Composite Aluminosilicate Materials for Sorption Extraction of Impurity Substances of Vegetable Oils
Abstract
:1. Introduction
2. Materials and Methods
- Unrefined Linseed oil (OOO “LEN NN”, Nizhny Novgorod, Russia); Specification TU 9141-002-55854031-03);
- Unrefined olive oil (ABPSAU, Terrega, Spain);
- Unrefined mustard oil (OOO Chelyabinsk oil and fat plant, Chelyabinsk, Russia), corresponds to the Russian State Standard GOST 8807-94);
- Glacial acetic acid (chemically pure);
- Oxalic acid (pure);
- Succinic acid (pure);
- Ethyl alcohol (Russian State Standard GOST R 51652-2000);
- Chloroform (chemically pure);
- Diethyl ether (analytical grade);
- Phenolphthalein;
- Natural mineral sorbents—powders of blue montmorillonite-containing (Specification TU 9158-001-17033721-2014), green Fe (II)-containing (Specification TU 9158-001-17033721-2014) and pink Fe (III)-containing clays (Specification TU 9158- 003-47308774-00);
- Sodium thiosulfate (chemically pure);
- Potassium hydroxide (chemically pure);
- Potassium bromide (analytical grade).
2.1. Obtaining Composite Aluminosilicate Materials from Natural Mineral Raw Materials
2.2. Determination of Dyes and Acidity of Vegetable Oils
3. Results
3.1. Modification of the Surface of Natural Mineral Raw Materials and Production of Composite Materials for the Sorption of Vegetable Oil Impurities
3.2. Results of Sorption Extraction of Vegetable Oil Impurity Substances
- 50% for blue clay; no effect for blue clay and succinic acid modifier; 64% for blue clay and oxalic acid modifier;
- 38% for pink Fe (III)-containing clay; no effect for pink clay and succinic acid modifier; 45% for pink clay and oxalic acid modifier.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hlihor, R.M.; Gavrilescu, M. Removal of some environmentally relevant heavy metals using low-cost natural sorbents. Environ. Eng. Manag. J. 2009, 8, 353–372. [Google Scholar] [CrossRef]
- Gordin, N.E.; Prokofiev, V.Y. Low-Modulus Zeolites: Structure. Properties. Synthesis; Krasand: Moscow, Russia, 2017. [Google Scholar]
- Razgovorov, P.B.; Nagornov, R.S.; Razgovorova, M.P. Utilization of blue clay for separation of impurities from linseed oil. Izv. Vyss. Uchebnykh Zaved. Khimiya Khimicheskaya Tekhnologiya 2014, 57, 72–75. [Google Scholar]
- Prokofiev, V.Y.; Razgovorov, P.B.; Gordina, N.E. The adsorption of undesirable impurities from sunflower oil on the granulated sorbents based on kaolin clay. Int. J. Food Eng. 2014, 10, 713–720. [Google Scholar] [CrossRef]
- Mannu, A.; Vlahopoulou, G.; Urgeghe, P.; Ferro, M.; Del Caro, A.; Taras, A.; Garroni, S.; Rourke, J.P.; Cabizza, R.; Petretto, G.L. Variation of the chemical composition of waste cooking oils upon bentonite filtration. Resources 2019, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Razgovorov, P.B.; Nagornov, R.S.; Razgovorova, M.P.; Grechin, O.V. Regulation of aluminosilicate materials acid-base properties for action on purification degree of olive oil. Izv. Vyss. Uchebnykh Zaved. Khimiya Khimicheskaya Tekhnologiya 2015, 58, 58–63. [Google Scholar]
- Arutyunyan, N.S. Refining Oils and Fats; GIORD: Saint Petersburg, Russia, 2004. [Google Scholar]
- Meunier, A. Clays; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-3-540-27141-3. [Google Scholar]
- Breen, C. Acid-activated organoclays: Preparation, characterization and catalytic activity of polycation-treated bentonites. Appl. Clay Sci. 1998, 12, 479–494. [Google Scholar] [CrossRef]
- Uriev, N.B. Physicochemical dynamics of dispersed systems. Usp. Khim. 2004, 73, 39–62. [Google Scholar] [CrossRef]
- Pen, R.Z. Rheological properties of coating suspensions. Chem. Veg. Raw Mater. 2004, 4, 11–15. [Google Scholar]
- Simić, V.; Životić, D.; Miladinović, Z. Towards better valorisation of industrial minerals and rocks in Serbia—Case study of industrial clays. Resources 2021, 10, 63. [Google Scholar] [CrossRef]
- Khan, A. Bleaching of Vegetable Oil using Organic Acid Activated Fuller’s Earth (Bentonite Clay). Glob. J. Res. Eng. 2015, 15, 1–5. [Google Scholar]
- Hechi, E.; Amor, O.B.; Srasra, E.; Zargouni, F. Physico-chemical characterization of acid-activated clay: Its industrial application in the clarification of vegetable oils. Surf. Eng. Appl. Electrochem. 2009, 45, 140–144. [Google Scholar] [CrossRef]
- Mukasa-Tebandeke, I.Z.; Ssebuwufu, P.J.M.; Nyanzi, S.A.; Nyakairu, G.W.; Ntale, M.; Lugolobi, F.; Andreas, S. Adsorption Behavior of Acid-Leached Clays in Bleaching of Oil. Am. J. Anal. Chem. 2015, 6, 495–512. [Google Scholar] [CrossRef] [Green Version]
- Ayari, F.; Srasra, E.; Trabelsi-Ayadi, M. Effect of exchangeable cations on the physicochemical properties of smectite. Surf. Eng. Appl. Electrochem. 2007, 43, 369–378. [Google Scholar] [CrossRef]
- Teng, M.Y.; Lin, S.H. Removal of basic dye from water onto pristine and HCl-activated montmorillonite in fixed beds. Desalination 2006, 194, 156–165. [Google Scholar] [CrossRef]
- Patel, M.A.; Kar, A.S.; Kumar, S.; Tomar, B.S. Effect of phosphate on sorption of Eu(III) by montmorillonite. J. Radioanal. Nucl. Chem. 2017, 313, 537–545. [Google Scholar] [CrossRef]
- Zhou, Q.; Pan, G.; Shen, W. Enhanced sorption of perfluorooctane sulfonate and Cr(VI) on organo montmorillonite: Influence of solution pH and uptake mechanism. Adsorption 2013, 19, 709–715. [Google Scholar] [CrossRef]
- Gunstone, F.D. Production and Trade of Vegetable Oils. In Vegetable Oils in Food Technology: Composition, Properties and Uses, 2nd ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; pp. 1–24. [Google Scholar] [CrossRef]
- Nagornov, R.S. Processing of Natural Aluminosilicate Materials into Sorbents for Purification of Triglycerides of Fatty Acids. Ph.D. Thesis, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia, 2018. [Google Scholar]
- Creencia, E.C.; Nillama, J.A.P.; Librando, I.L. Microwave-assisted extraction and physicochemical evaluation of oil from Hevea brasiliensis seeds. Resources 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Di Mattia, C.; Paradiso, V.M.; Andrich, L.; Giarnetti, M.; Caponio, F.; Pittia, P. Effect of Olive Oil Phenolic Compounds and Maltodextrins on the Physical Properties and Oxidative Stability of Olive Oil O/W Emulsions. Food Biophys. 2014, 9, 396–405. [Google Scholar] [CrossRef]
- Chakroun, S.; Herchi, M.; Mechti, W.; Gaied, M.E. Acid activation of upper Eocene Ca-bentonite for soybean oil clarification. Environ. Sci. Pollut. Res. 2017, 24, 22557–22569. [Google Scholar] [CrossRef]
- Yoon, S.H. Optimization of the refining process and oxidative stability of chufa (Cyperus esculentus L.) oil for edible purposes. Food Sci. Biotechnol. 2016, 25, 85–90. [Google Scholar] [CrossRef]
- Su, H.; Wang, X.; Kim, Y.G.; Kim, S.B.; Seo, Y.G.; Kim, J.S.; Kim, C.J. Optimization of decoloring conditions of crude fatty acids recovered from crude glycerol by acid-activated clay using response surface method. Korean J. Chem. Eng. 2014, 31, 2070–2076. [Google Scholar] [CrossRef]
- Vlasova, E.A.; Valueva, K.A.; Solomkina, Y.S.; Razgovorov, P.B. Application of Natural Clays for Purification of Rapeseed Oil from Colorant. Russ. J. Appl. Chem. 2020, 93, 1710–1714. [Google Scholar] [CrossRef]
- Ryazanov, M.A.; Dudkin, B.N. Study of the acid-base properties of g-Al2O3 by pK-spectroscopy. Colloid J. 2003, 65, 831–836. [Google Scholar] [CrossRef]
- Ivakhnov, A.D.; Skrabets, T.E.; Bogolitsyn, K.G. Supercritical fluid extraction of chlorophylls and carotenoids from Laminaria digitata. Chem. Veg. Raw Mater. 2014, 4, 177. [Google Scholar]
- Prokofiev, V.Y.; Razgovorov, P.B. Physicochemical processes occurring when kaolin clays are added to vegetable oils. Chem. Veg. Raw Mater. 2010, 2, 159–164. [Google Scholar]
- Razgovorov, P.B.; Prokofiev, V.Y.; Razgovorova, M.P. Study of the process of crystal formation of waxes in vegetable oils with the introduction of seed mineral additives. Chem. Veg. Raw Mater. 2013, 2, 207–212. [Google Scholar]
- Aladedunye, F.A.; Przybylski, R. Frying performance of canola oil triacylglycerides as affected by vegetable oils minor components. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 41–53. [Google Scholar] [CrossRef]
Sample/Material | Found on the Surface by the Four-Probe Method, wt% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Si | Al | Na | K | Mg | Fe | Sn | Ti | C | O | |
Blue clay | 15.0 | 6.5 | - | 2.7 | 1.2 | 3.2 | 0.3 | 0.2 | 20.4 | 50.6 |
Clay-oxalic acid | 13.7 | 9.0 | - | 1.2 | 8.0 | 8.0 | - | - | 9.0 | 50.6 |
Clay-oxalic acid–sodium carbonate | 20.2 | 8.0 | 1.2 | 6.3 | 1.2 | 3.5 | - | - | 9.0 | 50.0 |
Component | Concentration of Fatty Acids before/after Contact, mol·L−1 | Adsorption of Fatty Acids on Blue Clay, g/g |
---|---|---|
Unsaturated acids: | ||
-palmitoleic C 16:1 | 0.00100/0.00037 | 0.018 |
-oleic C 18:1 | 0.04/0.01 | 0.926 |
-linoleic C 18:2 | 0.0077/0.0021 | 0.172 |
-linolenic C 18:3 | 0.00040 /0.00009 | 0.009 |
-eicosene C 20:1 | 0.00014 /0.00003 | 0.004 |
Saturated acids: | ||
-palmitic C 16:0 | 0.010/0.003 | 0.195 |
-stearic C18:0 | 0.00130/0.00038 | 0.029 |
-arachidic C 20:0 | 0.00018/0.00003 | 0.005 |
System | Peroxide Number of Liquid Phase, mmol ½ O·kg−1, after Contacting with Material | ||
---|---|---|---|
Blue Clay | Pink Fe (III)-Containing Clay | Green Fe (II)-Containing Clay | |
Unrefined oil | 5.3 ± 0.2 | ||
Linseed oil-natural clay | 3.7 ± 0.1 | 4.0 ± 0.1 | 3.7 ± 0.1 |
Linseed oil-clay | |||
-succinic acid | 3.1 ± 0.1 | 3.5 ± 0.2 | 3.5 ± 0.1 |
Linseed oil-clay | |||
-oxalic acid | 2.9 ± 0.1 | 3.3 ± 0.1 | 3.1 ± 0.1 |
Linseed oil-clay | |||
-oxalic acid | 3.1 ± 0.1 | 2.6 ± 0.1 | 2.6 ± 0.1 |
-sodium carbonate |
Type of Material | Extraction Rate (α) after Treatment, %, during | ||
---|---|---|---|
1 h | 3 h | 5 h | |
Blue montmorillonite clay | 38.5 | 39.2 | 40.0 |
Green Fe (II)-containing clay | 26.2 | 29.2 | 31.5 |
Pink Fe (III)-containing clay | 22.3 | 24.2 | 27.3 |
Blue clay modified with succinic acid | 36.9 | 38.8 | 40.8 |
Green clay modified with succinic acid | 35.0 | 35.4 | 39.2 |
Pink clay modified with succinic acid | 31.2 | 36.9 | 38.1 |
Blue clay modified with oxalic acid | 17.7 | 21.5 | 28.5 |
Green clay modified with oxalic acid | 28.1 | 34.2 | 35.8 |
Pink clay modified with oxalic acid | 25.0 | 27.7 | 30.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignatyev, A.A.; Razgovorov, P.B.; Nagornov, R.S.; Politaeva, N.A.; Mukhametova, L.R.; Ilyashenko, S.B. Composite Aluminosilicate Materials for Sorption Extraction of Impurity Substances of Vegetable Oils. Resources 2022, 11, 9. https://doi.org/10.3390/resources11020009
Ignatyev AA, Razgovorov PB, Nagornov RS, Politaeva NA, Mukhametova LR, Ilyashenko SB. Composite Aluminosilicate Materials for Sorption Extraction of Impurity Substances of Vegetable Oils. Resources. 2022; 11(2):9. https://doi.org/10.3390/resources11020009
Chicago/Turabian StyleIgnatyev, Aleksey A., Pavel B. Razgovorov, Roman S. Nagornov, Natalya A. Politaeva, Liliya R. Mukhametova, and Svetlana B. Ilyashenko. 2022. "Composite Aluminosilicate Materials for Sorption Extraction of Impurity Substances of Vegetable Oils" Resources 11, no. 2: 9. https://doi.org/10.3390/resources11020009
APA StyleIgnatyev, A. A., Razgovorov, P. B., Nagornov, R. S., Politaeva, N. A., Mukhametova, L. R., & Ilyashenko, S. B. (2022). Composite Aluminosilicate Materials for Sorption Extraction of Impurity Substances of Vegetable Oils. Resources, 11(2), 9. https://doi.org/10.3390/resources11020009