Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (474)

Search Parameters:
Keywords = blood-brain barrier integrity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3179 KiB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 - 2 Aug 2025
Viewed by 190
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
Show Figures

Figure 1

37 pages, 1469 KiB  
Review
Oncolytic Therapies for Glioblastoma: Advances, Challenges, and Future Perspectives
by Omar Alomari, Habiba Eyvazova, Beyzanur Güney, Rana Al Juhmani, Hatice Odabasi, Lubna Al-Rawabdeh, Muhammed Edib Mokresh, Ufuk Erginoglu, Abdullah Keles and Mustafa K. Baskaya
Cancers 2025, 17(15), 2550; https://doi.org/10.3390/cancers17152550 - 1 Aug 2025
Viewed by 650
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under investigation, including genetically engineered herpes simplex virus (HSV), adenovirus, poliovirus, reovirus, vaccinia virus, measles virus, and Newcastle disease virus, each exploiting unique tumor-selective mechanisms. While some, such as HSV-based therapies including G207 and DelytactTM, have demonstrated clinical progress, significant challenges persist, including immune evasion, heterogeneity in patient response, and delivery barriers due to the blood–brain barrier. Moreover, combination strategies integrating OVs with immune checkpoint inhibitors, chemotherapy, and radiation are promising but require further clinical validation. Non-viral oncolytic approaches, such as tumor-targeting bacteria and synthetic peptides, remain underexplored. This review highlights current advancements while addressing critical gaps in the literature, including the need for optimized delivery methods, better biomarker-based patient stratification, and a deeper understanding of GBM’s immunosuppressive microenvironment. Future research should focus on enhancing OV specificity, engineering viruses to deliver therapeutic genes, and integrating OVs with precision medicine strategies. By identifying these gaps, this review provides a framework for advancing oncolytic therapies in GBM treatment. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

68 pages, 2838 KiB  
Review
Unravelling the Viral Hypothesis of Schizophrenia: A Comprehensive Review of Mechanisms and Evidence
by Mădălina Georgeta Sighencea and Simona Corina Trifu
Int. J. Mol. Sci. 2025, 26(15), 7429; https://doi.org/10.3390/ijms26157429 - 1 Aug 2025
Viewed by 324
Abstract
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a [...] Read more.
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a wide array of neurotropic viruses, including influenza viruses, herpesviruses (HSV-1 and 2, CMV, VZV, EBV, HHV-6 and 8), hepatitis B and C viruses, HIV, HERVs, HTLV, Zika virus, BoDV, coronaviruses (including SARS-CoV-2), and others. These pathogens can contribute to schizophrenia through mechanisms such as direct microinvasion, persistent central nervous system infection, immune-mediated neuroinflammation, molecular mimicry, and the disturbance of the blood–brain barrier. Prenatal exposure to viral infections can trigger maternal immune activation, resulting in cytokine-mediated alterations in the neurological development of the foetus that persist into adulthood. Genetic studies highlight the role of immune-related loci, including major histocompatibility complex polymorphisms, in modulating susceptibility to infection and neurodevelopmental outcomes. Clinical data also support the “mild encephalitis” hypothesis, suggesting that a subset of schizophrenia cases involve low-grade chronic neuroinflammation. Although antipsychotics have some immunomodulatory effects, adjunctive anti-inflammatory therapies show promise, particularly in treatment-resistant cases. Despite compelling associations, pathogen-specific links remain inconsistent, emphasising the need for longitudinal studies and integrative approaches such as viromics to unravel causal relationships. This review supports a “multi-hit” model in which viral infections interfere with hereditary and immunological susceptibilities, enhancing schizophrenia risk. Elucidating these virus–immune–brain interactions may facilitate the discovery of biomarkers, targeted prevention, and novel therapeutic strategies for schizophrenia. Full article
(This article belongs to the Special Issue Schizophrenia: From Molecular Mechanism to Therapy)
Show Figures

Figure 1

50 pages, 937 KiB  
Review
Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7364; https://doi.org/10.3390/ijms26157364 - 30 Jul 2025
Viewed by 379
Abstract
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model [...] Read more.
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model of care. The general purpose of this review is to contemporaneously reflect on how these advances will impact neurosurgical care by providing us with more precise diagnostic and treatment pathways. We hope to provide a relevant review of the recent advances in genomics and multi-omics in the context of clinical practice and highlight their transformational opportunities in the existing models of care, where improved molecular insights can support improvements in clinical care. More specifically, we will highlight how genomic profiling, CRISPR-Cas9, and multi-omics platforms (genomics, transcriptomics, proteomics, and metabolomics) are increasing our understanding of central nervous system (CNS) disorders. Achievements obtained with transformational technologies such as single-cell RNA sequencing and intraoperative mass spectrometry are exemplary of the molecular diagnostic possibilities in real-time molecular diagnostics to enable a more directed approach in surgical options. We will also explore how identifying specific biomarkers (e.g., IDH mutations and MGMT promoter methylation) became a tipping point in the care of glioblastoma and allowed for the establishment of a new taxonomy of tumors that became applicable for surgeons, where a change in practice enjoined a different surgical resection approach and subsequently stratified the adjuvant therapies undertaken after surgery. Furthermore, we reflect on how the novel genomic characterization of mutations like DEPDC5 and SCN1A transformed the pre-surgery selection of surgical candidates for refractory epilepsy when conventional imaging did not define an epileptogenic zone, thus reducing resective surgery occurring in clinical practice. While we are atop the crest of an exciting wave of advances, we recognize that we also must be diligent about the challenges we must navigate to implement genomic medicine in neurosurgery—including ethical and technical challenges that could arise when genomic mutation-based therapies require the concurrent application of multi-omics data collection to be realized in practice for the benefit of patients, as well as the constraints from the blood–brain barrier. The primary challenges also relate to the possible gene privacy implications around genomic medicine and equitable access to technology-based alternative practice disrupting interventions. We hope the contribution from this review will not just be situational consolidation and integration of knowledge but also a stimulus for new lines of research and clinical practice. We also hope to stimulate mindful discussions about future possibilities for conscientious and sustainable progress in our evolution toward a genomic model of precision neurosurgery. In the spirit of providing a critical perspective, we hope that we are also adding to the larger opportunity to embed molecular precision into neuroscience care, striving to promote better practice and better outcomes for patients in a global sense. Full article
(This article belongs to the Special Issue Molecular Insights into Glioblastoma Pathogenesis and Therapeutics)
Show Figures

Figure 1

27 pages, 2012 KiB  
Article
Dual Effects of Maternal Diet and Perinatal Organophosphate Flame Retardant Treatment on Offspring Development, Behavior and Metabolism
by Ali Yasrebi, Catherine M. Rojas, Shabree Anthony, Samantha Feltri, Jamilah Evelyn, Kimberly Wiersielis, Samantha Adams, Veronia Basaly, Grace L. Guo, Lauren M. Aleksunes and Troy A. Roepke
Toxics 2025, 13(8), 639; https://doi.org/10.3390/toxics13080639 - 29 Jul 2025
Viewed by 270
Abstract
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) [...] Read more.
The maternal–fetal environment is influenced by multiple factors, including nutrition and environmental contaminants, which can impact long-term development. Perinatal exposure to organophosphate flame retardants (OPFRs) disrupts energy homeostasis and causes maladaptive behaviors in mice. Maternal obesity affects development by impairing blood–brain barrier (BBB) formation, influencing brain regions involved in energy regulation and behavior. This study examined the combined effects of maternal obesity and perinatal OPFR treatment on offspring development. Female mice were fed either a low-fat (LFD) or a high-fat diet (HFD) for 8 weeks, mated, and treated with either sesame oil or an OPFR mixture (tris(1,3-dichloro-2-propyl)phosphate, tricresyl phosphate, and triphenyl phosphate, 1 mg/kg each) from gestational day 7 to postnatal day 14. Results showed that both maternal diet and OPFR treatment disrupted blood–brain barrier integrity, energy balance, and reproductive gene expression in the hypothalamus of neonates. The expression of hepatic genes related to lipid and xenobiotic metabolism was also altered. In adulthood, LFD OPFR-treated female offspring exhibited increased avoidance behavior, while HFD OPFR-treated females demonstrated memory impairments. Metabolic assessments revealed decreased energy expenditure and nighttime activity in LFD OPFR-treated females. These findings suggest that maternal diet and OPFR treatment alter hypothalamic and liver gene expression in neonates, potentially leading to long-term metabolic and behavioral changes. Full article
Show Figures

Graphical abstract

14 pages, 2113 KiB  
Article
NR2F6 as a Disease Driver and Candidate Therapeutic Target in Experimental Cerebral Malaria
by Victoria E. Stefan, Victoria Klepsch, Nikolaus Thuille, Martina Steinlechner, Sebastian Peer, Kerstin Siegmund, Peter Lackner, Erich Schmutzhard, Karin Albrecht-Schgör and Gottfried Baier
Cells 2025, 14(15), 1162; https://doi.org/10.3390/cells14151162 - 28 Jul 2025
Viewed by 256
Abstract
Cerebral malaria (CM) is the severe progression of an infection with Plasmodium falciparum, causing detrimental damage to brain tissue and is the most frequent cause of Plasmodium falciparum mortality. The critical role of brain-infiltrating CD8+ T cells in the pathophysiology of [...] Read more.
Cerebral malaria (CM) is the severe progression of an infection with Plasmodium falciparum, causing detrimental damage to brain tissue and is the most frequent cause of Plasmodium falciparum mortality. The critical role of brain-infiltrating CD8+ T cells in the pathophysiology of CM having been revealed, our investigation focuses on the role of NR2F6, an established immune checkpoint, as a candidate driver of CM pathology. We employed an experimental mouse model of CM based on Plasmodium berghei ANKA (PbA) infection to compare the relative susceptibility of Nr2f6-knock-out and wild-type C57BL6/N mice. As a remarkable result, Nr2f6 deficiency confers a significant survival benefit. In terms of mechanism, we detected less severe endotheliopathy and, hence, less damage to the blood–brain barrier (BBB), accompanied by decreased sequestered parasites and less cytotoxic T-lymphocytes within the brain, manifesting in a better disease outcome. We present evidence that NR2F6 deficiency renders mice more resistant to experimental cerebral malaria (ECM), confirming a causal and non-redundant role for NR2F6 in the progression of ECM disease. Consequently, pharmacological inhibitors of the NR2F6 pathway could be of use to bolster BBB integrity and protect against CM. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

23 pages, 6611 KiB  
Article
Investigating Lipid and Energy Dyshomeostasis Induced by Per- and Polyfluoroalkyl Substances (PFAS) Congeners in Mouse Model Using Systems Biology Approaches
by Esraa Gabal, Marwah Azaizeh and Priyanka Baloni
Metabolites 2025, 15(8), 499; https://doi.org/10.3390/metabo15080499 - 24 Jul 2025
Viewed by 555
Abstract
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This [...] Read more.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This study investigates metabolic alterations in the liver following PFAS exposure to identify mechanisms leading to hepatoxicity. Methods: We analyzed RNA sequencing datasets of mouse liver tissues exposed to PFAS to identify metabolic pathways influenced by the chemical toxicant. We integrated the transcriptome data with a mouse genome-scale metabolic model to perform in silico flux analysis and investigated reactions and genes associated with lipid and energy metabolism. Results: PFESA-BP2 exposure caused dose- and sex-dependent changes, including upregulation of fatty acid metabolism, β-oxidation, and cholesterol biosynthesis. On the contrary, triglycerides, sphingolipids, and glycerophospholipids metabolism were suppressed. Simulations from the integrated genome-scale metabolic models confirmed increased flux for mevalonate and lanosterol metabolism, supporting potential cholesterol accumulation. GenX and PFOA triggered strong PPARα-dependent responses, especially in β-oxidation and lipolysis, which were attenuated in PPARα−/− mice. Mitochondrial fatty acid transport and acylcarnitine turnover were also disrupted, suggesting impaired mitochondrial dysfunction. Additional PFAS effects included perturbations in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and blood–brain barrier (BBB) function, pointing to broader systemic toxicity. Conclusions: Our findings highlight key metabolic signatures and suggest PFAS-mediated disruption of hepatic and possibly neurological functions. This study underscores the utility of genome-scale metabolic modeling as a powerful tool to interpret transcriptomic data and predict systemic metabolic outcomes of toxicant exposure. Full article
Show Figures

Graphical abstract

15 pages, 1078 KiB  
Review
Immunological Insights into Photodynamic Therapy of Glioblastoma Multiforme
by Paweł Woźnicki, Dorota Bartusik-Aebisher, Agnieszka Przygórzewska and David Aebisher
Molecules 2025, 30(15), 3091; https://doi.org/10.3390/molecules30153091 - 24 Jul 2025
Viewed by 312
Abstract
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of [...] Read more.
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of only 6%, underscoring the urgent need for novel therapeutic approaches. Immunotherapy has emerged as a promising strategy, and photodynamic therapy (PDT) in particular has attracted attention for its dual cytotoxic and immunostimulatory effects. In GBM models, PDT induces immunogenic cell death characterized by the release of damage-associated molecular patterns (DAMPs), which promote antigen presentation and activate T cell responses. Additionally, PDT transiently increases blood–brain barrier permeability, facilitating immune cell infiltration into the tumor microenvironment, and enhances clearance of waste products via stimulation of meningeal lymphatic vessels. Importantly, PDT can reprogram or inactivate immunosuppressive tumor-associated macrophages, thereby counteracting the pro-tumoral microenvironment. Despite these encouraging findings, further preclinical and clinical studies are required to elucidate PDT’s underlying immunological mechanisms fully and to optimize treatment regimens that maximize its efficacy as part of integrated immunotherapeutic strategies against GBM. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

72 pages, 6279 KiB  
Review
Beyond the Walls of Troy: A Scoping Review on Pharmacological Strategies to Enhance Drug Delivery Across the Blood–Brain Barrier and Blood–Tumor Barrier
by Miłosz Pinkiewicz, Artur Zaczyński, Jerzy Walecki and Michał Zawadzki
Int. J. Mol. Sci. 2025, 26(15), 7050; https://doi.org/10.3390/ijms26157050 - 22 Jul 2025
Viewed by 325
Abstract
The blood–brain barrier (BBB) is a highly selective interface between the bloodstream and the brain that prevents systemically administered therapeutics from effectively reaching tumor cells. As tumors progress, this barrier undergoes structural and functional alterations, giving rise to the blood–tumor barrier (BTB)—a pathologically [...] Read more.
The blood–brain barrier (BBB) is a highly selective interface between the bloodstream and the brain that prevents systemically administered therapeutics from effectively reaching tumor cells. As tumors progress, this barrier undergoes structural and functional alterations, giving rise to the blood–tumor barrier (BTB)—a pathologically modified structure that, despite increased permeability, often exhibits heterogeneous and clinically insufficient drug transport. Although a new generation of therapies is promising, their therapeutic potential cannot be realized unless the challenges posed by these barriers are effectively addressed. Various pharmacological strategies were explored to enhance brain tumor drug delivery. These include receptor-mediated disruption, inhibition of efflux transporters, and the engineering of delivery platforms that leverage endogenous transport pathways—such as carrier-mediated, adsorptive-mediated, and receptor-mediated mechanisms—as well as cell-mediated drug delivery. This review synthesizes (1) the BBB and BTB’s structural characteristics; (2) the influence of the tumor microenvironment (TME) on drug delivery; (3) pharmacological strategies to enhance drug accumulation within brain tumors; (4) the integration of pharmacological methods with neurosurgical techniques to enhance drug delivery. As efforts to improve drug delivery across the BBB and BTB accelerate, this review aims to map the current landscape of pharmacological approaches for enhancing drug penetration into brain tumors. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 14493 KiB  
Article
Identification of Drug Repurposing Candidates for Coxsackievirus B3 Infection in iPSC-Derived Brain-like Endothelial Cells
by Jacob F. Wood, John M. Vergis, Ali S. Imami, William G. Ryan, Jon J. Sin, Brandon J. Kim, Isaac T. Schiefer and Robert E. McCullumsmith
Int. J. Mol. Sci. 2025, 26(15), 7041; https://doi.org/10.3390/ijms26157041 - 22 Jul 2025
Viewed by 205
Abstract
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters [...] Read more.
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters the blood–brain barrier may help identify new therapies to combat this often-devastating infection. We reanalyzed a previously published RNA sequencing dataset for Coxsackievirus B3-infected human-induced pluripotent stem-cell-derived brain endothelial cells (iBECs) to examine how Coxsackievirus B3 altered mRNA expression. By integrating GSEA, EnrichR, and iLINCs-based perturbagen analysis, we present a novel, systems-level approach to uncover potential drug repurposing candidates for CVB3 infection. We found dynamic changes in host transcriptomic response to Coxsackievirus B3 infection at 2- and 5-day infection time points. Downregulated pathways included ribosomal biogenesis and protein synthesis, while upregulated pathways included a defense response to viruses, and interferon production. Using iLINCs transcriptomic analysis, MEK, PDGFR, and VEGF inhibitors were identified as possible novel antiviral therapeutics. Our findings further elucidate Coxsackievirus B3-associated pathways in (iBECs) and highlight potential drug repurposing candidates, including pelitinib and neratinib, which may disrupt Coxsackievirus B3 pathology at the blood–brain barrier (BBB). Full article
Show Figures

Figure 1

21 pages, 835 KiB  
Review
Nutritional Modulation of Impaired Blood-Brain Barrier Integrity and Function in Major Depression
by Miroslav Adzic, Iva Lukic, Milos Mitic, Ester Francija Zerajic, Emilija Glavonic, Milan Jovanovic and Sanja Ivkovic
Int. J. Mol. Sci. 2025, 26(14), 6917; https://doi.org/10.3390/ijms26146917 - 18 Jul 2025
Viewed by 345
Abstract
Major Depressive Disorder (MDD) is increasingly linked to disruptions in blood-brain barrier (BBB) integrity, contributing to neuroinflammation and impaired brain homeostasis. While traditional antidepressant therapies often fail to achieve full remission, growing evidence suggests that specific dietary compounds may offer novel avenues for [...] Read more.
Major Depressive Disorder (MDD) is increasingly linked to disruptions in blood-brain barrier (BBB) integrity, contributing to neuroinflammation and impaired brain homeostasis. While traditional antidepressant therapies often fail to achieve full remission, growing evidence suggests that specific dietary compounds may offer novel avenues for restoring BBB function and improving mental health outcomes. This review explores the potential of selected nutrients—omega-3 fatty acids, vitamin D, sulforaphane, fucoidan, and urolithins—to modulate BBB integrity through anti-inflammatory, antioxidant, and transporter-regulatory mechanisms. These compounds act by reinforcing tight junctions, reducing matrix metalloproteinase activity, and modulating efflux transporters such as P-glycoprotein. Although current evidence is largely preclinical, the mechanistic insights provided in this review support the rationale for integrating nutritional strategies into the management of MDD. Future clinical studies are needed to validate these findings and develop biomarker-driven approaches for targeting the BBB in nutritional interventions for psychiatric disorders. Full article
(This article belongs to the Special Issue The Blood–Brain Barrier and Neuroprotection)
Show Figures

Figure 1

17 pages, 1772 KiB  
Article
Exploration of the Possible Relationships Between Gut and Hypothalamic Inflammation and Allopregnanolone: Preclinical Findings in a Post-Finasteride Rat Model
by Silvia Diviccaro, Roberto Oleari, Federica Amoruso, Fabrizio Fontana, Lucia Cioffi, Gabriela Chrostek, Vera Abenante, Jacopo Troisi, Anna Cariboni, Silvia Giatti and Roberto Cosimo Melcangi
Biomolecules 2025, 15(7), 1044; https://doi.org/10.3390/biom15071044 - 18 Jul 2025
Viewed by 1971
Abstract
Background: Finasteride, a 5α-reductase inhibitor commonly prescribed for androgenetic alopecia, has been linked to persistent adverse effects after discontinuation, known as post-finasteride syndrome (PFS). Symptoms include neurological, psychiatric, sexual, and gastrointestinal disturbances. Emerging evidence suggests that PFS may involve disruption of sex steroid [...] Read more.
Background: Finasteride, a 5α-reductase inhibitor commonly prescribed for androgenetic alopecia, has been linked to persistent adverse effects after discontinuation, known as post-finasteride syndrome (PFS). Symptoms include neurological, psychiatric, sexual, and gastrointestinal disturbances. Emerging evidence suggests that PFS may involve disruption of sex steroid homeostasis, neuroactive steroid deficiency (notably allopregnanolone, ALLO), and gut–brain axis alterations. Objective: This study aimed to investigate the effects of finasteride withdrawal (FW) in a rat model and evaluate the potential protective effects of ALLO on gut and hypothalamic inflammation. Methods: Adult male Sprague Dawley rats were treated with finasteride for 20 days, followed by one month of drug withdrawal. A subgroup received ALLO treatment during the withdrawal. Histological, molecular, and biochemical analyses were performed on the colon and hypothalamus. Gut microbiota-derived metabolites and markers of neuroinflammation and blood–brain barrier (BBB) integrity were also assessed. Results: At FW, rats exhibited significant colonic inflammation, including a 4.3-fold increase in Mφ1 levels (p < 0.001), a 2.31-fold decrease in butyrate concentration (p < 0.01), and elevated hypothalamic GFAP and Iba-1 protein expression (+360%, p < 0.01 and +100%, p < 0.01, respectively). ALLO treatment rescued these parameters in both the colon and hypothalamus but only partially restored mucosal and BBB structural integrity, as well as the NF-κB/PPARγ pathway. Conclusions: This preclinical study shows that FW causes inflammation in both the gut and hypothalamus in rats. ALLO treatment helped reduce several of these effects. These results suggest ALLO could have a protective role and have potential as a treatment for PFS patients. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

21 pages, 1875 KiB  
Review
Translating Exosomal microRNAs from Bench to Bedside in Parkinson’s Disease
by Oscar Arias-Carrión, María Paulina Reyes-Mata, Joaquín Zúñiga and Daniel Ortuño-Sahagún
Brain Sci. 2025, 15(7), 756; https://doi.org/10.3390/brainsci15070756 - 16 Jul 2025
Viewed by 407
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuronal loss, α-synuclein aggregation, and chronic neuroinflammation. Recent evidence suggests that exosomal microRNAs (miRNAs)—small, non-coding RNAs encapsulated in extracellular vesicles—are key regulators of PD pathophysiology and promising candidates for biomarker development and [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuronal loss, α-synuclein aggregation, and chronic neuroinflammation. Recent evidence suggests that exosomal microRNAs (miRNAs)—small, non-coding RNAs encapsulated in extracellular vesicles—are key regulators of PD pathophysiology and promising candidates for biomarker development and therapeutic intervention. Exosomes facilitate intercellular communication, cross the blood–brain barrier, and protect miRNAs from degradation, rendering them suitable for non-invasive diagnostics and targeted delivery. Specific exosomal miRNAs modulate neuroinflammatory cascades, oxidative stress, and synaptic dysfunction, and their altered expression in cerebrospinal fluid and plasma correlates with disease onset, severity, and progression. Despite their translational promise, challenges persist, including methodological variability in exosome isolation, miRNA profiling, and delivery strategies. This review integrates findings from preclinical models, patient-derived samples, and systems biology to delineate the functional impact of exosomal miRNAs in PD. We propose mechanistic hypotheses linking miRNA dysregulation to molecular pathogenesis and present an interactome model highlighting therapeutic nodes. Advancing exosomal miRNA research may transform the clinical management of PD by enabling earlier diagnosis, molecular stratification, and the development of disease-modifying therapies. Full article
(This article belongs to the Special Issue Molecular Insights in Neurodegeneration)
Show Figures

Figure 1

17 pages, 6355 KiB  
Article
Regulation of Hindbrain Vascular Development by rps20 in Zebrafish
by Xinyu Shen, Zhaozhi Wen, Shunze Deng, Yuxuan Qiu, Weijie Ma, Xinyue Dong, Jie Gong, Yu Zhang, Dong Liu and Bing Xu
Cells 2025, 14(14), 1070; https://doi.org/10.3390/cells14141070 - 13 Jul 2025
Viewed by 503
Abstract
During aging, the brain vasculature undergoes significant deterioration characterized by increased arterial tortuosity, compromised blood–brain barrier integrity, and reduced cerebral blood flow, all of which contribute to various neurological disorders. Thus, understanding the mechanisms underlying aging-related cerebrovascular defects is critical for developing strategies [...] Read more.
During aging, the brain vasculature undergoes significant deterioration characterized by increased arterial tortuosity, compromised blood–brain barrier integrity, and reduced cerebral blood flow, all of which contribute to various neurological disorders. Thus, understanding the mechanisms underlying aging-related cerebrovascular defects is critical for developing strategies to alleviate aging-associated neurological diseases. In this study, we investigated the role of aging-related genes in brain vascular development using zebrafish as an in vivo model. By thoroughly analyzing scRNA-seq datasets of mid- and old-aged brain vascular endothelial cells (human/mouse), we found ribosomal protein S20 (rps20) significantly down-regulated during aging. qPCR analysis and whole-mount in situ hybridization validated a high expression of rps20 during early zebrafish development, which progressively decreased in adult and aged zebrafish brains. Functional studies using the CRISPR/Cas9-mediated knockout of rps20 revealed an impaired growth of central arteries in the hindbrain and a marked increased intracranial hemorrhage incidence. Mechanistically, qPCR analysis demonstrated a significant downregulation of vegfa, cxcl12b, and cxcr4a, key signaling molecules required for hindbrain vascular development, in rps20-deficient embryos. In conclusion, our findings demonstrate that rps20 is essential for proper brain vascular development and the maintenance of vascular homeostasis in zebrafish, revealing a novel mechanism by which aging-related genes regulate brain vascular development. This study provides new insights that may aid in understanding and treating aging-associated vascular malformations and neurological pathologies. Full article
Show Figures

Figure 1

26 pages, 19416 KiB  
Article
Identification and Characterization of a Translational Mouse Model for Blood–Brain Barrier Leakage in Cerebral Small Vessel Disease
by Ruxue Jia, Gemma Solé-Guardia, Vivienne Verweij, Jessica M. Snabel, Bram Geenen, Anil Man Tuladhar, Robert Kleemann, Amanda J. Kiliaan and Maximilian Wiesmann
Int. J. Mol. Sci. 2025, 26(14), 6706; https://doi.org/10.3390/ijms26146706 - 12 Jul 2025
Viewed by 388
Abstract
Blood–brain barrier (BBB) dysfunction is a hallmark of cerebral small vessel disease (cSVD). This study aimed to identify a mouse model that replicates BBB impairment and shares key cSVD risk factors. Transgenic db/db and LDLr−/−.Leiden mice, both prone to obesity and [...] Read more.
Blood–brain barrier (BBB) dysfunction is a hallmark of cerebral small vessel disease (cSVD). This study aimed to identify a mouse model that replicates BBB impairment and shares key cSVD risk factors. Transgenic db/db and LDLr−/−.Leiden mice, both prone to obesity and hypertension, were compared to C57BL/6J controls. BBB leakage was assessed using DCE-MRI and sodium fluorescein (NaFl); cerebral blood flow (CBF) by MRI. Dyslipidemia and vascular inflammation were measured by plasma tests. Tight junction integrity, endothelial dysfunction (glucose transporter 1, GLUT-1) and neuroinflammation were evaluated with immunohistochemistry and PCR. Both transgenic models developed an obese phenotype with hyperinsulinemia, but only LDLr−/−.Leiden mice showed human-like dyslipidemia. When fed a high-fat diet (HFD) or HFD plus cholesterol, LDLr−/−.Leiden mice showed reduced CBF, endothelial dysfunction (lowered GLUT-1), elevated vascular inflammation (ICAM-1, VCAM-1, S-selectin), and BBB leakage, as evidenced by DCE-MRI and NaFl, together with reduced ZO-1 and claudin-5 expression. Contrastingly, db/db mice showed endothelial dysfunction without BBB leakage. Neuroinflammation (IBA-1, GFAP) was observed only in LDLr−/−.Leiden groups, consistent with BBB disruption. These findings indicate that LDLr−/−.Leiden mice, but not db/db mice, are a promising translational model for studying BBB dysfunction in cSVD, offering insights into disease mechanisms and a platform for therapeutic development. Full article
Show Figures

Figure 1

Back to TopTop