Influence of Climate Change on Carbon Sequestration in Pine Forests of Central Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Hypothesis
2.2. Study Area
2.3. Basic Dendrometric Data
2.4. Determination of Current Carbon Sequestration
2.5. Basic Climatic Data
2.6. Horizon Year, Climate Change Scenarios, and Regionalised Scenarios
2.7. Statistical Analysis of Regionalised Climate Scenarios
2.8. Climatic Parameters in the Horizon Year
2.9. Calculation of Growth and Sequestration Variations
Pmonth x < PEmonth x → AEmonth x = Pmonth x + Rmonth x−1
2.10. Results per Species and Regional Extrapolation
3. Results
3.1. Statistical Analysis of Regionalised Climate Scenarios
3.2. Variation in NPP, Growth and Carbon Sequestration
3.3. Results per Species
3.4. Regional Extrapolation
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Eyring, V.; Gillett, N.P.; Achuta, K.M.; Barimalala, R.; Barreiro, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; et al. Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 423–552. [Google Scholar] [CrossRef]
- Lee, J.Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 553–672. [Google Scholar] [CrossRef]
- Enríquez-de-Salamanca, Á. Effects of Climate Change on Forest Regeneration in Central Spain. Atmosphere 2022, 13, 1143. [Google Scholar] [CrossRef]
- Matsumoto, R.; Kayo, C.; Kita, S.; Nakamura, K.; Lauk, C.; Funada, R. Estimation of carbon stocks in wood products for private building companies. Sci. Rep. 2022, 12, 18112. [Google Scholar] [CrossRef]
- Keenan, T.F.; Luo, X.; Stocker, B.D.; De Kauwe, M.G.; Medlyn, B.E.; Prentice, I.C.; Smith, N.G.; Terrer, C.; Wang, H.; Zhang, Y.; et al. A constraint on historic growth in global photosynthesis due to rising CO2. Nat. Clim. Chang. 2023, 13, 1376–1381. [Google Scholar] [CrossRef]
- Prieto, P.; Peñuelas, J.; Llusià, J.; Asensio, D.; Estiarte, M. Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland. Acta Physiol. Plant. 2009, 31, 729–739. [Google Scholar] [CrossRef]
- Martín-Benito, D.; Cherubini, P.; del Río, M.; Cañellas, I. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 2008, 22, 363–373. [Google Scholar] [CrossRef]
- McMahon, S.M.; Parker, G.G.; Miller, D.R. Evidence for a recent increase in forest growth. Proc. Natl. Acad. Sci. USA 2010, 107, 3611–3615. [Google Scholar] [CrossRef] [PubMed]
- Martin-Benito, D.; Kint, V.; del Río, M.; Muys, B.; Cañellas, I. Growth responses of West-Mediterranean Pinus nigra to climate change are modulated by competition and productivity: Past trends and future perspectives. For. Ecol. Manag. 2011, 262, 1030–1040. [Google Scholar] [CrossRef]
- Lebourgeois, F.; Mérian, P.; Courdier, F.; Ladier, J.; Dreyfus, P. Instability of climate signal in tree-ring width in Mediterranean mountains: A multi-species analysis. Trees 2012, 26, 715–729. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Posch, M.; Pirinen, P. Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE 2014, 9, e111340. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Schütze, G.; Uhl, E.; Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 2014, 5, 4967. [Google Scholar] [CrossRef]
- Candel-Perez, D.; Linares, J.C.; Viñegla, B.; Lucas-Borja, M.E. Assessing climate-growth relationships under contrasting stands of co-occurring Iberian pines along an altitudinal gradient. For. Ecol. Manag. 2012, 274, 48–57. [Google Scholar] [CrossRef]
- Moreno-Gutierrez, C.; Battipaglia, G.; Cherubini, P.; Saurer, M.; Nicolás, E.; Contreras, S.; Querejeta, J.I. Stand structure modulates the long-term vulnerability of Pinus halepensis to climatic drought in a semiarid Mediterranean ecosystem. Plant Cell Environ. 2012, 35, 1026–1039. [Google Scholar] [CrossRef]
- Altieri, S.; Niccoli, F.; Kabala, J.P.; Liyaqat, I.; Battipaglia, G. Influence of drought and minimum temperature on tree growth and water use efficiency of Mediterranean species. Dendrochronologia 2024, 83, 126162. [Google Scholar] [CrossRef]
- Coomes, D.A.; Allen, R.B. Effects of size, competition and altitude on tree growth. J. Ecol. 2007, 95, 1084–1097. [Google Scholar] [CrossRef]
- Gelabert, P.J.; Rodrigues, M.; Coll, L.; Vega-Garcia, C.; Ameztegui, A. Maximum tree height in European Mountains decreases above a climate-related elevation threshold. Commun. Earth Environ. 2024, 5, 84. [Google Scholar] [CrossRef]
- Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Glob. Chang. Biol. 2010, 12, 862–882. [Google Scholar] [CrossRef]
- Dymond, C.C.; Beukema, S.; Nitschke, C.R.; Coates, K.D.; Scheller, R.M. Carbon sequestration in managed temperate coniferous forests under climate change. Biogeosciences 2016, 13, 1933–1947. [Google Scholar] [CrossRef]
- Medlyn, B.E.; Duursma, R.A.; Zeppel, M.J.B. Forest productivity under climate change: A checklist for evaluating model studies. Wires Clim. Chang. 2011, 2, 332–355. [Google Scholar] [CrossRef]
- Ollinger, S.V.; Goodale, C.L.; Hayhoe, K.; Jenkins, J.P. Potential effects of climate change and rising CO2 on ecosystem processes in northeastern U.S. forests. Mitig. Adapt. Strat. Glob. Chang. 2008, 13, 467–485. [Google Scholar] [CrossRef]
- Chiang, J.M.; Iverson, L.R.; Prasad, A.M.; Brown, K.J. Effects of climate change and shifts in forest composition on forest net primary production. J. Integr. Plant. Biol. 2008, 50, 1426–1439. [Google Scholar] [CrossRef]
- Chertov, O.; Bhatti, J.S.; Komarov, A.; Mikhailov, A.; Bykhovets, S. Influence of climate change, fire and harvest on the carbon dynamics of black spruce in central canada. For. Ecol. Manag. 2009, 257, 941–950. [Google Scholar] [CrossRef]
- Girardin, M.P.; Raulier, F.; Bernier, P.Y.; Tardif, J.C. Response of tree growth to a changing climate in boreal central Canada: A comparison of empirical, process-based, and hybrid modelling approaches. Ecol. Model. 2008, 213, 209–228. [Google Scholar] [CrossRef]
- Yao, Y.T.; Piao, S.L.; Wang, T. Future biomass carbon sequestration capacity of Chinese forests. Sci. Bull. 2018, 63, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhang, Y.; Peng, M.; Jin, Y.; Song, Q. Effects of Climate Change on the Carbon Sequestration Potential of Forest Vegetation in Yunnan Province, Southwest China. Forests 2022, 13, 306. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Pussinen, A.; Karjalainen, T.; Erhard, M.; Kramer, K. Stemwood volume increment changes in European forests due to climate change—A simulation study with the EFISCEN model. Glob. Chang. Biol. 2002, 8, 304–316. [Google Scholar] [CrossRef]
- Kellomäki, S.; Peltola, H.; Nuutinen, T.; Korhonen, K.T.; Strandman, H. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Phil. Trans. R. Soc. B Biol. Sci. 2008, 363, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Loustau, D.; Bosc, A.; Colin, A.; Ogee, J.; Davi, H.; Francois, C.; Dufrene, E.; Deque, M.; Cloppet, E.; Arrouays, D.; et al. Modeling climate change effects on the potential production of French plains forests at the sub-regional level. Tree Physiol. 2005, 25, 813–823. [Google Scholar] [CrossRef]
- Milne, R.; van Oijen, M. A comparison of two modelling studies of environmental effects on forest carbon stocks across Europe. Ann. For. Sci. 2005, 62, 911–923. [Google Scholar] [CrossRef]
- Río, M.; Barbeito, I.; Bravo-Oviedo, A.; Calama, R.; Cañellas, I.; Herrero, C.; Montero, G.; Moreno-Fernández, D.; Ruiz-Peinado, R.; Bravo, F. Mediterranean pine forests: Management effects on carbon stocks. In Managing Forest Ecosystems: The Challenge of Climate Change; Bravo, F., LeMay, V., Jandl, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 301–327. [Google Scholar] [CrossRef]
- Brichta, J.; Šimůnek, V.; Bílek, L.; Vacek, Z.; Gallo, J.; Drozdowski, S.; Bravo-Fernández, J.A.; Mason, B.; Roig Gomez, S.; Hájek, V.; et al. Effects of climate change on Scots pine (Pinus sylvestris L.) growth across europe: Decrease of tree-ring fluctuation and amplification of climate stress. Forests 2024, 15, 91. [Google Scholar] [CrossRef]
- Andreu, L.; Gutiérrez, E.; Macias, M.; Ribas, M.; Bosch, O.; Camarero, J.J. Climate increases regional tree-growth variability in Iberian pine forests. Glob. Chang. Biol. 2007, 13, 804–815. [Google Scholar] [CrossRef]
- Río, M.; Rodríguez-Alonso, J.; Bravo-Oviedo, A.; Ruiz-Peinado, R.; Cañellas, I.; Gutiérrez, E. Aleppo pine vulnerability to climate stress is independent of site productivity of forest stands in southeastern Spain. Trees 2014, 28, 1209–1224. [Google Scholar] [CrossRef]
- Díaz-Martínez, P.; Ruiz-Benito, P.; Madrigal-González, J.; Gazol, A.; Andivia, E. Positive effects of warming do not compensate growth reduction due to increased aridity in Mediterranean mixed forests. Ecosphere 2023, 14, e4380. [Google Scholar] [CrossRef]
- Martín-Benito, D.; Río, M.; Cañellas, I. Black pine (Pinus nigra Arn.) growth divergence along a latitudinal gradient in Western Mediterranean mountains. Ann. For. Sci. 2010, 67, 401. [Google Scholar] [CrossRef]
- MMA. Segundo Inventario Forestal Nacional 1986–1996: España; Ministerio de Medio Ambiente: Madrid, Spain, 1998. [Google Scholar]
- Montero, G.; Ruiz-Peinado, R.; Muñoz, M. Producción de Biomasa y Fijación de CO2 por los Bosques Españoles; INIA: Madrid, Spain, 2005. [Google Scholar]
- Li, X.; Yi, M.J.; Son, Y.; Park, P.S.; Lee, K.H.; Son, Y.M.; Kim, R.H.; Jeong, M.J. Biomass Expansion Factors of Natural Japanese Red Pine (Pinus densiflora) Forests in Korea. J. Plant Biol. 2010, 53, 381–386. [Google Scholar] [CrossRef]
- Enríquez-de-Salamanca, Á. Climate change mitigation in forestry: Paying for carbon stock or for sequestration? Atmosphere 2022, 13, 1611. [Google Scholar] [CrossRef]
- AdapteCCa. Plataforma Sobre Adaptación al Cambio Climático en España. Available online: http://adaptecca.es/ (accessed on 2 June 2024).
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Prather, M.; Flato, G.; Friedlingstein, P.; Jones, C.; Lamarque, J.F.; Liao, H.; Rasch, P. Annex II: Climate System Scenario Tables. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1395–1445. [Google Scholar]
- Jin, S.; Zhang, E.; Guo, H.; Hu, C.; Zhang, Y.; Yan, D. Comprehensive evaluation of carbon sequestration potential of landscape tree species and its influencing factors analysis: Implications for urban green space management. Carbon Balance Manag. 2023, 18, 17. [Google Scholar] [CrossRef]
- Rosenzweig, M.L. Net primary productivity of terrestrial communities: Prediction from climatological data. Am. Nat. 1968, 102, 67–74. [Google Scholar] [CrossRef]
- Thornthwaite, C.W.; Mather, J.R. Instructions and tables for computing potential evapotranspiration and the water balance. Publ. Climatol. 1957, 10, 185–311. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Liso, M.; Ascaso, A. Introducción al estudio de la evapotranspiración y clasificación climática de la cuenca del Ebro. Anales Est. Exp. Aula Dei 1969, 10, 5–505. [Google Scholar]
- Aramburu, M.P.; Escribano, R. Guía para la Elaboración de Estudios del Medio Físico, 4th ed.; Fundación Conde del Valle de Salazar-Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2014. [Google Scholar]
- MAAMA. Cuarto Inventario Forestal Nacional. Comunidad de Madrid; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2013. [Google Scholar]
- Campelo, F.; Nabais, C.; Freitas, H.; Gutiérrez, E. Climatic significance of tree-ring width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann. For. Sci. 2007, 64, 229–238. [Google Scholar] [CrossRef]
- Sabaté, S.; Gracia, C.A.; Sánchez, A. Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For. Ecol. Manag. 2002, 162, 23–37. [Google Scholar] [CrossRef]
- Bogino, S.; Fernández, M.J.; Bravo, F. Climate effect on radial growth of Pinus sylvestris at its southern and western distribution limits. Silva Fenn. 2009, 43, 183. [Google Scholar] [CrossRef]
- Sanchez-Salguero, R.; Navarro-Cerrillo, R.M.; Camarero, J.J.; Fernández-Cancio, A. Selective drought-induced decline of pine species in southeastern Spain. Clim. Chang. 2012, 113, 767–785. [Google Scholar] [CrossRef]
- Sarris, D.; Christodoulakis, D.; Körner, S. Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob. Chang. Biol. 2007, 13, 1187–1200. [Google Scholar] [CrossRef]
- Linares, J.C.; Tíscar, P.A.; Camarero, J.J.; Taïqui, L.; Viñegla, B.; Seco, J.I.; Merino, J.; Carreira, J.A. Tree growth decline on relict Western-Mediterranean mountain forests: Causes and impacts. In Forest Decline: Causes and Impacts; Jenkins, J.A., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 91–110. [Google Scholar]
- Olivar, J.; Bogino, S.; Spiecker, H.; Bravo, F. Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown. Dendrochronologia 2012, 30, 35–47. [Google Scholar] [CrossRef]
- Helman, D.; Osem, Y.; Yakir, D.; Lensky, I.M. Relationships between climate, topography, water use and productivity in two key Mediterranean forest types with different water-use strategies. Agric. For. Meteorol. 2017, 232, 319–330. [Google Scholar] [CrossRef]
- Martínez del Castillo, E.; Tejedor, E.; Serrano-Notivoli, R.; Novak, K.; Saz, M.Á.; Longares, L.A.; De Luis, M. Contrasting patterns of tree growth of mediterranean pine species in the Iberian Peninsula. Forests 2018, 9, 416. [Google Scholar] [CrossRef]
- García, J.M.; Allué, C. Effects of climate change on the distribution of Pinus sylvestris L. stands in Spain. A phytoclimatic approach to defining management alternatives. For. Syst. 2010, 19, 329–339. [Google Scholar] [CrossRef]
- Andivia, E.; Ruiz-Benito, P.; Díaz-Martínez, P.; Carro-Martínez, N.; Zavala, M.A.; Madrigal-González, J. Inter-specific tolerance to recurrent droughts of pine species revealed in saplings rather than adult trees. For. Ecol. Manag. 2020, 459, 117848. [Google Scholar] [CrossRef]
- Enriquez-de-Salamanca, Á. Dynamics of mediterranean pine forests reforested after fires. J. For. Res. 2023, 34, 345–354. [Google Scholar] [CrossRef]
- Sanchez-Salguero, R.; Navarro-Cerrillo, R.M.; Camarero, J.J.; Fernández-Cancio, A. Drought-induced growth decline of Aleppo and maritime pine forests in south-eastern Spain. For. Syst. 2010, 19, 458–469. [Google Scholar] [CrossRef]
- Scheller, R.M.; Kretchun, A.M.; Van Tuyl, S.; Clark, K.L.; Lucash, M.S.; Hom, J. Divergent carbon dynamics under climate change in forests with diverse soils, tree species, and land use histories. Ecosphere 2012, 3, 1–16. [Google Scholar] [CrossRef]
- MITECO. Nota Informativa Sobre el Avance de Emisiones de Gases de Efecto Invernadero Correspondientes al Año 2023. Ministerio para la Transición Ecológica y el Reto Demográfico, Gobierno de España. Available online: https://www.miteco.gob.es/content/dam/miteco/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/avance-GEI-2023.pdf (accessed on 15 June 2024).
Code | Forest Name | Area (ha) | Elevation (m a.s.l.) | Pine Species | Lithology | Rainfall (mm) | Temperature (°C) |
---|---|---|---|---|---|---|---|
BN | Boadilla Norte | 503 | 670–730 | P. pinea | Arkose | 468–538 | 14.1–14.2 |
CC | Cerro del Castillo | 103 | 1065–1235 | P. pinaster, P. sylvestris | Granite | 776–905 | 10.6–11.8 |
CH | Cuerda Herrera | 207 | 630–827 | P. pinea | Gneiss | 422–650 | 13.8–14.4 |
CJ | Cerros Concejiles | 255 | 565–715 | P. halepensis | Limestone, gypsum | 440–456 | 14.2–14.5 |
JU | Jurisdicción | 848 | 950–1763 | P. nigra, P. pinaster, P. pinea, P. sylvestris | Gneiss | 842–1290 | 7.0–13.2 |
MA | Monte Agudillo | 1212 | 590–1134 | P. pinaster, P. pinea | Granite, schist | 520–891 | 11.3–15.2 |
MR | Monterredondo | 175 | 1020–1331 | P. nigra, P. pinaster, P. sylvestris | Granite | 742–977 | 10.0–12.1 |
V1 | Ventilla I | 141 | 685–855 | P. pinea | Arkose | 486–683 | 13.7–14.2 |
V2 | Ventilla II | 139 | 660–825 | P. pinea | Arkose | 457–648 | 13.8–14.3 |
VN | Vinatea | 330 | 610–730 | P. pinea | Arkose, gneiss, granite | 399–538 | 14.1–14.4 |
Species | Commercial Volume (VC) m3 | Annual Commercial Volume Increase (IVc) m3/Year |
---|---|---|
Pinus halepensis | VC = 29.18 + 0.0002253·d2·h | IVc = 1.05 + 0.0481277·VC − 0.0000277·VC2 |
Pinus nigra | VC = 46.38 + 0.0003123·d2·h | IVc = 5.84 + 0.0147345·VC – 0.0000011·VC2 |
Pinus pinaster | VC = 4.48 + 0.0002828·d2·h | IVc = 4.5 + 0.0137175·VC + 0.0000002·VC2 |
Pinus pinea | VC = 67.09 + 0.0002340·d2·h | IVc = 4.01 + 0.0079149·VC + 0.0000024·VC2 |
Pinus sylvestris | VC = 4.48 + 0.0002828·d2·h | IVc = 3.50 + 0.0114846·VC − 0.0000037·VC2 |
Species | BEFAR (Dimensionless) | δ kg/m3 | c % | CSQ Mg CO2/Year |
---|---|---|---|---|
Pinus halepensis | 2.7043 | 600 | 0.499 | CSQ = 2969 IVc |
Pinus nigra | 1.9556 | 580 | 0.508 | CSQ = 2114 IVc |
Pinus pinaster | 1.6147 | 520 | 0.511 | CSQ = 1573 IVc |
Pinus pinea | 2.7458 | 590 | 0.508 | CSQ = 3018 IVc |
Pinus sylvestris | 1.7844 | 520 | 0.509 | CSQ = 1732 IVc |
Station Code | Station Name | Elevation m a.s.l. |
---|---|---|
3342 | Villa del Prado Picadas | 523 |
3182E | Arganda | 530 |
3229 | Tielmes | 592 |
3200 | Getafe | 617 |
3196 | Madrid Cuatro Vientos | 687 |
3194A | Pozuelo de Alarcón | 690 |
3193O | Majadahonda | 725 |
3270 | Villalba | 917 |
3274 | San Lorenzo de El Escorial | 1028 |
3267E | Embalse La Jarosa | 1060 |
3185 | Embalse de Navacerrada | 1140 |
3264I | Embalse de Navalmedio | 1280 |
2462 | Navacerrada Puerto | 1860 |
Station Code | Scenario | Temperature Variation | Precipitation Variation | ||||
---|---|---|---|---|---|---|---|
p | R2 | Variation | p | R2 | Variation | ||
3342 | RCP4.5 | 0.0000 | 75.2600 | +11.35% | 0.5576 | 0.4605 | Not significant |
RCP8.5 | 0.0000 | 98.2258 | +33.49% | 0.0000 | 41.3634 | –24.44% | |
3182E | RCP4.5 | 0.0000 | 75.2882 | +11.55% | 0.6282 | 0.3143 | Not significant |
RCP8.5 | 0.0000 | 98.1940 | +35.37% | 0.0000 | 44.8696 | –23.97% | |
3229 | RCP4.5 | 0.0000 | 74.1796 | +12.15% | 0.5357 | 0.5135 | Not significant |
RCP8.5 | 0.0000 | 98.0888 | +36.45% | 0.0000 | 46.9643 | –24.54% | |
3200 | RCP4.5 | 0.0000 | 75.1024 | +11.72% | 0.7072 | 0.1893 | Not significant |
RCP8.5 | 0.0000 | 98.1780 | +34.95% | 0.0000 | 42.7091 | –23.72% | |
3196 | RCP4.5 | 0.0000 | 76.8640 | +11.79% | 0.7715 | 0.1132 | Not significant |
RCP8.5 | 0.0000 | 98.1541 | +35.28% | 0.0000 | 38.8869 | –22.94% | |
3194A | RCP4.5 | 0.0000 | 74.8852 | +11.80% | 0.7685 | 0.1163 | Not significant |
RCP8.5 | 0.0000 | 98.1524 | +35.29% | 0.0000 | 38.8807 | –22.94% | |
3193O | RCP4.5 | 0.0000 | 75.0060 | +11.78% | 0.7536 | 0.1321 | Not significant |
RCP8.5 | 0.0000 | 98.1551 | +35.30% | 0.0000 | 39.1061 | –23.04% | |
3270 | RCP4.5 | 0.0000 | 74.9609 | +11.80% | 0.7417 | 0.1457 | Not significant |
RCP8.5 | 0.0000 | 98.1575 | +35.37% | 0.0000 | 39.4802 | –23.14% | |
3274 | RCP4.5 | 0.0000 | 75.0642 | +13.93% | 0.6415 | 0.2906 | Not significant |
RCP8.5 | 0.0000 | 98.0792 | +42.65% | 0.0000 | 46.6700 | –24.94% | |
3267E | RCP4.5 | 0.0000 | 75.6693 | +14.77% | 0.4726 | 0.6902 | Not significant |
RCP8.5 | 0.0000 | 98.1351 | +44.93% | 0.0000 | 49.9905 | –24.80% | |
3185 | RCP4.5 | 0.0000 | 75.4338 | +14.56% | 0.5122 | 0.5750 | Not significant |
RCP8.5 | 0.0000 | 98.1231 | +44.37% | 0.0000 | 48.1213 | –25.05% | |
3264I | RCP4.5 | 0.0000 | 73.9981 | +19.70% | 0.3073 | 1.3894 | Not significant |
RCP8.5 | 0.0000 | 97.9474 | +60.82% | 0.0000 | 55.2596 | –25.60% | |
2462 | RCP4.5 | 0.0000 | 74.9716 | +18.28% | 0.3888 | 0.9920 | Not significant |
RCP8.5 | 0.0000 | 98.0251 | +55.95% | 0.0000 | 52.5145 | –25.54% |
Species | Elevation Range m a.s.l. | CSQ 2024 kg CO2/Year | CSQ 2100 kg CO2/Year | Variation % |
---|---|---|---|---|
Pinus halepensis | 573–675 | 8.64 | 6.20 | –28.27% |
Pinus pinea | 610–964 | 17.81 | 13.21 | –25.85% |
Pinus pinaster | 810–1530 | 19.22 | 16.38 | –14.77% |
Pinus nigra | 1087–1605 | 25.79 | 22.69 | –11.30% |
Pinus sylvestris | 970–1743 | 12.10 | 11.37 | –5.99% |
Species | Tree Number | f Adimensional | CSQ 2024 Mg CO2/Year | CSQ 2100 Mg CO2/Year | Variation Mg CO2/Year |
---|---|---|---|---|---|
Pinus halepensis | 4,328,198 | 3.116 | 116,513.64 | 83,609.33 | −32,904.32 |
Pinus pinea | 2,648,146 | 1.453 | 68,536.34 | 50,834.65 | −17,701.69 |
Pinus pinaster | 4,139,720 | 0.728 | 57,896.28 | 49,341.37 | −8554.91 |
Pinus nigra | 772,477 | 0.510 | 10,155.53 | 8934.82 | −1220.71 |
Pinus sylvestris | 16,532,226 | 0.893 | 178,705.25 | 167,923.86 | −10,781.39 |
433,831.05 | 362,744.02 | −71,163.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enríquez-de-Salamanca, Á. Influence of Climate Change on Carbon Sequestration in Pine Forests of Central Spain. Atmosphere 2024, 15, 1178. https://doi.org/10.3390/atmos15101178
Enríquez-de-Salamanca Á. Influence of Climate Change on Carbon Sequestration in Pine Forests of Central Spain. Atmosphere. 2024; 15(10):1178. https://doi.org/10.3390/atmos15101178
Chicago/Turabian StyleEnríquez-de-Salamanca, Álvaro. 2024. "Influence of Climate Change on Carbon Sequestration in Pine Forests of Central Spain" Atmosphere 15, no. 10: 1178. https://doi.org/10.3390/atmos15101178
APA StyleEnríquez-de-Salamanca, Á. (2024). Influence of Climate Change on Carbon Sequestration in Pine Forests of Central Spain. Atmosphere, 15(10), 1178. https://doi.org/10.3390/atmos15101178