie, D.M.; Brown, P.W. Responses of Small Mammals and Habitat to Glyphosate Application on Clearcuts. J. Wildl. Manag. 1989, 53, 164–172. [Google Scholar] [CrossRef]
- Lautenschlager, R.A. Response of Wildlife to Forest Herbicide Applications in Northern Coniferous Ecosystems. Can. J. For. Res. 1993, 23, 2286–2299. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lautenschlager, R.S.; Wagner, R.G. Long-Term Influence of Glyphosate Herbicide on Demography and Diversity of Small Mammal Communities in Coastal Coniferous Forest. Northwest Sci. 1997, 71, 6–17. [Google Scholar]
- Sullivan, T.P.; Sullivan, D.S. Vegetation Management and Ecosystem Disturbance: Impact of Glyphosate Herbicide on Plant and Animal Diversity in Terrestrial Systems. Environ. Rev. 2003, 11, 37–59. [Google Scholar] [CrossRef]
- Littlewood, N.A.; Rocha, R.; Smith, R.K.; Martin, P.A.; Lockhart, S.L.; Schoonover, R.F.; Wilman, E.; Bladon, A.J.; Sainsbury, K.A.; Pimm, S.; et al. Terrestrial Mammal Conservation: Global Evidence for the Effects of Interventions for Terrestrial Mammals Excluding Bats and Primates; Open Book Publishers: Cambridge, UK, 2020; ISBN 9781800640856. [Google Scholar]
- Homyack, J.A.; Harrison, D.J.; Krohn, W.B. Long-Term Effects of Precommercial Thinning on Small Mammals in Northern Maine. For. Ecol. Manag. 2005, 205, 43–57. [Google Scholar] [CrossRef]
- Wilson, S.M.; Carey, A.B. Legacy Retention Versus Thinning: Influences on Small Mammals. Northwest Sci. 2000, 74, 131. [Google Scholar]
- Converse, S.J.; Block, W.M.; White, G.C. Small Mammal Population and Habitat Responses to Forest Thinning and Prescribed Fire. For. Ecol. Manag. 2006, 228, 263–273. [Google Scholar] [CrossRef]
- Martini, M.; Patelli, S.; Cassola, F.M.; Iaria, J.; Livornese, M.; Prandelli, S.; Santi, F.; Rocchini, D.; Muraro, M.; Angelini, P.; et al. A Case Study on the Impact of Coppicing on Small Mammal Diversity: First Evidence from the High Agri Valley in the Basilicata Region, Italy. J. Nat. Conserv. 2024, 82, 126732. [Google Scholar] [CrossRef]
- Gurnell, J.; Hicks, M.; Whitbread, S. The Effects of Coppice Management on Small Mammal Populations. In Ecology and Management of Coppice Woodlands; Buckley, G.P., Ed.; Springer: Dordrecht, The Netherlands, 1992; p. 11. [Google Scholar]
- Campbell, S.P.; Frair, J.L.; Gibbs, J.P.; Volk, T.A. Use of Short-Rotation Coppice Willow Crops by Birds and Small Mammals in Central New York. Biomass Bioenergy 2014, 47, 342–353. [Google Scholar] [CrossRef]
- Trebra, C.; Lavender, D.P.; Sullivan, T.P. Relations of Small Mammal Populations to Even-Aged Shelterwood Systems in Sub-Boreal Spruce Forest. J. Wildl. Manag. 1998, 62, 630–642. [Google Scholar] [CrossRef]
- Lešo, P.; Lešová, A.; Kropil, R.; Kaňuch, P. Response of the Dominant Rodent Species to Close-to-Nature Logging Practices in a Temperate Mixed Forest. Ann. For. Res. 2016, 59, 620. [Google Scholar] [CrossRef]
- von Trebra, C.D. Relationship of Small Mammal Populations to Uniform Even-Aged Shelterwood Systems; The University of Brithish Columbia: Vancouver, BC, Canada, 1994. [Google Scholar]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F. Small Mammals and Stand Structure in Young Pine, Seed-Tree, and Old-Growth Forest, Southwest Canada. Ecol. Appl. 2000, 10, 1367–1383. [Google Scholar] [CrossRef]
- Medin, D.E.; Booth, G.D. Responses of Birds and Small Mammals to Single-Tree Selection Logging in Idaho; US DA Forest Service: Ogden, UT, USA, 1989.
- Diffendorfer, J.E.; Gaines, M.S.; Holt, R.D. Habitat Fragmentation and Movements of Three Small Mammals (Sigmodon, Microtus, and Peromyscus). Ecology 1995, 76, 827–839. [Google Scholar] [CrossRef]
- Escobar, M.A.H.; Estades, C.F. Differential Responses of Small Mammals Immediately after Clearcutting in Forest Plantations: Patterns and Mechanisms. For. Ecol. Manag. 2021, 480, 118699. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Seibold, S.; Bässler, C.; Brandl, R.; Gossner, M.M.; Thorn, S.; Ulyshen, M.D.; Müller, J. Experimental Studies of Dead-Wood Biodiversity—A Review Identifying Global Gaps in Knowledge. Biol. Conserv. 2015, 191, 139–149. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Woody Debris Structures on Large Clearcut Openings: Oases for Small Mustelids and Prey Species? For. Ecol. Manag. 2023, 543, 121117. [Google Scholar] [CrossRef]
- Udali, A.; Chung, W.; Talbot, B.; Grigolato, S. Managing Harvesting Residues: A Systematic Review of Management Treatments around the World. For. Int. J. For. Res. 2024, 98, 117–135. [Google Scholar] [CrossRef]
- Maguire, C.C. Dead Wood and the Richness of Small Terrestrial Vertebrates in Southwestern Oregon 1; Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture: Albany, CA, USA, 2002.
- Bunnell, F.L.; Houde, I. Down Wood and Biodiversity—Implications to Forest Practices. Environ. Rev. 2010, 18, 397–421. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S. Long-Term Functionality of Woody Debris Structures for Forest-Floor Small Mammals on Clearcuts. For. Ecol. Manag. 2019, 451, 117535. [Google Scholar] [CrossRef]
- Bowman, J.C.; Sleep, D.; Forbes, G.J.; Edwards, M. The Association of Small Mammals with Coarse Woody Debris at Log and Stand Scales. For. Ecol. Manag. 2000, 129, 119–124. [Google Scholar] [CrossRef]
- Kirkland, G.L. Patterns of Initial Small Mammal Community Change after Clearcutting of Temperate North American Forests. Oikos 1990, 59, 313–320. [Google Scholar] [CrossRef]
- Krojerová-Prokešová, J.; Homolka, M.; Barančeková, M.; Heroldová, M.; Baňař, P.; Kamler, J.; Purchart, L.; Suchomel, J.; Zejda, J. Structure of Small Mammal Communities on Clearings in Managed Central European Forests. For. Ecol. Manag. 2016, 367, 41–51. [Google Scholar] [CrossRef]
- Lešo, P.; Lešová, A.; Kropil, R. Influence of Forest Fragmentation on the Distribution of Small Terrestrial Mammals in Fir-Beech Commercial Forest. J. For. Sci. 2014, 60, 324–329. [Google Scholar] [CrossRef]
- Dokulilová, M.; Krojerová-Prokešová, J.; Heroldová, M.; Čepelka, L.; Suchomel, J. Population Dynamics of the Common Shrew (Sorex araneus) in Central European Forest Clearings. Eur. J. Wildl. Res. 2023, 69, 54. [Google Scholar] [CrossRef]
- Suchomel, J.; Urban, J. Small Mammals of a Forest Reserve and Adjacent Stands of the Kelečská Pahorkatina Upland (Czech Republic) and Their Effect on Forest Dynamics. J. For. Sci. 2011, 57, 50–58. [Google Scholar] [CrossRef]
- Kauer, L.; Imholt, C.; Jacob, J.; Kuehn, R. Assessing the Effects of Land-Use Intensity on Small Mammal Community Composition and Genetic Variation in Myodes glareolus and Microtus arvalis across Grassland and Forest Habitats. Landsc. Ecol. 2025, 40, 1. [Google Scholar] [CrossRef]
- Krebs, C.J. Population Fluctuations in Rodents; University of Chicago Press: Chicago, IL, USA, 2019; ISBN 022601049X. [Google Scholar]
- Čepukienė, A.; Jasiulionis, M. Small Mammal Community Changes during Forest Succession (Pakruojis District, North Lithuania). Zool. Ecol. 2012, 22, 144–149. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Jones, C.G.; Wolff, J.O. Of Mice and Mast. Bioscience 1996, 46, 323–330. [Google Scholar] [CrossRef]
- Schnurr, J.L.; Ostfeld, R.S.; Canham, C.D.; Schnurr, J.L. Direct and Indirect Effects of Masting on Rodent Populations and Tree Seed Survival. Oikos 2002, 96, 402–410. [Google Scholar] [CrossRef]
- Heroldová, M.; Bryja, J.; Jánová, E.; Suchomel, J.; Homolka, M. Rodent Damage to Natural and Replanted Mountain Forest Regeneration. Sci. World J. 2012, 2012, 872536. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, L.; Jancewicz, E. Prey Size, Prey Nutrition, and Food Handling by Shrews of Different Body Sizes. Behav. Ecol. 2002, 13, 216–223. [Google Scholar] [CrossRef]
- Andersen, D.C.; Folk, M.L. Blarina brevicauda and Peromyscus leucopus Reduce Overwinter Survivorship of Acorn Weevils in an Indiana Hardwood Forest. J. Mammal. 1993, 74, 656–664. [Google Scholar] [CrossRef]
- Lukyanova, L.E.; Ukhova, N.L.; Ukhova, O.V.; Gorodilova, Y.V. Common Shrew (Sorex araneus, Eulipotyphla) Population and the Food Supply of Its Habitats in Ecologically Contrasting Environments. Russ. J. Ecol. 2021, 52, 316–328. [Google Scholar] [CrossRef]
- Obrtel, R.; Holišová, V. Trophic Niches of Apodemus flavicollis and Clethrionomys glareolus in Lowland Forest. Acta Sci. Nat. Brno 1974, 8, 1–37. [Google Scholar]
- Golley, F.B.; Petrusewicz, K.; Ryszkowski, L. Small Mammals Their Productivity and Population Dynamics; Internatio; Cambridge University Press: Cambridge, UK, 1975; ISBN 9780521116060. [Google Scholar]
- Zejda, J. A Community of Small Terrestrial Mammals. In; Penka, M., Vyskot, M., Klimo, E., Vašíček, F., Eds.; Academia: Prague, Czech Republic, 1991; pp. 505–521. [Google Scholar]
- Roy, A.; Gough, L.; Boelman, N.T.; Rowe, R.J.; Griffin, K.L.; McLaren, J.R. Small but Mighty: Impacts of Rodent-Herbivore Structures on Carbon and Nutrient Cycling in Arctic Tundra. Funct. Ecol. 2022, 36, 2331–2343. [Google Scholar] [CrossRef]
- Dickman, C.R. Rodent-Ecosystem Relationships: A Review. In Ecologically-Based Management of Rodent Pests. ACIAR Monograph; Australian Centre for International Agricultural Research: Canberra, Australia, 1999. [Google Scholar]
- Louw, M.A.; Haussmann, N.S.; le Roux, P.C. Testing for Consistency in the Impacts of a Burrowing Ecosystem Engineer on Soil and Vegetation Characteristics across Biomes. Sci. Rep. 2019, 9, 19355. [Google Scholar] [CrossRef] [PubMed]
- Beca, G.; Valentine, L.E.; Galetti, M.; Hobbs, R.J. Ecosystem Roles and Conservation Status of Bioturbator Mammals. Mamm. Rev. 2022, 52, 192–207. [Google Scholar] [CrossRef]
- Moorhead, L.C.; Souza, L.; Habeck, C.W.; Lindroth, R.L.; Classen, A.T. Small Mammal Activity Alters Plant Community Composition and Microbial Activity in an Old-Field Ecosystem. Ecosphere 2017, 8, 1777. [Google Scholar] [CrossRef]
- Augustine, D.J.; Smith, J.E.; Davidson, A.D.; Stapp, P. Burrowing Rodents. In Rangeland Wildlife Ecology and Conservationchur; McNew, L.B., Dahlgren, D.K., Beck, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 505–548. ISBN 978-3-031-34037-6. [Google Scholar]
- Zhang, Y.; Zhang, Z.; Liu, J. Burrowing Rodents as Ecosystem Engineers: The Ecology and Management of Plateau Zokors Myospalax Fontanierii in Alpine Meadow Ecosystems on the Tibetan Plateau. Mamm. Rev. 2003, 33, 284–294. [Google Scholar] [CrossRef]
- Robbins, C.T. Wildlife Feeding and Nutrition; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0323154522. [Google Scholar]
- Langer, P. The Digestive Tract and Life History of Small Mammals. Mamm. Rev. 2002, 32, 107–131. [Google Scholar] [CrossRef]
- Chapman, O.S.; McLean, B.S. Gastrointestinal Morphology Is an Effective Functional Dietary Proxy That Predicts Small Mammal Community Structure. Ecology 2024, 105, e4454. [Google Scholar] [CrossRef] [PubMed]
- Heroldová, M. Diet of Four Rodent Species from Robinia pseudoacacia Stands in South Moravia. Acta Theriol. 1994, 39, 333–337. [Google Scholar] [CrossRef]
- Čepelka, L.; Heroldová, M.; Jánová, E.; Suchomel, J. The Dynamics of Nitrogenous Substances in Rodent Diet in a Forest Environment. Mammalia 2014, 78, 327–333. [Google Scholar] [CrossRef]
- Elliott, T.F.; Truong, C.; Jackson, S.M.; Zuniga, C.L.; Trappe, J.M.; Vernes, K. Mammalian Mycophagy: A Global Review of Ecosystem Interactions between Mammals and Fungi. Fungal Syst. Evol. 2022, 9, 99–159. [Google Scholar] [CrossRef]
- Johnson, C.N. Interactions between Mammals and Ectomycorrhizal Fungi. Trends Ecol. Evol. 1996, 11, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Obrtel, R.; Zejda, J.; Holišová, V. Impact of Small Rodent Predation on a Overcrowded Population of Diprion pini during Winter. Folia Zool. Brno 1978, 27, 97–110. [Google Scholar]
- Cushman, J.H.; Saunders, L.E.; Refsland, T.K. Long-Term and Interactive Effects of Different Mammalian Consumers on Growth, Survival, and Recruitment of Dominant Tree Species. Ecol. Evol. 2020, 10, 8801–8814. [Google Scholar] [CrossRef]
- Hulme, P.E. Post-Dispersal Seed Predation: Consequences for Plant Demography and Evolution. Perspect. Plant Ecol. Evol. Syst. 1998, 1, 32–46. [Google Scholar] [CrossRef]
- Schickmann, S.; Urban, A.; Kräutler, K.; Nopp-Mayr, U.; Hackländer, K. The Interrelationship of Mycophagous Small Mammals and Ectomycorrhizal Fungi in Primeval, Disturbed and Managed Central European Mountainous Forests. Oecologia 2012, 170, 395–409. [Google Scholar] [CrossRef]
- Vašutová, M.; Mleczko, P.; López-García, A.; Maček, I.; Boros, G.; Ševčík, J.; Fujii, S.; Hackenberger, D.; Tuf, I.H.; Hornung, E.; et al. Taxi Drivers: The Role of Animals in Transporting Mycorrhizal Fungi. Mycorrhiza 2019, 29, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, J.; Hulme, P.E.; Oksanen, L.; Suominen, O. Effects of Mammalian Herbivores on Revegetation of Disturbed Areas in the Forest-Tundra Ecotone in Northern Fennoscandia. Landsc. Ecol. 2005, 20, 351–359. [Google Scholar] [CrossRef]
- Olofsson, J.; Hulme, P.E.; Oksanen, L.; Suominen, O. Importance of Large and Small Mammalian Herbivores for the Plant Community Structure in the Forest Tundra Ecotone. Oikos 2004, 106, 324–334. [Google Scholar] [CrossRef]
- Brühl, C.A.; Guckenmus, B.; Ebeling, M.; Barfknecht, R. Exposure Reduction of Seed Treatments through Dehusking Behaviour of the Wood Mouse (Apodemus sylvaticus). Environ. Sci. Pollut. Res. 2011, 18, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, A.; Schlyter, F.; Olsson, G.; Witzell, J.; Löf, M. Direct Seeding for Restoration of Mixed Oak Forests: Influence of Distance to Forest Edge, Predator-Derived Repellent and Acorn Size on Seed Removal by Granivorous Rodents. For. Ecol. Manag. 2020, 477, 118484. [Google Scholar] [CrossRef]
- Tanaka, H. Seed Demography of Three Co-Occurring Acer Species in a Japanese Temperate Deciduous Forest. J. Veg. Sci. 1995, 6, 887–896. [Google Scholar] [CrossRef]
- Heroldová, M.; Suchomel, J.; Purchart, L.; Čepelka, L. Beech-Mast Crop Evaluation in Knehyne Forest Complex (Beskydy Mts. Czech Republic) as a Food Supply for Granivorous Rodents. Beskydy 2013, 6, 27–32. [Google Scholar] [CrossRef]
- Luo, Y.; Cheng, J.; Yan, X.; Yang, H.; Shen, Y.; Ge, J.; Zhang, M.; Zhang, J.; Xu, Z. Density-Dependent Seed Predation of Quercus wutaishanica by Rodents in Response to Different Seed States. Animals 2023, 13, 1732. [Google Scholar] [CrossRef]
- Skrzydlowski, T. The Impact of Rodents on Natural Regeneration of Tree and Shrubs in Forest Communities. Sylwan 2001, 12, 93–102. [Google Scholar]
- Chandler, J.L.; Van Deelen, T.R.; Nibbelink, N.P.; Orrock, J.L. Large-Scale Patterns of Seed Removal by Small Mammals Differ between Areas of Low- versus High-Wolf Occupancy. Ecol. Evol. 2020, 10, 7145–7156. [Google Scholar] [CrossRef]
- Jinks, R.L.; Parratt, M.; Morgan, G. Preference of Granivorous Rodents for Seeds of 12 Temperate Tree and Shrub Species Used in Direct Sowing. For. Ecol. Manag. 2012, 278, 71–79. [Google Scholar] [CrossRef]
- Boone, S.R.; Mortelliti, A. Small Mammal Tree Seed Selection in Mixed Forests of the Eastern United States. For. Ecol. Manag. 2019, 449, 117487. [Google Scholar] [CrossRef]
- Wang, B.; Chen, J. Seed Size, More than Nutrient or Tannin Content, Affects Seed Caching Behavior of a Common Genus of Old World Rodents. Ecology 2009, 90, 3023–3032. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ives, A.R. Tree-to-Tree Variation in Seed Size and Its Consequences for Seed Dispersal versus Predation by Rodents. Oecologia 2017, 183, 751–762. [Google Scholar] [CrossRef]
- Li, D.; Jin, Z.; Yang, C.; Yang, C.; Zhang, M. Scatter-Hoarding the Seeds of Sympatric Forest Trees by Apodemus peninsulae in a Temperate Forest in Northeast China. Pol. J. Ecol. 2019, 66, 382–394. [Google Scholar] [CrossRef]
- Zwolak, R.; Clement, D.; Sih, A.; Schreiber, S.J. Mast Seeding Promotes Evolution of Scatter-Hoarding. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 0375. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, X.; Teng, Y.; Wang, Z.; Zhang, Z. Physical Seed Damage, Not Rodent’s Saliva, Accelerates Seed Germination of Trees in a Subtropical Forest. Ecol. Evol. 2024, 14, 11500. [Google Scholar] [CrossRef]
- Perea, R.; López, D.; San Miguel, A.; Gil, L. Incorporating Insect Infestation into Rodent Seed Dispersal: Better If the Larva Is Still Inside. Oecologia 2012, 170, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, X.; Yi, X. Effects of Seed Traits on the Cache Size of a Scatter-Hoarding Rodent, Leopoldamys edwardsi. Behav. Ecol. Sociobiol. 2023, 77, 105. [Google Scholar] [CrossRef]
- Wang, B.; Chen, J.; Corlett, R.T. Factors Influencing Repeated Seed Movements by Scatter-Hoarding Rodents in an Alpine Forest. Sci. Rep. 2014, 4, srep04786. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Manson, R.H.; Canham, C.D. Effects of Rodents on Survival of Tree Seeds and Seedlings Invading Old Fields. Ecology 1997, 78, 1531–1542. [Google Scholar] [CrossRef]
- Lichti, N.I.; Steele, M.A.; Swihart, R.K. Seed Fate and Decision-Making Processes in Scatter-Hoarding Rodents. Biol. Rev. 2017, 92, 474–504. [Google Scholar] [CrossRef] [PubMed]
- Jansen, P.A.; Bongers, F.; Hemerik, L. Seed Mass and Mast Seeding Enhance Dispersal by a Neotropical Scatter-Hoarding Rodent. Ecol. Monogr. 2004, 74, 569–589. [Google Scholar] [CrossRef]
- Vander Wall, S.B. Food Hoarding in Animals; University of Chicago Press: Chicago, IL, USA, 1990; ISBN 0226847357. [Google Scholar]
- Brundrett, M.C. Coevolution of Roots and Mycorrhizas of Land Plants. New Phytol. 2002, 154, 275–304. [Google Scholar] [CrossRef]
- Gill, R.M.A. A Review of Damage by Mammals in North Temperate Forests. 2. Small Mammals. Forestry 1992, 65, 281–308. [Google Scholar] [CrossRef]
- Kamler, J.; Turek, K.; Homolka, M.; Baňař, P.; Barančeková, M.; Heroldová, M.; Krojerová, J.; Suchomel, J.; Purchart, L. Inventory of Rodent Damage to Forests. J. For. Sci. 2011, 57, 219–225. [Google Scholar] [CrossRef]
- Jacob, J.; Tkadlec, E. Rodent Outbreaks in Europe: Dynamics and Damage. In Rodent Outbreaks—Ecology and Impacts; Belmain, G.R., Brown, S.R., Hardy, P.R., Eds.; Singleton; IRRI: Los Banos, Philippines, 2010; pp. 207–223. [Google Scholar]
- Manson, R.H.; Ostfeld, R.S.; Canham, C.D. Long-Term Effects of Rodent Herbivores on Tree Invasio Dynamics along Forest-Filed Edges. Ecology 2001, 82, 3320–3329. [Google Scholar] [CrossRef]
- Huitu, O.; Kiljunen, N.; Korpimäki, E.; Koskela, E.; Mappes, T.; Pietiäinen, H.; Pöysä, H.; Henttonen, H. Density-Dependent Vole Damage in Silviculture and Associated Economic Losses at a Nationwide Scale. For. Ecol. Manag. 2009, 258, 1219–1224. [Google Scholar] [CrossRef]
- Baxter, R.; Hansson, L. Bark Consumption by Small Rodents in the Northern and Southern Hemispheres. Mamm. Rev. 2001, 31, 47–59. [Google Scholar] [CrossRef]
- Borowski, Z. Damage Caused by Rodents in Polish Forests∗. Int. J. Pest. Manag. 2007, 53, 303–310. [Google Scholar] [CrossRef]
- Imholt, C.; Reil, D.; Plašil, P.; Rödiger, K.; Jacob, J. Long-Term Population Patterns of Rodents and Associated Damage in German Forestry. Pest. Manag. Sci. 2016, 73, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, T.P.; Sullivan, D.S. Vole-Feeding Damage and Forest Plantation Protection: Large-Scale Application of Diversionary Food to Reduce Damage to Newly Planted Trees. Crop Prot. 2008, 27, 775–784. [Google Scholar] [CrossRef]
- Ida, H.; Nakagoshi, N. Gnawing Damage by Rodents to the Seedlings of Fagus crenata and Quercus mongolica Var. Grosseserrata in a Temperate Sasa Grassland-Deciduous Forest Series in Southwestern Japan. Ecol. Res. 1996, 11, 97–103. [Google Scholar]
- Sato, T. Effects of Rodent Gnawing on the Survival of Current-Year Seedlings of Quercus crispula. Ecol. Res. 2000, 15, 335–344. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Mühlenberg, M. Insect and Small Mammal Herbivores Limit Tree Establishment in Northern Mongolian Steppe. Plant Ecol. 2008, 195, 143–156. [Google Scholar] [CrossRef]
- Hansson, L.; Zejda, J. Plant Damage by Bank Voles (Clethrionomys glareolus [Schreber]) and Related Species in Europe. EPPO Bull. 1977, 7, 223–242. [Google Scholar] [CrossRef]
- Pigott, C.D. Selective Damage to Tree-Seedlings by Bank Voles (Clethrionomys glareolus). Oecologia 1985, 67, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Runde, D.E.; Nolte, D.L.; Arjo, W.M.; Pitt, W.C. Efficacy of Individual Barriers to Prevent Damage to Douglas-Fir Seedlings by Captive Mountain Beavers. West. J. Appl. For. 2008, 23, 99–105. [Google Scholar] [CrossRef]
- Heroldová, M.; Jánová, E.; Suchomel, J.; Purchart, L.; Homolka, M. Bark Chemical Analysis Explains Selective Bark Damage by Rodents. Beskydy 2009, 2, 137–140. [Google Scholar]
- Huitu, O.; Rousi, M.; Henttonen, H. Integration of Vole Management in Boreal Silvicultural Practices. Pest. Manag. Sci. 2013, 69, 355–361. [Google Scholar] [CrossRef]
- Rousi, M. Resistence Breeding against Voles in Birch: Possibilities for Increasing Resistance by Provenance Transfer. EPPO Bull. 1988, 18, 257–263. [Google Scholar] [CrossRef]
- Danell, K.; Elmqvist, T.; Ericson, L.; Salomonson, A. Sexuality in Willows and Preference by Bark-Eating Voles: Defence or Not? Oikos 1985, 44, 82–90. [Google Scholar] [CrossRef]
- Gilbert, S.; Martel, J.; Klemola, T.; Norrdahl, K. Increasing Vole Numbers Cause More Lethal Damage to Saplings in Tree Monocultures than in Mixed Stands. Basic. Appl. Ecol. 2013, 14, 12–19. [Google Scholar] [CrossRef]
- Batzli, G.O. The Role of Nutrition in Population Cycles of Microtine Rodents. Acta Zool. Fenn. 1985, 173, 13–17. [Google Scholar]
- Kamler, J.; Turek, K.; Homolka, M.; Bukor, E. Rodent-Caused Damage to Forest Trees from the Viewpoint of Forestry Practice. J. For. Sci. 2010, 56, 265–270. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Sullivan, D.S.; Lindgren, P.M.F.; Ransome, D.B.; Bull, J.G.; Ristea, C. Bioenergy or Biodiversity? Woody Debris Structures and Maintenance of Red-Backed Voles on Clearcuts. Biomass Bioenergy 2011, 35, 4390–4398. [Google Scholar] [CrossRef]
- Andreassen, H.P.; Sundell, J.; Ecke, F.; Halle, S.; Haapakoski, M.; Henttonen, H.; Huitu, O.; Jacob, J.; Johnsen, K.; Koskela, E.; et al. Population Cycles and Outbreaks of Small Rodents: Ten Essential Questions We Still Need to Solve. Oecologia 2021, 195, 601–622. [Google Scholar] [CrossRef] [PubMed]
- Hansson, L. Bark Consumption of Voles in Relation to Snow Cover, Population Density and Grazing Impact. Ecography 1986, 4, 312–316. [Google Scholar] [CrossRef]
- Suchomel, J.; Heroldová, M.; Šipoš, J.; Čepelka, L.; Dokulilová, M. Bark Gnawing of Forest Trees by Voles during the Growing Season. Eur. J. For. Res. 2021, 140, 1431–1440. [Google Scholar] [CrossRef]
- Čepelka, L.; Dokulilová, M.; Šipoš, J.; Suchomel, J.; Heroldová, M. Damage Caused by Rodents to Forest Trees Plantations; Comparison of Vegetation and Non-Vegetation Season. in prep.
- Churchfield, S. The Natural History of Shrews; Christopher Helm: London, UK, 1990. [Google Scholar]
- Kolibáč, J. The Diets of Sorex araneus and Sorex minutus in Selected Habitats in the Czech Republic. Acta Mus. Morav. Sci. Nat. 1996, 80, 95–161. [Google Scholar]
- Churchfield, S.; Rychlik, L.; Taylor, J.R.E. Food Resources and Foraging Habits of the Common Shrew, Sorex araneus: Does Winter Food Shortage Explain Dehnel’s Phenomenon? Oikos 2012, 121, 1593–1602. [Google Scholar] [CrossRef]
- Abt, K.F.; Bock, W.F. Seasonal Variations of Diet Composition in Farmland Field Mice Apodemus Spp. and Bank Voles Clethrionomys glareolus. Acta Theriol. 1998, 43, 379–389. [Google Scholar] [CrossRef]
- Han, B.A.; Schmidt, J.P.; Bowden, S.E.; Drake, J.M.; Levin, S.A.; Designed, J.M.D. Rodent Reservoirs of Future Zoonotic Diseases. Dryad 2015, 112, 7039–7044. [Google Scholar] [CrossRef] [PubMed]
- Salkeld, D.J.; Stapp, P.; Tripp, D.W.; Gage, K.L.; Lowell, J.; Webb, C.T.; Brinkerhoff, R.J.; Antolin, M.F. Ecological Traits Driving the Outbreaks and Emergence of Zoonotic Pathogens. Bioscience 2016, 66, 118–129. [Google Scholar] [CrossRef]
- Han, B.A.; Kramer, A.M.; Drake, J.M. Global Patterns of Zoonotic Disease in Mammals. Trends Parasitol. 2016, 32, 565–577. [Google Scholar] [CrossRef]
- Jeske, K.; Tomaso, H.; Imholt, C.; Schulz, J.; Beerli, O.; Suchomel, J.; Heroldová, M.; Jacob, J.; Staubach, C.; Ulrich, R.G. Detection of Francisella tularensis in Three Vole Species in Central Europe. Transbound. Emerg. Dis. 2019, 66, 1029–1032. [Google Scholar] [CrossRef]
- Obiegala, A.; Jeske, K.; Augustin, M.; Król, N.; Fischer, S.; Mertens-Scholz, K.; Imholt, C.; Suchomel, J.; Heroldová, M.; Tomaso, H.; et al. Highly Prevalent Bartonellae and Other Vector-Borne Pathogens in Small Mammal Species from the Czech Republic and Germany. Parasit. Vectors 2019, 12, 332. [Google Scholar] [CrossRef]
- Mrochen, D.M.; Schulz, D.; Fischer, S.; Jeske, K.; El Gohary, H.; Reil, D.; Imholt, C.; Trübe, P.; Suchomel, J.; Tricaud, E.; et al. Wild Rodents and Shrews Are Natural Hosts of Staphylococcus aureus. Int. J. Med. Microbiol. 2018, 308, 590–597. [Google Scholar] [CrossRef]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; Zowalaty, M.E.E.; Rahman, A.M.M.T.; Ashour, H.M. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Keesing, F. Pulsed Resources and Community Dynamics of Consumers in Terrestrial Ecosystems. Trends Ecol. Evol. 2000, 15, 232–237. [Google Scholar] [CrossRef]
- Tkadlec, E.; Václavík, T.; Široký, P. Rodent Host Abundance and Climate Variability as Predictors of Tickborne Disease Risk 1 Year in Advance. Emerg. Infect. Dis. 2019, 25, 1738–1741. [Google Scholar] [CrossRef] [PubMed]
- Bogdziewicz, M.; Szymkowiak, J. Oak Acorn Crop and Google Search Volume Predict Lyme Disease Risk in Temperate Europe. Basic. Appl. Ecol. 2016, 17, 300–307. [Google Scholar] [CrossRef]
- Krawczyk, A.I.; Van Duijvendijk, G.L.A.; Swart, A.; Heylen, D.; Jaarsma, R.I.; Jacobs, F.H.H.; Fonville, M.; Sprong, H.; Takken, W. Effect of Rodent Density on Tick and Tick-Borne Pathogen Populations: Consequences for Infectious Disease Risk. Parasit. Vectors 2020, 13, 34. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čepelka, L.; Dokulilová, M. Ecological Roles and Forest Management Implications of Small Terrestrial Mammals in Temperate and Boreal Forests—A Review. Forests 2025, 16, 994. https://doi.org/10.3390/f16060994
Čepelka L, Dokulilová M. Ecological Roles and Forest Management Implications of Small Terrestrial Mammals in Temperate and Boreal Forests—A Review. Forests. 2025; 16(6):994. https://doi.org/10.3390/f16060994
Chicago/Turabian StyleČepelka, Ladislav, and Martina Dokulilová. 2025. "Ecological Roles and Forest Management Implications of Small Terrestrial Mammals in Temperate and Boreal Forests—A Review" Forests 16, no. 6: 994. https://doi.org/10.3390/f16060994
APA StyleČepelka, L., & Dokulilová, M. (2025). Ecological Roles and Forest Management Implications of Small Terrestrial Mammals in Temperate and Boreal Forests—A Review. Forests, 16(6), 994. https://doi.org/10.3390/f16060994