Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = blue mustard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5519 KB  
Article
BjuFKF1_1, a Plant-Specific LOV Blue Light Receptor Gene, Positively Regulates Flowering in Brassica juncea
by Jian Gao, Keran Ren, Chengrun Wu, Qing Wang, Daiyu Huang and Jing Zeng
Plants 2026, 15(2), 270; https://doi.org/10.3390/plants15020270 - 15 Jan 2026
Viewed by 216
Abstract
Stem mustard (Brassica juncea var. tumida Tsen et Lee) is an important economic vegetable in China. Premature bolting induced by temperature fluctuations has become a major cultivation constraint. Photoreceptors (PHRs) serve as critical photosensor proteins that interpret light signals and regulate physiological [...] Read more.
Stem mustard (Brassica juncea var. tumida Tsen et Lee) is an important economic vegetable in China. Premature bolting induced by temperature fluctuations has become a major cultivation constraint. Photoreceptors (PHRs) serve as critical photosensor proteins that interpret light signals and regulate physiological responses in plants. In this study, five core PHR families, namely F-box-containing flavin binding proteins (ZTL/FKF1/LKP2), phytochrome (PHY), cryptochrome (CRY), phototropin (PHOT) and UV RESISTANCE LOCUS 8 (UVR8) were identified in Brassica species. RNA-seq analysis revealed their expression patterns during organogenesis in B. juncea. Seven candidate PHRs were validated by qRT-PCR in B. juncea early-bolting (‘YA-1’) and late-bolting (‘ZT-1’) cultivars. Agrobacterium-mediated BjuFKF1_1 overexpression (OE) lines resulted in significantly earlier flowering under field conditions. Histochemical GUS staining indicated that BjuFKF1_1 was expressed in seedlings, leaves, flower buds and siliques. Transcript analysis revealed that the expression level of BjuFKF1_1 was up-regulated in all tissues at both the vegetative and reproductive stages, whereas the expression of BjuFKF1_1 interacting protein-encoding genes were down-regulated in flowers. Under blue light, genes encoding interacting proteins (BjuCOL5, BjuSKP1, BjuCOL3, BjuAP2, BjuAP2-1 and BjuLKP2) were up-regulated in flower buds, whereas BjuCOL and BjuPP2C52 were down-regulated in flowers. Developmental stage analysis revealed the up-regulation of five (BjuAP2, BjuCOL3, BjuCOL5, BjuAP2-1 and BjuLKP2) and four (BjuCOL, BjuCOL5, BjuAP2 and BjuLKP2) interaction protein-encoding genes during the reproductive stage under white and blue light, respectively. These findings elucidate the role of BjuFKF1_1 in flowering regulation and provide molecular targets for B. juncea bolting-resistant variety breeding. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

18 pages, 449 KB  
Article
Rotating Intercrops in Continuous Maize Cultivation: Interaction Between Main Crop, Intercrops, and Weeds
by Austėja Švereikaitė, Jovita Balandaitė, Ugnius Ginelevičius, Aušra Sinkevičienė, Rasa Kimbirauskienė, Lina Juodytė and Kęstutis Romaneckas
Agronomy 2026, 16(2), 142; https://doi.org/10.3390/agronomy16020142 - 6 Jan 2026
Viewed by 213
Abstract
Continuous cropping leads to declines in soil productivity and biodiversity, as well as a deterioration of overall phytosanitary conditions. What if we rotate the intercrops instead of the main crops? In a stationary three-year field experiment, maize was intercropped with Fabaceae (faba bean, [...] Read more.
Continuous cropping leads to declines in soil productivity and biodiversity, as well as a deterioration of overall phytosanitary conditions. What if we rotate the intercrops instead of the main crops? In a stationary three-year field experiment, maize was intercropped with Fabaceae (faba bean, crimson and Persian clovers, and blue-flowered alfalfa), Poaceae (winter rye, annual ryegrass, spring barley, and common oat), and Brassicaceae (white mustard, spring oilseed rape, oilseed radish, and spring Camelina) intercrops in separate growing seasons. Fabaceae intercrops developed slowly and competed poorly with weeds. The highest air-dried biomass (ADM) was produced by Persian and crimson clovers (approx. 86 g m−2). Intercrops of the Poaceae family, particularly rye and oats, as well as ryegrass, which was the most productive at 200 g m−2 ADM, germinated faster and competed effectively with weeds. Brassicaceae intercrops also developed rapidly, especially mustard, Camelina, and radish (the most productive 206 g m−2 ADM). Most intercrops competed with maize and reduced its biomass productivity; however, their competitive effects were weaker than those of weeds. A strong negative correlation between maize and weed biomass was detected (max. r = −0.946; p < 0.01). Complex evaluation index (CEI) showed that the crimson clover–annual ryegrass–spring oilseed rape rotation (CC-AR-SR) was the most productive and was effective in suppressing major weeds Echinochloa crus-galli, Chenopodium album, Polygonum lapathifolium, and Cirsium arvense, less competitive with maize (CEI 4.82), and can be used as an Integrated Pest Management tool. Full article
Show Figures

Figure 1

26 pages, 931 KB  
Article
Nutritional Quality, Fatty Acids Profile, and Phytochemical Composition of Unconventional Vegetable Oils
by Wiktoria Kamińska, Anna Grygier, Katarzyna Rzyska-Szczupak, Anna Przybylska-Balcerek, Kinga Stuper-Szablewska and Grażyna Neunert
Molecules 2025, 30(15), 3269; https://doi.org/10.3390/molecules30153269 - 4 Aug 2025
Cited by 2 | Viewed by 3076
Abstract
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The [...] Read more.
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The chosen oils were investigated based on their fatty acids profiles, total phenolic compounds (TPC), tocopherols, and pigment contents. Despite the high polyunsaturated fatty acids (PUFAs) content raising concerns about oxidative stability, the significant tocopherol levels and polyphenols content contribute to antioxidative protection. These oils’ favorable hypocholesterolemic, antiatherogenic, and antithrombogenic properties were highlighted by key nutritional indices, showing potential benefits for cardiovascular health. These results suggest that these oils are a promising dietary supplement for promoting both cardiovascular health and sustainability, owing to their rich content of essential fatty acids and bioactive compounds. Moreover, high correlations were found between theoretical and experimental established oxidative stability of the tested oils at the ending stage of the thermostat test. Full article
Show Figures

Figure 1

12 pages, 4204 KB  
Article
The Effect of Light Intensity during Cultivation and Postharvest Storage on Mustard and Kale Microgreen Quality
by Ieva Gudžinskaitė, Kristina Laužikė, Audrius Pukalskas and Giedrė Samuolienė
Antioxidants 2024, 13(9), 1075; https://doi.org/10.3390/antiox13091075 - 3 Sep 2024
Cited by 6 | Viewed by 2248
Abstract
Microgreens are vegetable greens that are harvested early while they are still immature and have just developed cotyledons. One of the disadvantages and a challenge in production is that they exhibit a short shelf life and may be damaged easily. In seeking to [...] Read more.
Microgreens are vegetable greens that are harvested early while they are still immature and have just developed cotyledons. One of the disadvantages and a challenge in production is that they exhibit a short shelf life and may be damaged easily. In seeking to prolong the shelf life, some pre- and postharvest interventions have been investigated. Here, kale and mustard microgreens were grown in a controlled-environment walk-in chamber at +21/17 °C, with ~65% relative air humidity, while maintaining the spectral composition of deep red 61%, blue 20%, white 15%, and far red 4% (150, 200, and 250 µmol m−2 s−1 photosynthetic photon flux density (PPFD)). Both microgreens seemed to exhibit specific and species-dependent responses. Higher PPFD during growth and storage in light conditions resulted in increased contents of TPC in both microgreens on D5. Additionally, 150 and 250 PPFD irradiation affected the α-tocopherol content by increasing it during postharvest storage in kale. On D0 150 for kale and 200 PPFD for mustard microgreens, β-carotene content increased. D5 for kale showed insignificant differences, while mustard responded with the highest β-carotene content, under 150 PPFD. Our findings suggest that both microgreens show beneficial outcomes when stored in light compared to dark and that mild photostress is a promising tool for nutritional value improvement and shelf-life prolongation. Full article
Show Figures

Figure 1

18 pages, 9046 KB  
Article
Application of UAV Multispectral Imaging to Monitor Soybean Growth with Yield Prediction through Machine Learning
by Sadia Alam Shammi, Yanbo Huang, Gary Feng, Haile Tewolde, Xin Zhang, Johnie Jenkins and Mark Shankle
Agronomy 2024, 14(4), 672; https://doi.org/10.3390/agronomy14040672 - 26 Mar 2024
Cited by 32 | Viewed by 5055
Abstract
The application of remote sensing, which is non-destructive and cost-efficient, has been widely used in crop monitoring and management. This study used a built-in multispectral imager on a small unmanned aerial vehicle (UAV) to capture multispectral images in five different spectral bands (blue, [...] Read more.
The application of remote sensing, which is non-destructive and cost-efficient, has been widely used in crop monitoring and management. This study used a built-in multispectral imager on a small unmanned aerial vehicle (UAV) to capture multispectral images in five different spectral bands (blue, green, red, red edge, and near-infrared), instead of satellite-captured data, to monitor soybean growth in a field. The field experiment was conducted in a soybean field at the Mississippi State University Experiment Station near Pontotoc, MS, USA. The experiment consisted of five cover crops (Cereal Rye, Vetch, Wheat, Mustard plus Cereal Rye, and native vegetation) planted in the winter and three fertilizer treatments (Fertilizer, Poultry Liter, and None) applied before planting the soybean. During the soybean growing season in 2022, eight UAV imaging flyovers were conducted, spread across the growth season. UAV image-derived vegetation indices (VIs) coupled with machine learning (ML) models were computed for characterizing soybean growth at different stages across the season. The aim of this study focuses on monitoring soybean growth to predict yield, using 14 VIs including CC (Canopy Cover), NDVI (Normalized Difference Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), EVI2 (Enhanced Vegetation Index 2), and others. Different machine learning algorithms including Linear Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) are used for this purpose. The stage of the initial pod development was shown as having the best predictability for earliest soybean yield prediction. CC, NDVI, and NAVI (Normalized area vegetation index) were shown as the best VIs for yield prediction. The RMSE was found to be about 134.5 to 511.11 kg ha−1 in the different yield models, whereas it was 605.26 to 685.96 kg ha−1 in the cross-validated models. Due to the limited number of training and testing samples in the K-fold cross-validation, the models’ results changed to some extent. Nevertheless, the results of this study will be useful for the application of UAV remote sensing to provide information for soybean production and management. This study demonstrates that VIs coupled with ML models can be used in multistage soybean yield prediction at a farm scale, even with a limited number of training samples. Full article
(This article belongs to the Special Issue Crop Production Parameter Estimation through Remote Sensing Data)
Show Figures

Figure 1

15 pages, 628 KB  
Article
Can LED Lighting Be a Sustainable Solution for Producing Nutritionally Valuable Microgreens?
by Roberta Vrkić, Jana Šic Žlabur, Mia Dujmović and Božidar Benko
Horticulturae 2024, 10(3), 249; https://doi.org/10.3390/horticulturae10030249 - 5 Mar 2024
Cited by 5 | Viewed by 3253
Abstract
With its quality, intensity, and photoperiod, light is a decisive abiotic factor that directly influences plant biomass and the accumulation of specialized metabolites (SMs). Photosynthetically active radiation (PAR) has significant effects on primary and secondary plant metabolism and thus influences the morphological characteristics [...] Read more.
With its quality, intensity, and photoperiod, light is a decisive abiotic factor that directly influences plant biomass and the accumulation of specialized metabolites (SMs). Photosynthetically active radiation (PAR) has significant effects on primary and secondary plant metabolism and thus influences the morphological characteristics of plants and their antioxidant systems. The aim of this study was to investigate the effects of blue, red, and a 50:50 combination of blue and red LED lighting on the SM content in broccoli, mustard, and garden cress microgreens grown in an indoor farm using the zero-acreage farming technique (ZFarming). This research aims to provide valuable insights into the optimization of light spectra to improve the nutritional quality of microgreens, with a focus on sustainable and space-saving cultivation methods. After eight days, the samples were cut in the cotyledon phenophase and analyzed in a fresh state. The microgreens grown under the blue spectrum LED lighting had the highest content of ascorbic acid (112.70 mg·100 g fw−1), total phenolics (412.39 mg GAE·100 g fw−1), and the highest antioxidant capacity (2443.62 µmol TE·L−1). The results show that the highest content of SMs in all the studied microgreens species was accumulated under the blue spectrum LED lighting. This study underlines the favorable influence of the blue spectrum (400–500 nm) on the nutrient content, especially the enhancement of SMs, in the microgreens investigated. Furthermore, the use of supplemental LED lighting proves to be a sustainable and effective means of producing microgreens with superior nutritional properties through the innovative practice of the zero-acreage farming technique. Full article
Show Figures

Figure 1

30 pages, 3973 KB  
Article
The Effects of Light Spectrum and Intensity, Seeding Density, and Fertilization on Biomass, Morphology, and Resource Use Efficiency in Three Species of Brassicaceae Microgreens
by Reed John Cowden, Bo Markussen, Bhim Bahadur Ghaley and Christian Bugge Henriksen
Plants 2024, 13(1), 124; https://doi.org/10.3390/plants13010124 - 1 Jan 2024
Cited by 11 | Viewed by 7346
Abstract
Light is a critical component of indoor plant cultivation, as different wavelengths can influence both the physiology and morphology of plants. Furthermore, fertilization and seeding density can also potentially interact with the light recipe to affect production outcomes. However, maximizing production is an [...] Read more.
Light is a critical component of indoor plant cultivation, as different wavelengths can influence both the physiology and morphology of plants. Furthermore, fertilization and seeding density can also potentially interact with the light recipe to affect production outcomes. However, maximizing production is an ongoing research topic, and it is often divested from resource use efficiencies. In this study, three species of microgreens—kohlrabi; mustard; and radish—were grown under five light recipes; with and without fertilizer; and at two seeding densities. We found that the different light recipes had significant effects on biomass accumulation. More specifically, we found that Far-Red light was significantly positively associated with biomass accumulation, as well as improvements in height, leaf area, and leaf weight. We also found a less strong but positive correlation with increasing amounts of Green light and biomass. Red light was negatively associated with biomass accumulation, and Blue light showed a concave downward response. We found that fertilizer improved biomass by a factor of 1.60 across species and that using a high seeding density was 37% more spatially productive. Overall, we found that it was primarily the main effects that explained microgreen production variation, and there were very few instances of significant interactions between light recipe, fertilization, and seeding density. To contextualize the cost of producing these microgreens, we also measured resource use efficiencies and found that the cheaper 24-volt LEDs at a high seeding density with fertilizer were the most efficient production environment for biomass. Therefore, this study has shown that, even with a short growing period of only four days, there was a significant influence of light recipe, fertilization, and seeding density that can change morphology, biomass accumulation, and resource input costs. Full article
(This article belongs to the Special Issue Horticultural Crops Cultivation and Physiology)
Show Figures

Figure 1

19 pages, 6341 KB  
Article
Detection of Aphid-Infested Mustard Crop Using Ground Spectroscopy
by Karunesh K. Shukla, Rahul Nigam, Ajanta Birah, A. K. Kanojia, Anoop Kumar, Bimal K. Bhattacharya and Subhash Chander
Remote Sens. 2024, 16(1), 47; https://doi.org/10.3390/rs16010047 - 21 Dec 2023
Cited by 2 | Viewed by 2905
Abstract
Timely detection of pest infestation in agricultural crops plays a pivotal role in the planning and execution of pest management interventions. In this study, a ground measured electromagnetic spectrum through hyperspectral sensing (400–2500 nm) was conducted in healthy and aphid-infested mustard crops in [...] Read more.
Timely detection of pest infestation in agricultural crops plays a pivotal role in the planning and execution of pest management interventions. In this study, a ground measured electromagnetic spectrum through hyperspectral sensing (400–2500 nm) was conducted in healthy and aphid-infested mustard crops in different regions of the Bharatpur district of Rajasthan state, India. The ground measured hyperspectral reflectance and its derivatives during the mustard aphid infestation period were used to identify the sensitive spectral regions in the electromagnetic spectrum concerning Aphid Infestation Severity Grade (AISG) to discriminate Lipaphis-infested mustard crops from the healthy ones. Further Principal Component Analysis (PCA) and Partial Least Square Regression (PLSR) were utilized to identify specific spectral bands to differentiate the healthy from aphid-infested crops. The spectral regions of 493–497 nm (blue), 509–515 nm (green), 690–714 nm (red), 717–721 nm (red edge), and 752–756 nm (NIR) showed high correlation with AISG for reflectance, first and second order derivatives. Further analysis of the spectra using PCA and PLSR indicated that spectral bands of 679 nm, 746 nm, and 979 nm had high sensitivity for discriminating aphid-infested crops from the healthy ones. Average reflectance and various spectral indices such as ratio spectral index (RSI), difference spectral index (DSI), and normalized difference spectral index (NDSI) of identified spectral regions and absolute reflectance of identified specific spectral bands were used for predicting AISG. Several regression models, including PCR and PLSR, were examined to predict the AISG. PLSR was found to better predict infestation grade with RMSE of 0.66 and r2 0.71. Our outcomes counseled that hyperspectral reflectance data have the ability to detect aphid-infested severity in mustard. Full article
(This article belongs to the Special Issue Proximal and Remote Sensing for Precision Crop Management)
Show Figures

Figure 1

19 pages, 3409 KB  
Article
Study and Characterization of H3PO4 Activated Carbons Prepared from Jujube Stones for the Treatment of Industrial Textile Effluents
by Nasma Bouchelkia, Kheira Benazouz, Amal Mameri, Lazhar Belkhiri, Nadia Hamri, Hayet Belkacemi, Abdelhalim Zoukel, Abdeltif Amrane, Fodil Aoulmi and Lotfi Mouni
Processes 2023, 11(9), 2694; https://doi.org/10.3390/pr11092694 - 8 Sep 2023
Cited by 18 | Viewed by 5226
Abstract
Dyes are responsible for major environmental issues globally due to their toxicity, large-scale production, and extensive use in various industrial sectors. Pollution caused by hazardous dyes is mainly due to textile waste, which is constantly discharged into the aquatic system, often causing harm [...] Read more.
Dyes are responsible for major environmental issues globally due to their toxicity, large-scale production, and extensive use in various industrial sectors. Pollution caused by hazardous dyes is mainly due to textile waste, which is constantly discharged into the aquatic system, often causing harm to humans and affecting water quality. In recent years, the removal of dyes from industrial textile wastewater has been a major challenge. Numerous technologies and methods have been developed to remove dyes from wastewater and meet clean water requirements. In this study, the effectiveness of activated carbon prepared by chemical activation of jujube stones for textile wastewater treatment was investigated. The effects of the concentration of H3PO4 and the carbonization temperature on the activated carbon’s properties were studied. Several physicochemical methods, including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction, methylene blue index, Boehm titration, iodine index and pH point of zero charge, were considered to characterize the produced adsorbents. To assess the quality of the two studied textile effluents (Mustard and Violet), the following parameters were used: biological oxygen demand (BOD), chemical oxygen demand (COD), turbidity, suspended particles and dissolved solids, before and after treatment with the produced activated carbon. Untreated wastewater analysis revealed high values for almost all parameters: pH > 9, COD of 302.72 mg/L and 230.68 mg/L for Mustard and Violet effluent, respectively. Both effluents from an industrial textile factory exhibited a COD/BOD ratio higher than three, which restricts their biodegradability. Examination of the effect of contact time and activated carbon dosage on the treatment of the two effluents showed that 4 g/L of activated carbon and 60 min of contact time were sufficient for optimal treatment, resulting in pollutant removal rates of 81.03 and 84.65% for the Violet and Mustard effluents, respectively. The results of this research highlight the efficiency of activated carbon derived from jujube stones as a cost-effective adsorbent for the treatment of real textile wastewater. Full article
(This article belongs to the Special Issue Industrial Wastewater Treatment)
Show Figures

Graphical abstract

14 pages, 2660 KB  
Article
Effect of Temperature Variation and Blue and Red LEDs on the Elongation of Arugula and Mustard Microgreens
by Yun Kong, Joseph Masabni and Genhua Niu
Horticulturae 2023, 9(5), 608; https://doi.org/10.3390/horticulturae9050608 - 22 May 2023
Cited by 9 | Viewed by 3679
Abstract
Recent studies using LED lighting at low to modest intensity have indicated that compared with red light, blue light can promote plant elongation in many crops as a shade avoidance response despite varying sensitivity with light environments, plant species, and growth stages. Currently, [...] Read more.
Recent studies using LED lighting at low to modest intensity have indicated that compared with red light, blue light can promote plant elongation in many crops as a shade avoidance response despite varying sensitivity with light environments, plant species, and growth stages. Currently, there is limited understanding of how temperature affects the blue light-mediated plant response. To clarify this point, two microgreen species (arugula and mustard) were grown indoors under two light quality × two temperature treatments: red LED light (peak at 670 nm) and blue LED light (peak at 450 nm) at 18 °C or 28 °C. A photosynthetic photon flux density of 110 µmol m−2 s−1 and a photoperiod of 12 h d−1 were used for all treatments. After 6 to 8 days of treatment, at both temperatures, blue vs. red light promoted plant elongation, as demonstrated by a greater plant elongation rate, final plant height, and hypocotyl length, in arugula but not in mustard. Blue vs. red light also promoted some shade-avoidance responses such as decreased cotyledon size in both species and increased petiole length and dry mass partitioning to hypocotyls in arugula only. The elongation promotion in arugula by blue light was greater at 18 °C than at 28 °C, showing interactions between light and temperature on most plant traits. For mustard, plant elongation was promoted at 28 °C compared to 18 °C independent of light treatment, showing no interactions between light and temperature on most plant traits. These results suggest that the blue light-mediated elongation as a shade-avoidance response is not reversed by high temperature, despite the varying sensitivity with temperatures and species. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

15 pages, 2161 KB  
Article
The Combination of Monochromatic LEDs and Elicitation with Stressors Enhances the Accumulation of Glucosinolates in Mustard Sprouts with Species-Dependency
by Carla Guijarro-Real, Lorena Hernández-Cánovas, Ángel Abellán-Victorio, Oumaima Ben-Romdhane and Diego A. Moreno
Plants 2022, 11(21), 2961; https://doi.org/10.3390/plants11212961 - 2 Nov 2022
Cited by 11 | Viewed by 2119
Abstract
This work studies the enhancement of glucosinolates (GSLs) in mustard sprouts as health promoters. Sprouts of Sinapis alba, Brassica nigra, and B. carinata were grown under broad-spectrum, monochromatic blue or red light-emitting diode (LED) lamps, irrigated with 0–100 mM sodium chloride [...] Read more.
This work studies the enhancement of glucosinolates (GSLs) in mustard sprouts as health promoters. Sprouts of Sinapis alba, Brassica nigra, and B. carinata were grown under broad-spectrum, monochromatic blue or red light-emitting diode (LED) lamps, irrigated with 0–100 mM sodium chloride (NaCl), and sprayed with 0–250 µM methyl jasmonate (MeJA) as elicitor. The use of LEDs did not result in increased sprout biomass in any case. The effect of the applied treatments on the GSLs depended on the species and were restricted to Brassica spp. The red LEDs produced an overall increase in GSLs over 500% in B. carinata (from 12 to 81 mg 100 g−1 F.W.), compared to the white broad-spectrum lights, although the highest increase in content was obtained in treated sprouts with 250 µM MeJA (104 an 105 mg 101 g−1 F.W., under the red and blue LEDs, respectively). The combination of blue LEDs, 100 mM NaCl, and 250 µM MeJA enhanced the levels of GLSs in B. nigra to the maximum (81 mg 100 g−1 F.W.). Overall, these results indicate that by modifying the growing conditions for a given sprout, enhancement in the accumulation of GSLs as health promoters is possible. The use of these treatments is a sustainable alternative to genetic modification when looking for bioactive-enriched foods, delivering natural plant foods rich in bioactive ingredients (e.g., glucosinolates). Nevertheless, the response to the treatments varies among species, indicating that treatments will require adjustment across sprouts. Further research continues with producing cruciferous sprouts to obtain GSL-enriched formulas for further studying the effects of their bioavailability and bioactivity on health-promotion. Full article
(This article belongs to the Special Issue Biosynthesis and Function of Plant Specialized Metabolites)
Show Figures

Figure 1

14 pages, 2635 KB  
Article
Evaluation of the Effectiveness of Different LED Irradiators When Growing Red Mustard (Brassica juncea L.) in Indoor Farming
by Natalya A. Semenova, Alexandr A. Smirnov, Alexey S. Dorokhov, Yuri A. Proshkin, Alina S. Ivanitskikh, Narek O. Chilingaryan, Artem A. Dorokhov, Denis V. Yanykin, Sergey V. Gudkov and Andrey Yu. Izmailov
Energies 2022, 15(21), 8076; https://doi.org/10.3390/en15218076 - 31 Oct 2022
Cited by 9 | Viewed by 3758
Abstract
Investigation is devoted to the optimization of light spectrum and intensity used for red mustard growing. Notably, most of the studies devoted to red mustard growing were conducted on micro-greens, which is not enough for the development of methods and recommendations for making [...] Read more.
Investigation is devoted to the optimization of light spectrum and intensity used for red mustard growing. Notably, most of the studies devoted to red mustard growing were conducted on micro-greens, which is not enough for the development of methods and recommendations for making the right choices about the irradiation parameters for full-cycle cultivation. In this study, we tested four models of LED with different ratios of blue, green red and far red radiation intensity: 12:20:63:5; 15:30:49:6; 30:1:68:1, in two values of photon flux density (PFD)—120 and 180 µmol m−2 s−1—to determine the most effective combination for red mustard growing. The study was conducted in a container-type climate chamber, where the red leaf mustard was cultivated in hydroponics. On the 30th day of cultivation, the plant’s morphological, biochemical and chlorophyll fluorescence parameters, and reflection coefficients were recorded. The results indicated that the PFD 120 µmol m−2 s−1 had a worse effect on both mustard leaf biomass accumulation and nitrate concentration (13–30% higher) in the plants. The best lighting option for growing red mustard was the blue–red spectrum, as the most efficient in terms of converting electricity into biomass (77 Wth/g). This light spectrum contributes to plant development with a larger leaf area (60%) and a fresh mass (54%) compared with the control, which has a maximum similarity in spectrum percentage to the sunlight spectrum. The presence of green and far red radiation with the blue–red light spectrum in various proportions at the same level of PFD had a negative effect on plant fresh mass, leaf surface area and photosynthetic activity. The obtained results could be useful for lighting parameters’ optimization when growing red mustard in urban farms. Full article
Show Figures

Figure 1

14 pages, 2374 KB  
Article
Photon Distribution of Sole-Source Lighting Affects the Mineral Nutrient Content of Microgreens
by Viktorija Vaštakaitė-Kairienė, Aušra Brazaitytė, Jurga Miliauskienė, Rūta Sutulienė, Kristina Laužikė, Akvilė Viršilė, Giedrė Samuolienė and Erik S. Runkle
Agriculture 2022, 12(8), 1086; https://doi.org/10.3390/agriculture12081086 - 23 Jul 2022
Cited by 10 | Viewed by 3307
Abstract
In the study, we cultivated basil, beet, and mustard microgreens under different lighting treatments from light-emitting diodes (LEDs) and evaluated the contents of mineral nutrients. Microgreens grew under blue 447, red 638 and 665, far-red 731 nm LEDs, or the same spectrum but [...] Read more.
In the study, we cultivated basil, beet, and mustard microgreens under different lighting treatments from light-emitting diodes (LEDs) and evaluated the contents of mineral nutrients. Microgreens grew under blue 447, red 638 and 665, far-red 731 nm LEDs, or the same spectrum but with partial substitution of 638 nm red with green 520 (BRG), yellow 595 (BRY), or orange 622 nm (BRO) LEDs (16 h photoperiod; total photon flux density of 300 μmol m −2 s −1). BRG, BRY, or BRO lighting had distinct effects on mineral contents among the microgreen species. BRG increased the content of mineral nutrients, especially in mustard and beet. In all microgreens, Ca and P were associated with BRG; in beet and mustard, Zn and Mg were associated with BRG; in basil, Zn was associated with BRY and Mg with BRO treatments. A broader photon spectrum increased Fe (up to 2.9–fold), K:Ca, P:Mg, and P:Zn in basil, and Fe:Zn in microgreens. We conclude that the partial replacement of red with green light was the most effective at enhancing the mineral nutrient content of microgreens, although responses varied among the crops studied. Full article
(This article belongs to the Special Issue Sprouts, Microgreens, and Baby Leaf Vegetables)
Show Figures

Figure 1

31 pages, 6339 KB  
Article
Impact of Ferrous Sulfate on Thylakoidal Multiprotein Complexes, Metabolism and Defence of Brassica juncea L. under Arsenic Stress
by Arlene Asthana Ali, Javed Ahmad, Mohammad Affan Baig, Altaf Ahmad, Asma A. Al-Huqail and Mohammad Irfan Qureshi
Plants 2022, 11(12), 1559; https://doi.org/10.3390/plants11121559 - 13 Jun 2022
Cited by 4 | Viewed by 3197
Abstract
Forty-day-old Brassica juncea (var. Pusa Jai Kisan) plants were exposed to arsenic (As, 250 µM Na2HAsO4·7H2O) stress. The ameliorative role of ferrous sulfate (2 mM, FeSO4·7H2O, herein FeSO4) was evaluated at [...] Read more.
Forty-day-old Brassica juncea (var. Pusa Jai Kisan) plants were exposed to arsenic (As, 250 µM Na2HAsO4·7H2O) stress. The ameliorative role of ferrous sulfate (2 mM, FeSO4·7H2O, herein FeSO4) was evaluated at 7 days after treatment (7 DAT) and 14 DAT. Whereas, As induced high magnitude oxidative stress, FeSO4 limited it. In general, As decreased the growth and photosynthetic parameters less when in the presence of FeSO4. Furthermore, components of the antioxidant system operated in better coordination with FeSO4. Contents of non-protein thiols and phytochelatins were higher with the supply of FeSO4. Blue-Native polyacrylamide gel electrophoresis revealed an As-induced decrease in almost every multi-protein-pigment complex (MPC), and an increase in PSII subcomplex, LHCII monomers and free proteins. FeSO4 supplication helped in the retention of a better stoichiometry of light-harvesting complexes and stabilized every MPC, including supra-molecular complexes, PSI/PSII core dimer/ATP Synthase, Cytochrome b6/f dimer and LHCII dimer. FeSO4 strengthened the plant defence, perhaps by channelizing iron (Fe) and sulfur (S) to biosynthetic and anabolic pathways. Such metabolism could improve levels of antioxidant enzymes, and the contents of glutathione, and phytochelatins. Important key support might be extended to the chloroplast through better supply of Fe-S clusters. Therefore, our results suggest the importance of both iron and sulfur to combat As-induced stress in the Indian mustard plant at biochemical and molecular levels through enhanced antioxidant potential and proteomic adjustments in the photosynthetic apparatus. Full article
Show Figures

Figure 1

13 pages, 3076 KB  
Article
Composite Aluminosilicate Materials for Sorption Extraction of Impurity Substances of Vegetable Oils
by Aleksey A. Ignatyev, Pavel B. Razgovorov, Roman S. Nagornov, Natalya A. Politaeva, Liliya R. Mukhametova and Svetlana B. Ilyashenko
Resources 2022, 11(2), 9; https://doi.org/10.3390/resources11020009 - 19 Jan 2022
Cited by 2 | Viewed by 3805
Abstract
This paper considers mineral compositions and prospects for the processing of natural blue montmorillonite clay, pink Fe (III)-containing clay, and green Fe (II)-containing clay into composite aluminosilicate materials suitable for the sorption of related substances of vegetable oils. New Brønsted and Lewis centers [...] Read more.
This paper considers mineral compositions and prospects for the processing of natural blue montmorillonite clay, pink Fe (III)-containing clay, and green Fe (II)-containing clay into composite aluminosilicate materials suitable for the sorption of related substances of vegetable oils. New Brønsted and Lewis centers were found on the surface of the materials obtained when solutions of oxalic and succinic acids and sodium carbonate in scientifically-substantiated amounts were used as modifying additives. The established changes in the surface states are in correlation with the assessed affinity degree of active sites towards fatty acids, peroxide compounds, carotenoids, and chlorophylls in vegetable oils (flaxseed, olive, mustard), which are rarely refined in world production. These findings are of practical value for the development of a new direction of medical chemistry. It was revealed that the presence of impure hydromuscovite in natural raw materials and the resulting materials reduces the effect of extracting dyes from vegetable oils. Full article
Show Figures

Figure 1

Back to TopTop