Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = bone-marrow-derived mesenchymal stromal cells (BM-MSCs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3292 KiB  
Article
Phenothiazine-Based Nanoaggregates: Dual Role in Bioimaging and Stem Cell-Driven Photodynamic Therapy
by Eleonora Calzoni, Alessio Cesaretti, Nicolò Montegiove, Maria Luisa Valicenti, Francesco Morena, Rajneesh Misra, Benedetta Carlotti and Sabata Martino
Nanomaterials 2025, 15(12), 894; https://doi.org/10.3390/nano15120894 - 10 Jun 2025
Viewed by 407
Abstract
Nanotechnology is transforming contemporary medicine by providing cutting-edge tools for the treatment and diagnosis of complex disorders. Advanced techniques such as bioimaging and photodynamic therapy (PDT) combine early diagnosis and targeted therapy, offering a more precise approach than conventional treatments. However, a significant [...] Read more.
Nanotechnology is transforming contemporary medicine by providing cutting-edge tools for the treatment and diagnosis of complex disorders. Advanced techniques such as bioimaging and photodynamic therapy (PDT) combine early diagnosis and targeted therapy, offering a more precise approach than conventional treatments. However, a significant obstacle for PDT is the need to selectively deliver photosensitizers to disease sites while minimizing systemic side effects. In this context, mesenchymal stem cells have emerged as promising biological carriers due to their natural tropism towards tumors, low immunogenicity, and their ability to overcome biological barriers. In this study, two push–pull compounds, NPI-PTZ and BTZ-PTZ, phenothiazine derivatives featuring aggregation-induced emission (AIE) abilities, were analyzed. These molecules proved to be excellent fluorescent probes and photosensitizing agents. When administered to human bone marrow-derived multipotent stromal cells (hBM-MSCs) and human adipose multipotent stem cells (hASCs), the compounds were efficiently internalized, maintained a stable fluorescent emission for several days, and showed phototoxicity after irradiation, without inducing major cytotoxic effects under normal conditions. These results highlight the potential of NPI-PTZ and BTZ-PTZ combined with mesenchymal stem cells as theranostic tools, bridging bioimaging and PDT, and suggest new possibilities for advanced therapeutic approaches in clinical applications. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

14 pages, 2027 KiB  
Article
Mesenchymal Stem/Stromal Cells (MSCs) from Mouse Pelvic vs. Long Bones Exhibit Disparate Critical Quality Attributes: Implications for Translational Studies
by Siddaraju V. Boregowda, Cori N. Booker, Jacqueline Strivelli and Donald G. Phinney
Cells 2025, 14(4), 274; https://doi.org/10.3390/cells14040274 - 13 Feb 2025
Cited by 1 | Viewed by 763
Abstract
Mesenchymal stem/stromal cells (MSCs) have been exploited as an experimental cell therapy in a broad array of clinical applications but have underperformed based on results from pre-clinical studies due to gaps in translating pre-clinical findings to human patients. Herein, we isolated mouse MSCs [...] Read more.
Mesenchymal stem/stromal cells (MSCs) have been exploited as an experimental cell therapy in a broad array of clinical applications but have underperformed based on results from pre-clinical studies due to gaps in translating pre-clinical findings to human patients. Herein, we isolated mouse MSCs from pelvic bone marrow (BMP), a preferred source for human MSCs, and compared their growth, differentiation, and immuno-modulatory activity to those derived from long bone marrow (BML), the traditional source of mouse MSCs. We report that BMP-MSCs exhibit significantly enhanced growth kinetics in 5% and 21% oxygen saturation and superior bi-lineage differentiation and hematopoiesis-supporting activity as compared to BML-MSCs. Additionally, we show that TNF upregulates inducible nitric oxide synthase (NOS2) in BML- and BMP- MSCs and augments their immune suppressive activity in cell-based assays, while interferon-gamma (INFG) upregulates indoleamine, 2-3, dioxygenase (IDO1) and enhances the immune suppressive activity of only BMP-MSCs. These results indicate that mouse MSCs sourced from different bone compartments exhibit measurable differences in critical quality attributes, and these differences are comparable to those observed across species. Based on these differences, BMP- MSCs represent a useful resource to model the behavior of human BM-derived MSCs. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

14 pages, 2713 KiB  
Article
Pulmonary and Systemic Immune Profiles Following Lung Volume Reduction Surgery and Allogeneic Mesenchymal Stromal Cell Treatment in Emphysema
by Li Jia, Na Li, Vincent van Unen, Jaap-Jan Zwaginga, Jerry Braun, Pieter S. Hiemstra, Frits Koning, P. Padmini S. J. Khedoe and Jan Stolk
Cells 2024, 13(19), 1636; https://doi.org/10.3390/cells13191636 - 30 Sep 2024
Viewed by 1371
Abstract
Emphysema in patients with chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation. Preclinical studies suggest that lung volume reduction surgery (LVRS) and mesenchymal stromal cell (MSC) treatment dampen inflammation. We investigated the effects of bone marrow-derived MSC (BM-MSC) and LVRS on [...] Read more.
Emphysema in patients with chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation. Preclinical studies suggest that lung volume reduction surgery (LVRS) and mesenchymal stromal cell (MSC) treatment dampen inflammation. We investigated the effects of bone marrow-derived MSC (BM-MSC) and LVRS on circulating and pulmonary immune cell profiles in emphysema patients using mass cytometry. Blood and resected lung tissue were collected at the first LVRS (L1). Following 6–10 weeks of recovery, patients received a placebo or intravenous administration of 2 × 106 cells/kg bodyweight BM-MSC (n = 5 and n = 9, resp.) in week 3 and 4 before the second LVRS (L2), where blood and lung tissue were collected. Irrespective of BM-MSC or placebo treatment, proportions of circulating lymphocytes including central memory CD4 regulatory, effector memory CD8 and γδ T cells were higher, whereas myeloid cell percentages were lower in L2 compared to L1. In resected lung tissue, proportions of Treg (p = 0.0067) and anti-inflammatory CD163 macrophages (p = 0.0001) were increased in L2 compared to L1, while proportions of pro-inflammatory CD163+ macrophages were decreased (p = 0.0004). There were no effects of BM-MSC treatment on immune profiles in emphysema patients. However, we observed alterations in the circulating and pulmonary immune cells upon LVRS, suggesting the induction of anti-inflammatory responses potentially needed for repair processes. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

20 pages, 8416 KiB  
Article
In Vitro Biocompatibility Assessment of Bioengineered PLA-Hydrogel Core–Shell Scaffolds with Mesenchymal Stromal Cells for Bone Regeneration
by Federica Re, Luciana Sartore, Chiara Pasini, Matteo Ferroni, Elisa Borsani, Stefano Pandini, Andrea Bianchetti, Camillo Almici, Lorena Giugno, Roberto Bresciani, Silvia Mutti, Federica Trenta, Simona Bernardi, Mirko Farina and Domenico Russo
J. Funct. Biomater. 2024, 15(8), 217; https://doi.org/10.3390/jfb15080217 - 31 Jul 2024
Cited by 1 | Viewed by 3843
Abstract
Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core–shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their [...] Read more.
Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core–shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their biocompatibility and remarkable capacity to promote and support bone regeneration and mineralization. The scaffolds were prepared by grafting three different amounts of gelatin–chitosan (CH) hydrogel into a 3D-printed polylactic acid (PLA) core (PLA-CH), and the mechanical and degradation properties were analyzed. The BM-hMSCs were cultured in the scaffolds with the presence of growth medium (GM) or osteogenic medium (OM) with differentiation stimuli in combination with fetal bovine serum (FBS) or human platelet lysate (hPL). The primary objective was to determine the viability, proliferation, morphology, and spreading capacity of BM-hMSCs within the scaffolds, thereby confirming their biocompatibility. Secondly, the BM-hMSCs were shown to differentiate into osteoblasts and to facilitate scaffold mineralization. This was evinced by a positive Von Kossa result, the modulation of differentiation markers (osteocalcin and osteopontin), an expression of a marker of extracellular matrix remodeling (bone morphogenetic protein-2), and collagen I. The results of the energy-dispersive X-ray analysis (EDS) clearly demonstrate the presence of calcium and phosphorus in the samples that were incubated in OM, in the presence of FBS and hPL, but not in GM. The chemical distribution maps of calcium and phosphorus indicate that these elements are co-localized in the same areas of the sections, demonstrating the formation of hydroxyapatite. In conclusion, our findings show that the combination of BM-hMSCs and PLA-CH, regardless of the amount of hydrogel content, in the presence of differentiation stimuli, can provide a construct with enhanced osteogenicity for clinically relevant bone regeneration. Full article
(This article belongs to the Special Issue Feature Papers in Bone Biomaterials)
Show Figures

Figure 1

20 pages, 5195 KiB  
Article
Chitosan Scaffolds from Crustacean and Fungal Sources: A Comparative Study for Bone-Tissue-Engineering Applications
by Neelam Iqbal, Payal Ganguly, Lemiha Yildizbakan, El Mostafa Raif, Elena Jones, Peter V. Giannoudis and Animesh Jha
Bioengineering 2024, 11(7), 720; https://doi.org/10.3390/bioengineering11070720 - 16 Jul 2024
Cited by 3 | Viewed by 1908
Abstract
Chitosan (CS), a biopolymer, holds significant potential in bone regeneration due to its biocompatibility and biodegradability attributes. While crustacean-derived CS is conventionally used in research, there is growing interest in fungal-derived CS for its equally potent properties in bone regenerative applications. Here, we [...] Read more.
Chitosan (CS), a biopolymer, holds significant potential in bone regeneration due to its biocompatibility and biodegradability attributes. While crustacean-derived CS is conventionally used in research, there is growing interest in fungal-derived CS for its equally potent properties in bone regenerative applications. Here, we investigated the physicochemical and biological characteristics of fungal (MDC) and crustacean (ADC)-derived CS scaffolds embedded with different concentrations of tricalcium phosphate minerals (TCP), i.e., 0(wt)%: ADC/MDC-1, 10(wt)%: ADC/MDC-2, 20(wt)%: ADC/MDC-3 and 30(wt)%: ADC/MDC-4. ADC-1 and MDC-1 lyophilised scaffolds lacking TCP minerals presented the highest zeta potentials of 47.3 ± 1.2 mV and 55.1 ± 1.6 mV, respectively. Scanning electron microscopy revealed prominent distinctions whereby MDC scaffolds exhibited striation-like structural microarchitecture in contrast to the porous morphology exhibited by ADC scaffold types. With regard to the 4-week scaffold mass reductions, MDC-1, MDC-2, MDC-3, and MDC-4 indicated declines of 55.98 ± 4.2%, 40.16 ± 3.6%, 27.05 ± 4.7%, and 19.16 ± 5.3%, respectively. Conversely, ADC-1, ADC-2, ADC-3, and ADC-4 presented mass reductions of 35.78 ± 5.1%, 25.19 ± 4.2%, 20.23 ± 6.3%, and 13.68 ± 5.4%, respectively. The biological performance of the scaffolds was assessed through in vitro bone marrow mesenchymal stromal cell (BMMSCs) attachment via indirect and direct cytotoxicity studies, where all scaffold types presented no cytotoxic behaviours. MDC scaffolds indicated results comparable to ADC, where both CS types exhibited similar physiochemical properties. Our data suggest that MDC scaffolds could be a potent alternative to ADC-derived scaffolds for bone regeneration applications, particularly for 10(wt)% TCP concentrations. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

21 pages, 4003 KiB  
Article
Fabrication and Characterization of Porous PEGDA Hydrogels for Articular Cartilage Regeneration
by Silvia Gonella, Margarida F. Domingues, Filipe Miguel, Carla S. Moura, Carlos A. V. Rodrigues, Frederico Castelo Ferreira and João C. Silva
Gels 2024, 10(7), 422; https://doi.org/10.3390/gels10070422 - 26 Jun 2024
Cited by 9 | Viewed by 4386
Abstract
Functional articular cartilage regeneration remains an unmet medical challenge, increasing the interest for innovative biomaterial-based tissue engineering (TE) strategies. Hydrogels, 3D macromolecular networks with hydrophilic groups, present articular cartilage-like features such as high water content and load-bearing capacity. In this study, 3D porous [...] Read more.
Functional articular cartilage regeneration remains an unmet medical challenge, increasing the interest for innovative biomaterial-based tissue engineering (TE) strategies. Hydrogels, 3D macromolecular networks with hydrophilic groups, present articular cartilage-like features such as high water content and load-bearing capacity. In this study, 3D porous polyethylene glycol diacrylate (PEGDA) hydrogels were fabricated combining the gas foaming technique and a UV-based crosslinking strategy. The 3D porous PEGDA hydrogels were characterized in terms of their physical, structural and mechanical properties. Our results showed that the size of the hydrogel pores can be modulated by varying the initiator concentration. In vitro cytotoxicity tests showed that 3D porous PEGDA hydrogels presented high biocompatibility both with human chondrocytes and osteoblast-like cells. Importantly, the 3D porous PEGDA hydrogels supported the viability and chondrogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cell (hBM-MSC)-based spheroids as demonstrated by the positive staining of typical cartilage extracellular matrix (ECM) (glycosaminoglycans (GAGs)) and upregulation of chondrogenesis marker genes. Overall, the produced 3D porous PEGDA hydrogels presented cartilage-like mechanical properties and supported MSC spheroid chondrogenesis, highlighting their potential as suitable scaffolds for cartilage TE or disease modelling strategies. Full article
(This article belongs to the Special Issue Functional Gels Applied in Tissue Engineering)
Show Figures

Figure 1

21 pages, 5573 KiB  
Article
Overlapping Stromal Alterations in Myeloid and Lymphoid Neoplasms
by Lucienne Bogun, Annemarie Koch, Bo Scherer, Ulrich Germing, Roland Fenk, Uwe Maus, Felix Bormann, Karl Köhrer, Patrick Petzsch, Thorsten Wachtmeister, Guido Kobbe, Sascha Dietrich, Rainer Haas, Thomas Schroeder, Stefanie Geyh and Paul Jäger
Cancers 2024, 16(11), 2071; https://doi.org/10.3390/cancers16112071 - 30 May 2024
Cited by 1 | Viewed by 1537
Abstract
Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow [...] Read more.
Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) have not been unraveled so far. Given the pivotal role of mesenchymal stromal cells (MSCs) in the regulation of hematopoiesis in the BM niche it is assumed that MSCs also play a relevant role in the pathogenesis of hematological neoplasms. We aimed to identify overlapping mechanisms in MSCs derived from myeloid and lymphoid neoplasms contributing to disease progression and suppression of HSPCs to develop interventions that target these mechanisms. MSCs derived from healthy donors (n = 44) and patients diagnosed with myeloproliferative neoplasia (n = 11), myelodysplastic syndromes (n = 16), or acute myeloid leukemia (n = 25) and B-Non-Hodgkin lymphoma (n = 9) with BM infiltration and acute lymphoblastic leukemia (n = 9) were analyzed for their functionality and by RNA sequencing. A reduced growth and differentiation capacity of MSCs was found in all entities. RNA sequencing distinguished both groups but clearly showed overlapping differentially expressed genes, including major players in the BMP/TGF and WNT-signaling pathway which are crucial for growth, osteogenesis, and hematopoiesis. Functional alterations in healthy MSCs were inducible by exposure to supernatants from malignant cells, implicating the involvement of these factors in disease progression. Overall, we were able to identify overlapping factors that pose potential future therapeutic targets. Full article
(This article belongs to the Special Issue Oncology: State-of-the-Art Research in Germany)
Show Figures

Graphical abstract

12 pages, 2377 KiB  
Communication
Mesenchymal Stem/Stromal Cells Induce Myeloid-Derived Suppressor Cells in the Bone Marrow via the Activation of the c-Jun N-Terminal Kinase Signaling Pathway
by Hyun Ju Lee and Joo Youn Oh
Int. J. Mol. Sci. 2024, 25(2), 1119; https://doi.org/10.3390/ijms25021119 - 17 Jan 2024
Cited by 2 | Viewed by 1771
Abstract
Our previous study demonstrated that mesenchymal stem/stromal cells (MSCs) induce the differentiation of myeloid-derived suppressor cells (MDSCs) in the bone marrow (BM) under inflammatory conditions. In this study, we aimed to investigate the signaling pathway involved. RNA-seq revealed that the mitogen-activated protein kinase [...] Read more.
Our previous study demonstrated that mesenchymal stem/stromal cells (MSCs) induce the differentiation of myeloid-derived suppressor cells (MDSCs) in the bone marrow (BM) under inflammatory conditions. In this study, we aimed to investigate the signaling pathway involved. RNA-seq revealed that the mitogen-activated protein kinase (MAPK) pathway exhibited the highest number of upregulated genes in MSC-induced MDSCs. Western blot analysis confirmed the strong phosphorylation of c-Jun N-terminal kinase (JNK) in BM cells cocultured with MSCs under granulocyte-macrophage colony-stimulating factor stimulation, whereas p38 kinase activation remained unchanged in MSC-cocultured BM cells. JNK inhibition by SP600125 abolished the expression of Arg1 and Nos2, hallmark genes of MDSCs, as well as Hif1a, a molecule mediating monocyte functional reprogramming toward a suppressive phenotype, in MSC-cocultured BM cells. JNK inhibition also abrogated the effects of MSCs on the production of TGF-β1, TGF-β2 and IL-10 in BM cells. Furthermore, JNK inhibition increased Tnfa expression, while suppressing IL-10 production, in MSC-cocultured BM cells in response to lipopolysaccharides. Collectively, our results suggest that MSCs induce MDSC differentiation and promote immunoregulatory cytokine production in BM cells during inflammation, at least in part, through the activation of the JNK–MAPK signaling pathway. Full article
Show Figures

Figure 1

23 pages, 4207 KiB  
Article
Development of Good Manufacturing Practice-Compatible Isolation and Culture Methods for Human Olfactory Mucosa-Derived Mesenchymal Stromal Cells
by Christopher J. Kelly, Susan L. Lindsay, Rebecca Sherrard Smith, Siew Keh, Kyle T. Cunningham, Katja Thümmler, Rick M. Maizels, John D. M. Campbell and Susan C. Barnett
Int. J. Mol. Sci. 2024, 25(2), 743; https://doi.org/10.3390/ijms25020743 - 6 Jan 2024
Cited by 1 | Viewed by 2191
Abstract
Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We [...] Read more.
Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials. Full article
(This article belongs to the Special Issue Mesenchymal Stem Cells in Neurological Disorder)
Show Figures

Figure 1

34 pages, 7100 KiB  
Article
AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors
by Michele C. Larsen, Catherine M. Rondelli, Ahmed Almeldin, Yong-Seok Song, Alhaji N’Jai, David L. Alexander, E. Camilla Forsberg, Nader Sheibani and Colin R. Jefcoate
Int. J. Mol. Sci. 2023, 24(23), 16884; https://doi.org/10.3390/ijms242316884 - 28 Nov 2023
Cited by 3 | Viewed by 2620
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce [...] Read more.
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products. Full article
(This article belongs to the Special Issue Cytochromes P450: Drug Metabolism, Bioactivation and Biodiversity 5.0)
Show Figures

Figure 1

16 pages, 2755 KiB  
Article
Human Bone Marrow Mesenchymal Stem Cells Promote the M2 Phenotype in Macrophages Derived from STEMI Patients
by Víctor Adrián Cortés-Morales, Wendy Guadalupe Vázquez-González, Juan José Montesinos, Luis Moreno-Ruíz, Selene Salgado-Pastor, Pamela Michelle Salinas-Arreola, Karla Díaz-Duarte, Adriana Karina Chávez-Rueda and Luis Chávez-Sánchez
Int. J. Mol. Sci. 2023, 24(22), 16257; https://doi.org/10.3390/ijms242216257 - 13 Nov 2023
Cited by 3 | Viewed by 1846
Abstract
Acute ST-elevation myocardial infarction (STEMI) leads to myocardial injury or necrosis, and M1 macrophages play an important role in the inflammatory response. Bone marrow mesenchymal stem/stromal cells (BM-MSCs) are capable of modulating macrophage plasticity, principally due to their immunoregulatory capacity. In the present [...] Read more.
Acute ST-elevation myocardial infarction (STEMI) leads to myocardial injury or necrosis, and M1 macrophages play an important role in the inflammatory response. Bone marrow mesenchymal stem/stromal cells (BM-MSCs) are capable of modulating macrophage plasticity, principally due to their immunoregulatory capacity. In the present study, we analyzed the capacity of MSCs to modulate macrophages derived from monocytes from patients with STEMI. We analyzed the circulating levels of cytokines associated with M1 and M2 macrophages in patients with STEMI, and the levels of cytokines associated with M1 macrophages were significantly higher in patients with STEMI than in controls. BM-MSCs facilitate the generation of M1 and M2 macrophages. M1 macrophages cocultured with MSCs did not have decreased M1 marker expression, but these macrophages had an increased expression of markers of the M2 macrophage phenotype (CD14, CD163 and CD206) and IL-10 and IL-1Ra signaling-induced regulatory T cells (Tregs). M2 macrophages from patients with STEMI had an increased expression of M2 phenotypic markers in coculture with BM-MSCs, as well as an increased secretion of anti-inflammatory cytokines and an increased generation of Tregs. The findings in this study indicate that BM-MSCs have the ability to modulate the M1 macrophage response, which could improve cardiac tissue damage in patients with STEMI. Full article
Show Figures

Figure 1

20 pages, 2146 KiB  
Article
Mesenchymal Stromal Cells from Perinatal Tissues as an Alternative for Ex Vivo Expansion of Hematopoietic Progenitor and Stem Cells from Umbilical Cord Blood
by Ximena Bonilla, Ana Milena Lara, Manuela Llano-León, David A. López-González, David G. Hernández-Mejía, Rosa Helena Bustos, Bernardo Camacho-Rodríguez and Ana-María Perdomo-Arciniegas
Int. J. Mol. Sci. 2023, 24(21), 15544; https://doi.org/10.3390/ijms242115544 - 24 Oct 2023
Cited by 2 | Viewed by 2118
Abstract
Umbilical cord blood (UCB) serves as a source of hematopoietic stem and progenitor cells (HSPCs) utilized in the regeneration of hematopoietic and immune systems, forming a crucial part of the treatment for various benign and malignant hematological diseases. UCB has been utilized as [...] Read more.
Umbilical cord blood (UCB) serves as a source of hematopoietic stem and progenitor cells (HSPCs) utilized in the regeneration of hematopoietic and immune systems, forming a crucial part of the treatment for various benign and malignant hematological diseases. UCB has been utilized as an alternative HSPC source to bone marrow (BM). Although the use of UCB has extended transplantation access to many individuals, it still encounters significant challenges in selecting a histocompatible UCB unit with an adequate cell dose for a substantial proportion of adults with malignant hematological diseases. Consequently, recent research has focused on developing ex vivo expansion strategies for UCB HSPCs. Our results demonstrate that co-cultures with the investigated mesenchymal stromal cells (MSCs) enable a 10- to 15-fold increase in the cellular dose of UCB HSPCs while partially regulating the proliferation capacity when compared to HSPCs expanded with early acting cytokines. Furthermore, the secretory profile of UCB-derived MSCs closely resembles that of BM-derived MSCs. Moreover, both co-cultures exhibit alterations in cytokine secretion, which could potentially impact HSPC proliferation during the expansion process. This study underscores the fact that UCB-derived MSCs possess a remarkably similar supportive capacity to BM-derived MSCs, implying their potential use as feeder layers in the ex vivo expansion process of HSPCs. Full article
(This article belongs to the Special Issue New Insights into Human Mesenchymal Stem Cells)
Show Figures

Figure 1

17 pages, 4764 KiB  
Review
Mesenchymal Stem/Stromal Cells: Immunomodulatory and Bone Regeneration Potential after Tumor Excision in Osteosarcoma Patients
by Max Baron, Philip Drohat, Brooke Crawford, Francis J. Hornicek, Thomas M. Best and Dimitrios Kouroupis
Bioengineering 2023, 10(10), 1187; https://doi.org/10.3390/bioengineering10101187 - 13 Oct 2023
Cited by 10 | Viewed by 3424
Abstract
Osteosarcoma (OS) is a type of bone cancer that is derived from primitive mesenchymal cells typically affecting children and young adults. The current standard of treatment is a combination of neoadjuvant chemotherapy and surgical resection of the cancerous bone. Post-resection challenges in bone [...] Read more.
Osteosarcoma (OS) is a type of bone cancer that is derived from primitive mesenchymal cells typically affecting children and young adults. The current standard of treatment is a combination of neoadjuvant chemotherapy and surgical resection of the cancerous bone. Post-resection challenges in bone regeneration arise. To determine the appropriate amount of bone to be removed, preoperative imaging techniques such as bone and CT scans are employed. To prevent local recurrence, the current standard of care suggests maintaining bony and soft tissue margins from 3 to 7 cm beyond the tumor. The amount of bone removed in an OS patient leaves too large of a deficit for bone to form on its own and requires reconstruction with metal implants or allografts. Both methods require the bone to heal, either to the implant or across the allograft junction, often in the setting of marrow-killing chemotherapy. Therefore, the issue of bone regeneration within the surgically resected margins remains an important challenge for the patient, family, and treating providers. Mesenchymal stem/stromal cells (MSCs) are potential agents for enhancing bone regeneration post tumor resection. MSCs, used with scaffolds and growth factors, show promise in fostering bone regeneration in OS cases. We spotlight two MSC types—bone marrow-derived (BM-MSCs) and adipose tissue-derived (ASCs)—highlighting their bone regrowth facilitation and immunomodulatory effects on immune cells like macrophages and T cells, enhancing therapeutic outcomes. The objective of this review is two-fold: review work demonstrating any ability of MSCs to target the deranged immune system in the OS microenvironment, and synthesize the available literature on the use of MSCs as a therapeutic option for stimulating bone regrowth in OS patients post bone resection. When it comes to repairing bone defects, both MB-MSCs and ASCs hold great potential for stimulating bone regeneration. Research has showcased their effectiveness in reconstructing bone defects while maintaining a non-tumorigenic role following wide resection of bone tumors, underscoring their capability to enhance bone healing and regeneration following tumor excisions. Full article
Show Figures

Figure 1

23 pages, 4992 KiB  
Article
Characterization of Rabbit Mesenchymal Stem/Stromal Cells after Cryopreservation
by Sai Koung Ngeun, Miki Shimizu and Masahiro Kaneda
Biology 2023, 12(10), 1312; https://doi.org/10.3390/biology12101312 - 7 Oct 2023
Cited by 7 | Viewed by 2807
Abstract
Adipose tissues (ADPs) are an alternative source for mesenchymal stem/stromal cells (MSCs), given that conventional bone marrow (BM) collection is painful and yields limited cell numbers. As the need for easily accessible MSCs grows, cryopreservation’s role in regenerative medicine is becoming increasingly vital. [...] Read more.
Adipose tissues (ADPs) are an alternative source for mesenchymal stem/stromal cells (MSCs), given that conventional bone marrow (BM) collection is painful and yields limited cell numbers. As the need for easily accessible MSCs grows, cryopreservation’s role in regenerative medicine is becoming increasingly vital. However, limited research exists on the characteristics and functional properties of rabbit-derived MSCs from various anatomical sources before and after cryopreservation. We examined the effects of cryopreservation using Bambanker. We found that cryopreservation did not adversely affect the morphology, viability, and adipogenic or chondrogenic differentiation abilities of ADP MSCs or BM MSCs. However, there was a notable drop in the proliferation rate and osteogenic differentiation capability of BM MSCs post-cryopreservation. Additionally, after cryopreservation, the surface marker gene expression of CD90 was not evident in ADP MSCs. As for markers, ADIPOQ can serve as an adipogenic marker for ADP MSCs. ACAN and CNMD can act as chondrogenic markers, but these two markers are not as effective post-cryopreservation on ADP MSCs, and osteogenic markers could not be validated. The study highlights that compared to BM MSCs, ADP MSCs retained a higher viability, proliferation rate, and differentiation potential after cryopreservation. As such, in clinical MSC use, we must consider changes in post-cryopreservation cell functions. Full article
(This article belongs to the Special Issue Advances in Biological Research of Adipose-Derived Stem Cells)
Show Figures

Figure 1

24 pages, 3902 KiB  
Article
Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications
by Frederico Barbosa, Fábio F. F. Garrudo, Ana C. Marques, Joaquim M. S. Cabral, Jorge Morgado, Frederico Castelo Ferreira and João C. Silva
Int. J. Mol. Sci. 2023, 24(17), 13203; https://doi.org/10.3390/ijms241713203 - 25 Aug 2023
Cited by 9 | Viewed by 3131
Abstract
Bone defect repair remains a critical challenge in current orthopedic clinical practice, as the available therapeutic strategies only offer suboptimal outcomes. Therefore, bone tissue engineering (BTE) approaches, involving the development of biomimetic implantable scaffolds combined with osteoprogenitor cells and native-like physical stimuli, are [...] Read more.
Bone defect repair remains a critical challenge in current orthopedic clinical practice, as the available therapeutic strategies only offer suboptimal outcomes. Therefore, bone tissue engineering (BTE) approaches, involving the development of biomimetic implantable scaffolds combined with osteoprogenitor cells and native-like physical stimuli, are gaining widespread interest. Electrical stimulation (ES)-based therapies have been found to actively promote bone growth and osteogenesis in both in vivo and in vitro settings. Thus, the combination of electroactive scaffolds comprising conductive biomaterials and ES holds significant promise in improving the effectiveness of BTE for clinical applications. The aim of this study was to develop electroconductive polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning, which are capable of emulating the native tissue’s fibrous extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The resulting nanofibers were successfully functionalized with apatite-like structures to mimic the inorganic phase of the bone ECM. The conductive electrospun scaffolds presented nanoscale fiber diameters akin to those of collagen fibrils and displayed bone-like conductivity. PEDOT:PSS incorporation was shown to significantly promote scaffold mineralization in vitro. The mineralized electroconductive nanofibers demonstrated improved biological performance as observed by the significantly enhanced proliferation of both human osteoblast-like MG-63 cells and human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs). Moreover, mineralized PAN/PEDOT:PSS nanofibers up-regulated bone marker genes expression levels of hBM-MSCs undergoing osteogenic differentiation, highlighting their potential as electroactive biomimetic BTE scaffolds for innovative bone defect repair strategies. Full article
Show Figures

Figure 1

Back to TopTop