Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = boiling heat transfer features

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8028 KB  
Article
CFD Implementation and Preliminary Validation of a Combined Boiling Model (CBM) for Two-Phase Closed Thermosyphons
by Jure Štrucl, Jure Marn and Matej Zadravec
Fluids 2025, 10(11), 296; https://doi.org/10.3390/fluids10110296 - 13 Nov 2025
Viewed by 92
Abstract
Predicting phase-change heat transfer in two-phase closed thermosyphons (TPCTs) represents a significant challenge owing to the complex interaction of boiling, condensation, and conjugate heat transfer (CHT) mechanisms. This study presents a numerical investigation of a TPCT using the Combined Boiling Model (CBM) within [...] Read more.
Predicting phase-change heat transfer in two-phase closed thermosyphons (TPCTs) represents a significant challenge owing to the complex interaction of boiling, condensation, and conjugate heat transfer (CHT) mechanisms. This study presents a numerical investigation of a TPCT using the Combined Boiling Model (CBM) within a conjugate heat transfer (CHT) framework. Unlike prior TPCT studies, the CBM integrates an improved RPI-based wall boiling model with sliding bubble dynamics, a laminar film condensation closure, and Lee-type bulk phase change in a single, energy-consistent formulation suited for engineering-scale meshes and time-steps. Building on these extensions, we demonstrate the approach on a vertical TPCT with full CHT and validate it against experiments and a VOF–Lee reference. Simulations for heat loads ranging from 173 to 376 W capture key flow features, including vapour generation, vapour-pocket dynamics, and thin-film condensation, while reducing temperature deviations typically below 3% in the evaporator and adiabatic sections and about 2 to 5% in the condenser. The results confirm that the CBM provides a physically consistent and computationally efficient approach for predicting evaporation–condensation phenomena in TPCTs. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

17 pages, 2419 KB  
Article
Bubble Temperature Effect on the Heat Transfer Performance of R449a During Flow Boiling Inside a Horizontal Smooth Tube
by Andrea Lucchini, Bharath Nagaraju, Igor Matteo Carraretto, Luigi Pietro Maria Colombo, Domenico Mazzeo, Luca Molinaroli and Paola Grazia Pittoni
Appl. Sci. 2025, 15(7), 4046; https://doi.org/10.3390/app15074046 - 7 Apr 2025
Viewed by 876
Abstract
Since the Montreal Protocol (dated 1987), the reduction of the environmental impact has been one of the main goals in the HVAC sector, which has led to the replacement of widely used fluids with new environmentally friendly ones. Nevertheless, only new fluids with [...] Read more.
Since the Montreal Protocol (dated 1987), the reduction of the environmental impact has been one of the main goals in the HVAC sector, which has led to the replacement of widely used fluids with new environmentally friendly ones. Nevertheless, only new fluids with suitable heat transfer features can be used. The refrigerant mixture R449a, one of the fourth-generation refrigerants, was tested during flow boiling inside a horizontal smooth tube. The experiments were carried out at six different mass fluxes G ∈ [175;400] kg·m−2·s−1 and four different bubble temperatures Tb ∈ [2.5;10] °C, while the nominal values for inlet and outlet quality were selected as xTi = 0.1 and xTo = 0.9, respectively. The results highlighted that, as the bubble temperature increases, it has an opposite effect on the pressure drop per unit length and the heat transfer coefficient: the former decreases while the latter grows. The comparison between experimental results and the correlations showed that the Zhang and Webb formula provides the best prediction of pressure drop, while the models provided by Bertsch yield the most reliable predictions for the heat transfer coefficient. Nevertheless, for both quantities, other correlations with similar performances are available. Full article
Show Figures

Figure 1

24 pages, 6188 KB  
Article
Heat Transfer Estimation in Flow Boiling of R134a within Microfin Tubes: Development of Explainable Machine Learning-Based Pipelines
by Shayan Milani, Keivan Ardam, Farzad Dadras Javan, Behzad Najafi, Andrea Lucchini, Igor Matteo Carraretto and Luigi Pietro Maria Colombo
Energies 2024, 17(16), 4074; https://doi.org/10.3390/en17164074 - 16 Aug 2024
Cited by 1 | Viewed by 1677
Abstract
The present study is focused on identifying the most suitable sequence of machine learning-based models and the most promising set of input variables aiming at the estimation of heat transfer in evaporating R134a flows in microfin tubes. Utilizing the available experimental data, dimensionless [...] Read more.
The present study is focused on identifying the most suitable sequence of machine learning-based models and the most promising set of input variables aiming at the estimation of heat transfer in evaporating R134a flows in microfin tubes. Utilizing the available experimental data, dimensionless features representing the evaporation phenomena are first generated and are provided to a machine learning-based model. Feature selection and algorithm optimization procedures are then performed. It is shown that the implemented feature selection method determines only six dimensionless parameters (Sul: liquid Suratman number, Bo: boiling number, Frg: gas Froude number, Rel: liquid Reynolds number, Bd: Bond number, and e/D: fin height to tube’s inner diameter ratio) as the most effective input features, which reduces the model’s complexity and facilitates the interpretation of governing physical phenomena. Furthermore, the proposed optimized sequence of machine learning algorithms (providing a mean absolute relative difference (MARD) of 8.84% on the test set) outperforms the most accurate available empirical model (with an MARD of 19.7% on the test set) by a large margin, demonstrating the efficacy of the proposed methodology. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

21 pages, 1023 KB  
Review
A Meta-Analysis Review: Nanoparticles as a Gateway to Optimized Boiling Surfaces
by Giulia Motta and Antonis Sergis
Nanomaterials 2024, 14(12), 1012; https://doi.org/10.3390/nano14121012 - 11 Jun 2024
Cited by 1 | Viewed by 2123
Abstract
Pool boiling is essential in many industrial manufacturing applications. In addition, it can become critical in the journey towards improving energy generation efficiency and accomplishing the goal of net-zero carbon emissions by 2050 via new or traditional power generation applications. The effectiveness of [...] Read more.
Pool boiling is essential in many industrial manufacturing applications. In addition, it can become critical in the journey towards improving energy generation efficiency and accomplishing the goal of net-zero carbon emissions by 2050 via new or traditional power generation applications. The effectiveness of boiling is governed by the bubble cycle. The chemistry and topographical features of the surface being heated have been found to highly impact the boiling performance, such as in the case of pool boiling enhancement when employing hydrophilic and hydrophobic surfaces via nano/micro heater surface modification. Nevertheless, it is questionable how feasible it is to create these surfaces for large-scale applications due to their manufacturing and maintenance cost and complexity. The current work assesses whether the use of nanoparticles in traditional coolants could potentially unlock the mass production of optimised heating surface modification through a metadata literature review analysis. It was discovered that self-assembled layers created as a result of the deposition of nanoparticles in coolants undergoing pool boiling seem to behave most similarly to manufactured hydrophilic surfaces. The creation of enhanced patterned-heat transfer surfaces is shown to be possible via the use of a combination of different nanoparticle suspensions in coolants. Full article
Show Figures

Figure 1

15 pages, 4062 KB  
Article
Hypergolic Ignition by Off-Center Binary Collision of Monoethanolamine-NaBH4 and Hydrogen Peroxide Droplets
by Dawei Zhang, Siduo Song, Dehai Yu, Yueming Yuan, Hongmei Liu, Xuedong Liu and Xuejun Fan
Symmetry 2024, 16(6), 682; https://doi.org/10.3390/sym16060682 - 2 Jun 2024
Viewed by 1645
Abstract
Hypergolic ignition of H2O2 and MEA-NaBH4 by off-center collision of their droplets was experimentally studied, focusing on the characteristics and mechanism of droplet mixing, droplet heating and evaporation, and gas-phase ignition. The whole collision ignition process was divided into [...] Read more.
Hypergolic ignition of H2O2 and MEA-NaBH4 by off-center collision of their droplets was experimentally studied, focusing on the characteristics and mechanism of droplet mixing, droplet heating and evaporation, and gas-phase ignition. The whole collision ignition process was divided into five stages, which were compared, respectively, with that of head-on collision. Under the condition of a slightly off-center collision (for cases where B < 0.35), H2O2 droplets penetrate MEA-NaBH4 droplets after the collision and coalesce with it, but the internal H2O2 drop inside the MEA-NaBH4 droplet does not form a stable sphere. Instead, it rotates and expands inside the mixed droplet. With B increasing to 0.59, the droplets no longer coalesce after collision but separate away, forming satellite droplets. In such cases, multi-ignition mode is observed. When B increases to a certain extent, specifically, 0.85, a grazing collision is observed such that no mass transfer exists during the interaction of droplets, which leads to ignition failure. A theoretical model quantifying droplet swelling rate was established to calculate the volume change of the droplet. It was found that the swelling can be attributed to the flash boiling of superheated internal H2O2 fluid. Meanwhile, the ignition delay time was found to linearly decrease with B at various Wes until the extent where the chemical reaction takes over control, leading to an almost constant time delay defined as RDT. Additionally, the regime of ignition modes corresponding to different droplet mixing features is summarized in the We-B parametric space. Full article
(This article belongs to the Special Issue Symmetry in Aerospace Sciences and Applications)
Show Figures

Figure 1

22 pages, 7400 KB  
Article
Predictive Modeling for Microchannel Flow Boiling Heat Transfer under the Dual Effect of Gravity and Surface Modification
by Haoxian Wu, Shengnan Zhou, Dongwei Wang, Yunbo Yang, Linglin Liu, Huijie Mao and Bifen Shu
Processes 2024, 12(5), 1028; https://doi.org/10.3390/pr12051028 - 19 May 2024
Cited by 2 | Viewed by 1509
Abstract
This paper investigates the heat transfer performance of flow boiling in microchannels under the dual effect of gravity and surface modification through both experimental studies and mechanistic analysis. Utilizing a test bench with microchannels featuring surfaces of varying wettability levels and adjustable flow [...] Read more.
This paper investigates the heat transfer performance of flow boiling in microchannels under the dual effect of gravity and surface modification through both experimental studies and mechanistic analysis. Utilizing a test bench with microchannels featuring surfaces of varying wettability levels and adjustable flow directions, multiple experiments on R134-a flow boiling heat transfer under the effects of gravity and surface modification were conducted, resulting in 1220 sets of experimental data. The mass flux ranged from 735 kg/m2s to 1271 kg/m2s, and the heating heat flux density ranged from 9 × 103 W/m2 to 46 × 103 W/m2. The experimental results revealed the differences in the influence of different gravity and surface modification conditions on heat transfer performance. It was found that the heat transfer performance of super-hydrophilic surfaces in horizontal flow is optimal and more stable heat transfer performance is observed when gravity is aligned with the flow direction. And the impact of gravity and surface modification on heat transfer has been explained through mechanistic analysis. Therefore, two new dimensionless numbers, Fa and Conew, were introduced to characterize the dual effects of gravity and surface modification on heat transfer. A new heat transfer model was developed based on these effects, and the prediction error of the heat transfer coefficient was reduced by 12–15% compared to existing models, significantly improving the prediction accuracy and expanding its application scope. The applicability and accuracy of the new model were also validated with other experimental data. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 6868 KB  
Article
Aluminum Micropillar Surfaces with Hierarchical Micro- and Nanoscale Features for Enhancement of Boiling Heat Transfer Coefficient and Critical Heat Flux
by Armin Hadžić, Matic Može, Matevž Zupančič and Iztok Golobič
Nanomaterials 2024, 14(8), 667; https://doi.org/10.3390/nano14080667 - 11 Apr 2024
Cited by 7 | Viewed by 2703
Abstract
The rapid progress of electronic devices has necessitated efficient heat dissipation within boiling cooling systems, underscoring the need for improvements in boiling heat transfer coefficient (HTC) and critical heat flux (CHF). While different approaches for micropillar fabrication on copper or silicon substrates have [...] Read more.
The rapid progress of electronic devices has necessitated efficient heat dissipation within boiling cooling systems, underscoring the need for improvements in boiling heat transfer coefficient (HTC) and critical heat flux (CHF). While different approaches for micropillar fabrication on copper or silicon substrates have been developed and have shown significant boiling performance improvements, such enhancement approaches on aluminum surfaces are not broadly investigated, despite their industrial applicability. This study introduces a scalable approach to engineering hierarchical micro-nano structures on aluminum surfaces, aiming to simultaneously increase HTC and CHF. One set of samples was produced using a combination of nanosecond laser texturing and chemical etching in hydrochloric acid, while another set underwent an additional laser texturing step. Three distinct micropillar patterns were tested under saturated pool boiling conditions using water at atmospheric pressure. Our findings reveal that microcavities created atop pillars successfully facilitate nucleation and micropillars representing nucleation site areas on a microscale, leading to an enhanced HTC up to 242 kW m−2 K−1. At the same time, the combination of the surrounding hydrophilic porous area enables increased wicking and pillar patterning, defining the vapor–liquid pathways on a macroscale, which leads to an increase in CHF of up to 2609 kW m−2. Full article
Show Figures

Figure 1

57 pages, 13215 KB  
Review
An Overview of Innovative Surface-Modification Routes for Pool Boiling Enhancement
by José Pereira, Reinaldo Souza, António Moreira and Ana Moita
Micromachines 2024, 15(3), 302; https://doi.org/10.3390/mi15030302 - 22 Feb 2024
Cited by 6 | Viewed by 4632
Abstract
This overview intends to provide a comprehensive assessment of the novel fluids and the current techniques for surface modification for pool boiling enhancement. The surface modification at macro-, micro-, and nanoscales is assessed concerning the underlying fluid routing and capability to eliminate the [...] Read more.
This overview intends to provide a comprehensive assessment of the novel fluids and the current techniques for surface modification for pool boiling enhancement. The surface modification at macro-, micro-, and nanoscales is assessed concerning the underlying fluid routing and capability to eliminate the incipient boiling hysteresis and ameliorate the pool boiling heat-transfer ability, particularly when employed together with self-rewetting fluids and nanofluids with enriched thermophysical properties. Considering the nanofluids, it is viable to take the profit of their high thermal conductivity and their specific heat simultaneously and to produce a film of deposited nanoparticles onto the heating surface, which possesses enhanced surface roughness and an increased density of nucleation sites. Whilst the diverse improvement scales are found to achieve distinct levels of success regarding the nucleate boiling heat-transfer capability enhancement, it is also shown that the micro–nanoscale boiling surface features are susceptible to blockage, leading to the degradation of the improvement with time. Furthermore, topics relating to the heat transfer thermal behavior, ease of manufacture, cost-effectiveness, reliability, and durability are reviewed whenever available and challenges and recommendations for further research are highlighted. Full article
(This article belongs to the Special Issue Micro Thermal Devices and Their Applications)
Show Figures

Figure 1

5 pages, 345 KB  
Editorial
Heat Transfer and Fluids Properties of Nanofluids
by S M Sohel Murshed
Nanomaterials 2023, 13(7), 1182; https://doi.org/10.3390/nano13071182 - 27 Mar 2023
Cited by 7 | Viewed by 4007
Abstract
As it is popular research field, extensive research has been performed in various areas of nanofluids, and most of the studies have demonstrated significant enhancements in their thermophysical properties and thermal transport performance compared to those of conventional thermal fluids. However, there have [...] Read more.
As it is popular research field, extensive research has been performed in various areas of nanofluids, and most of the studies have demonstrated significant enhancements in their thermophysical properties and thermal transport performance compared to those of conventional thermal fluids. However, there have been unanimous conclusions regarding such enhancements and their underlying mechanisms. Nanofluids’ potential and thermal applications mainly depend on their convective and boiling heat transfer performances, which are also not unbiased in the literature. On top of this, a major challenge with nanofluids is obtaining sustainable stability and persistent properties over a long duration. All these issues are very crucial for nanofluids’ development and applications, and a lot of research in these areas has been conducted in recent years. Thus, this Special Issue, featuring a dozen of high-quality research and reviews on different types of nanofluids and their important topics related to thermophysical and electrical properties as well as convective and boiling heat transfer characteristics, is of great significance for the progress and real-world applications of this new class of fluids. Full article
(This article belongs to the Special Issue Heat Transfer and Fluids Properties of Nanofluids)
12 pages, 2832 KB  
Article
Pool Boiling Heat Transfer Characteristics of New and Recycled Alumina Nanofluids
by Wagd Ajeeb and S. M. Sohel Murshed
Nanomaterials 2023, 13(6), 1040; https://doi.org/10.3390/nano13061040 - 14 Mar 2023
Cited by 13 | Viewed by 2821
Abstract
This paper reports an experimental investigation of the heat transfer features of new and recycled Alumina (Al2O3) nanofluids (NFs) in the pool boiling (PB) system. The mixture of ethylene glycol (EG) and distilled water (DW) is selected as the [...] Read more.
This paper reports an experimental investigation of the heat transfer features of new and recycled Alumina (Al2O3) nanofluids (NFs) in the pool boiling (PB) system. The mixture of ethylene glycol (EG) and distilled water (DW) is selected as the base fluid (BF), and NFs samples of two low concentrations (0.01 and 0.05 vol.%) of Al2O3 nanoparticles were prepared. Furthermore, the characteristics of the prepared NFs are evaluated to investigate the heat transfer performance as well as the reusability of the NFs for long-term applications and recycling consideration. Although there have been a large number of boiling studies with NFs, the current study is the first of its kind that addresses the mentioned operation conditions of recycling NF samples. The results are compared with the relevant BF in terms of properties, critical heat flux (CHF), burnout heat flux (BHF), and the convection coefficient of the Al2O3 NFs in the PB system. The results showed good enhancements in both CHF and BHF of these NFs yielding up to 60% and 54% for BHF at 0.05 vol.%, respectively. The reusage of the previously used (recycled) Al2O3 NF showed a considerable increase in heat transfer performance compared to base fluids but slightly lower than the newly prepared one. The results of the reused nanofluids demonstrate the great prospects of their recyclability in heat transfer systems and processes such as in pool boiling. Full article
(This article belongs to the Special Issue Thermal Properties and Features of Nanofluids)
Show Figures

Figure 1

21 pages, 8016 KB  
Article
Laser Treatment of Surfaces for Pool Boiling Heat Transfer Enhancement
by Łukasz J. Orman, Norbert Radek, Jacek Pietraszek, Janusz Wojtkowiak and Marcin Szczepaniak
Materials 2023, 16(4), 1365; https://doi.org/10.3390/ma16041365 - 6 Feb 2023
Cited by 16 | Viewed by 2485
Abstract
The laser treatment of surfaces enables the alteration of their morphology and makes them suitable for various applications. This paper discusses the use of a laser beam to develop surface features that enhance pool boiling heat transfer. Two types of structures (in the [...] Read more.
The laser treatment of surfaces enables the alteration of their morphology and makes them suitable for various applications. This paper discusses the use of a laser beam to develop surface features that enhance pool boiling heat transfer. Two types of structures (in the ‘macro’ and ‘micro’ scale) were created on the samples: microfins (grooves) and surface roughness. The impact of the pulse duration and scanning velocity on the height of the microfins and surface roughness at the bottom of the grooves was analyzed with a high precision optical profilometer and microscope. The results indicated that the highest microfins and surface roughness were obtained with a pulse duration of 250 ns and scanning velocity of 200 mm/s. In addition, the influence of the ‘macro’ and ‘micro’ scale modifications on the boiling heat transfer of distilled water and ethyl alcohol was studied on horizontal samples heated with an electric heater. The largest enhancement was obtained for the highest microfins and roughest surfaces, especially at small superheats. Heat flux dissipated from the samples containing microfins of 0.4 mm height was, maximally, over three times (for water) and two times (for ethanol) higher than for the samples with smaller microfins (0.2 mm high). Thus, a modification of a selected model of boiling heat transfer was developed so that it would be applicable to laser-processed surfaces. The correlation proved to be quite successful, with almost all experimental data falling within the ±100% agreement bands. Full article
(This article belongs to the Special Issue Laser Treatment for Surface Layers)
Show Figures

Figure 1

24 pages, 2752 KB  
Review
Computer Vision and Machine Learning Methods for Heat Transfer and Fluid Flow in Complex Structural Microchannels: A Review
by Bin Yang, Xin Zhu, Boan Wei, Minzhang Liu, Yifan Li, Zhihan Lv and Faming Wang
Energies 2023, 16(3), 1500; https://doi.org/10.3390/en16031500 - 2 Feb 2023
Cited by 37 | Viewed by 5815
Abstract
Heat dissipation in high-heat flux micro-devices has become a pressing issue. One of the most effective methods for removing the high heat load of micro-devices is boiling heat transfer in microchannels. A novel approach to flow pattern and heat transfer recognition in microchannels [...] Read more.
Heat dissipation in high-heat flux micro-devices has become a pressing issue. One of the most effective methods for removing the high heat load of micro-devices is boiling heat transfer in microchannels. A novel approach to flow pattern and heat transfer recognition in microchannels is provided by the combination of image and machine learning techniques. The support vector machine method in texture characteristics successfully recognizes flow patterns. To determine the bubble dynamics behavior and flow pattern in the micro-device, image features are combined with machine learning algorithms and applied in the recognition of boiling flow patterns. As a result, the relationship between flow pattern evolution and boiling heat transfer is established, and the mechanism of boiling heat transfer is revealed. Full article
Show Figures

Figure 1

45 pages, 11955 KB  
Review
A Critical Review on Geometric Improvements for Heat Transfer Augmentation of Microchannels
by Hao Yu, Tongling Li, Xiaoxin Zeng, Tianbiao He and Ning Mao
Energies 2022, 15(24), 9474; https://doi.org/10.3390/en15249474 - 14 Dec 2022
Cited by 31 | Viewed by 6199
Abstract
With the application of microdevices in the building engineering, aerospace industry, electronic devices, nuclear energy, and so on, the dissipation of high heat flux has become an urgent problem to be solved. Microchannel heat sinks have become an effective means of thermal management [...] Read more.
With the application of microdevices in the building engineering, aerospace industry, electronic devices, nuclear energy, and so on, the dissipation of high heat flux has become an urgent problem to be solved. Microchannel heat sinks have become an effective means of thermal management for microdevices and enhancements for equipment due to their higher heat transfer and small scale. However, because of the increasing requirements of microdevices for thermal load and temperature control and energy savings, high efficiency heat exchangers, especially microchannels are receiving more and more attention. To further improve the performance of microchannels, optimizing the channel geometry has become a very important passive technology to effectively enhance the heat transfer of the microchannel heat sink. Therefore, in this paper, the microchannel geometry characteristics of previous studies are reviewed, classified and summarized. The review is mainly focused on microchannel geometry features and structural design to strengthen the effect of heat transfer and pressure drop. In addition, the correlation between boiling heat transfer and geometric characteristics of microchannel flow is also presented, and the future research direction of microchannel geometry design is discussed. Full article
(This article belongs to the Special Issue Energy Saving Technology in Building)
Show Figures

Figure 1

16 pages, 3268 KB  
Article
Experimental Investigations of Flow Boiling Heat Transfer under Near-Critical Pressure for Selected Working Fluids
by Dariusz Butrymowicz, Kamil Śmierciew, Jarosław Karwacki, Aleksandra Borsukiewicz and Jerzy Gagan
Sustainability 2022, 14(21), 14029; https://doi.org/10.3390/su142114029 - 28 Oct 2022
Cited by 4 | Viewed by 1991
Abstract
This paper deals with experimental investigations of flow boiling in tubular ducts of selected refrigerants—R134a, R507A, and R600a—under near-critical pressures. Near-critical boiling is characterised by low specific enthalpy of evaporation. The positive effect of this feature is the fact that only a small [...] Read more.
This paper deals with experimental investigations of flow boiling in tubular ducts of selected refrigerants—R134a, R507A, and R600a—under near-critical pressures. Near-critical boiling is characterised by low specific enthalpy of evaporation. The positive effect of this feature is the fact that only a small amount of heat consumed by Organic Rankine Cycles is at a constant temperature. This allows a lower terminal temperature of the heating fluid and more effective utilisation of heat sources, especially of low-grade heat sources. The experimental investigations covered a heat flux density of 0.4 to 10 kW/m2 and a mass velocity of 60 to 200 kg/(m2·s). The results of the experimental data were compared to the modified heat transfer correlation of Gungor and Winterton, which provices the best fit for the obtained experimental data. The maximum heat transfer coefficient occurred at the two-phase quality—approximately 0.4 for all the tested fluids under high pressure conditions—which may be thought of as a characteristic feature of the boiling process under near-critical conditions. A modified Gungor–Winterton correlation improves prediction accuracy, especially under the lowest (up to 3 kW/m2) and highest (over 7 kW/m2) heat flux densities for all the tested fluids. Full article
Show Figures

Figure 1

26 pages, 12504 KB  
Article
Numerical Study of the Effect of the Rolling Motion on the Subcooled Flow Boiling in the Subchannel
by Yaru Li, Xiangyu Chi, Zezhao Nan, Xuan Yin, Xiaohan Ren and Naihua Wang
Energies 2022, 15(13), 4866; https://doi.org/10.3390/en15134866 - 2 Jul 2022
Cited by 2 | Viewed by 1795
Abstract
The marine environment may change the force on the fluid and inevitably influence bubble behavior and the two-phase flow in the reactor core, which are vital to the safety margin of a nuclear reactor. To explore the effect of the marine motion on [...] Read more.
The marine environment may change the force on the fluid and inevitably influence bubble behavior and the two-phase flow in the reactor core, which are vital to the safety margin of a nuclear reactor. To explore the effect of the marine motion on the flow and heat transfer features of subcooled flow boiling in the reactor core, the volume of fluid (VOF) method is employed to reveal the interaction between the interface structure and two-phase flow in the subchannel under rolling motion. The variations of several physical parameters are obtained, including the transverse flow, the vapor volume fraction, the vapor adhesion ratio, and the phase distribution of boiling two-phase flow with time. Sensitivity analyses of the amplitude and the period of the rolling motion were performed to demonstrate the mechanisms of the influence of the rolling motion. We found that the transverse flow in the subchannel was mainly affected by the Euler force under the rolling motion. In contrast to the two-phase flow in the static state, the vapor volume fraction and vapor adhesion ratio show different characteristics under rolling motion. Additionally, the onset of significant void (OSV) point changes periodically under rolling motion. Full article
(This article belongs to the Special Issue Advanced Propulsion System and Thermal Management Technology)
Show Figures

Figure 1

Back to TopTop