Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = blast-resistant rice varieties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2355 KB  
Article
Distinct Seed Endophytic Bacterial Communities Are Associated with Blast Resistance in Yongyou Hybrid Rice Varieties
by Yanbo Chen, Caiyu Lu, Zhenyu Liu, Zhixin Chen, Jianfeng Chen, Xiaomeng Zhang, Xianting Wang, Bin Ma, Houjin Lv, Huiyun Dong and Yanling Liu
Agronomy 2026, 16(3), 280; https://doi.org/10.3390/agronomy16030280 - 23 Jan 2026
Abstract
Rice blast, caused by the fungal pathogen Pyricularia oryzae, remains one of the most destructive diseases threatening global rice production. Although the deployment of resistant cultivars is widely regarded as the most effective and sustainable control strategy, resistance based solely on host [...] Read more.
Rice blast, caused by the fungal pathogen Pyricularia oryzae, remains one of the most destructive diseases threatening global rice production. Although the deployment of resistant cultivars is widely regarded as the most effective and sustainable control strategy, resistance based solely on host genetics often has limited durability due to the rapid adaptation of the pathogen. Increasing evidence suggests that plant-associated microbial communities contribute to host health and disease resistance, yet the role of seed-associated microbiota in shaping rice blast resistance remains insufficiently understood. In this study, we investigated seed endophytic bacterial communities across multiple indica–japonica hybrid rice varieties from the Yongyou series that exhibit contrasting levels of resistance to rice blast. By integrating amplicon sequencing, we identified distinct seed bacterial assemblages associated with blast-resistant and blast-susceptible varieties were identified. Notably, the microbial communities in blast-resistant varieties exhibited significantly higher Shannon index, with a median value of 3.478 compared to 2.654 in susceptible varieties (p < 0.001), indicating a greater diversity and more balanced community structure compared to those in susceptible varieties. Several bacterial taxa consistently enriched in resistant varieties showed negative ecological associations with P. oryzae, both at the local scale and across publicly available global metagenomic datasets. These findings indicate that seed endophytic bacterial communities are non-randomly structured in relation to host resistance phenotypes and may contribute to rice blast resistance through persistent ecological interactions with the pathogen. This work highlights the potential importance of seed-associated microbiota as intrinsic components of varietal resistance and provides a microbial perspective for improving durable disease resistance in rice breeding programs. Full article
Show Figures

Figure 1

20 pages, 1455 KB  
Article
Regional Disparities Call for Defining the Target Population of Environments (TPEs) and the Breeding Strategies for Sustainable Agriculture: A Case Study on Rice Improvement in Vietnam
by Huynh Quang Tin, Loi Huu Nguyen, Benjamin Kilian and Shivali Sharma
Sustainability 2026, 18(2), 1118; https://doi.org/10.3390/su18021118 - 21 Jan 2026
Abstract
This study examines the socio-demographic characteristics, rice production practices, and breeding preferences of farmers across three major rice-growing regions of Vietnam: the Mekong Delta, Central Vietnam, and North Vietnam. A survey of 109 rice farmers captured information on cultivation status, livelihood activities, and [...] Read more.
This study examines the socio-demographic characteristics, rice production practices, and breeding preferences of farmers across three major rice-growing regions of Vietnam: the Mekong Delta, Central Vietnam, and North Vietnam. A survey of 109 rice farmers captured information on cultivation status, livelihood activities, and preferred breeding traits for rice improvement. The results reveal clear regional differentiation in farm structure, production objectives, and varietal preferences. Rice farming in the Mekong Delta is predominantly commercially oriented, characterized by larger landholdings and greater male participation, whereas rice production in Central and Northern Vietnam is more subsistence-oriented, with higher female involvement. Farmers across regions consistently valued locally adapted rice varieties, but articulated region-specific trait priorities shaped by agro-ecological conditions. In the Mekong Delta, preferences emphasized soft grain quality and salinity tolerance, reflecting coastal production constraints. In Central Vietnam, farmers prioritized heat tolerance and resistance to pests and diseases, while in Northern Vietnam, cold tolerance and grain quality attributes, including aroma and harder texture, were most important. Major biotic stresses, particularly blast and bacterial blight, also showed significant regional variation in reported incidence. By linking these region-specific preferences to clearly defined Target Populations of Environments (TPEs), this study provides a practical framework for aligning breeding targets with real-world production conditions. The findings offer actionable guidance for participatory breeding and decentralized varietal evaluation under the Biodiversity for Opportunities, Livelihoods, and Development (BOLD) initiative, as well as other rice improvement programs. To our knowledge, this represents the first multi-region evidence from Vietnam that systematically integrates agro-ecological variation with a TPE-based breeding approach, supporting the development of climate-resilient, farmer-preferred rice varieties and more sustainable rice production systems. Full article
Show Figures

Figure 1

14 pages, 3873 KB  
Article
Pyramiding Pita, Pigm, Pi2, and Xa23 to Develop Hybrid Rice with Dual Resistance to Rice Blast and Bacterial Blight
by Siyuan Wu, Xuemei Qin, Jiali Liu, Ju Gao, Lijun Gao, Geng Zhou, Yang Zhou, Tianqi Bai, Chonglie Ma and Fang Liu
Plants 2026, 15(2), 323; https://doi.org/10.3390/plants15020323 - 21 Jan 2026
Abstract
Rice blast and bacterial blight cause severe harm to rice production, and the breeding of resistant varieties guarantees the safety of rice production. Meanwhile, multigene pyramiding breeding based on molecular marker-assisted selection is a crucial approach for rice breeding to combat multiple diseases. [...] Read more.
Rice blast and bacterial blight cause severe harm to rice production, and the breeding of resistant varieties guarantees the safety of rice production. Meanwhile, multigene pyramiding breeding based on molecular marker-assisted selection is a crucial approach for rice breeding to combat multiple diseases. This study aimed to develop accurate and efficient PARMS markers for rice blast resistance genes Pita, Pigm, and Pi2, and bacterial blight resistance gene Xa23. A systematic genotyping analysis of the resistant alleles of these 4 genes was performed on 384 major cultivated varieties in production. The results showed that only 5.21% of the varieties harbored more than two resistant alleles simultaneously. Using traditional breeding strategies in combination with the developed PARMS markers, the high-quality three-line male sterile line Ruanfeng A (pyramiding Pita and Pigm) and the strong restorer line Gui 610 (pyramiding Pi2 and Xa23) were bred. Crossing these lines produced a new hybrid rice variety, Ruanfengyou 610. Ruanfengyou 610 pyramids 4 resistance genes (Pita/Pigm/Pi2/Xa23), exhibits resistance to both rice blast and bacterial blight, has prominent heterosis and excellent grain quality, and has strong application potential, which is of great significance for ensuring the safety of rice production. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

15 pages, 6645 KB  
Article
Multiplex Editing of OsMads26, OsBsr-d1, OsELF3-2 and OsERF922 with CRISPR/Cas9 Confers Enhanced Resistance to Pathogens and Abiotic Stresses and Boosts Grain Yield in Rice (Oryza sativa)
by Hailing Luo, Hengwei Zou, Shengli Lin, Jiali Liu, Geng Zhou, Lijun Gao, Jieyi Huang, Jiaxuan Li, Ju Gao and Chonglie Ma
Int. J. Mol. Sci. 2026, 27(2), 781; https://doi.org/10.3390/ijms27020781 - 13 Jan 2026
Viewed by 152
Abstract
Rice (Oryza sativa) is one of the world’s major staple foods. However, stable rice production is constrained by various biotic and abiotic and stresses. Breeding and cultivation of rice varieties with resistance to multiple pathogens and environmental stresses is the most [...] Read more.
Rice (Oryza sativa) is one of the world’s major staple foods. However, stable rice production is constrained by various biotic and abiotic and stresses. Breeding and cultivation of rice varieties with resistance to multiple pathogens and environmental stresses is the most effective strategy to mitigate the adverse effect of pathogen attacks and abiotic stresses. Recently, researchers have focused on the exploitation of CRISPR/Cas9 technology to manipulate some negative defense-regulator genes to generate rice varieties with broad-spectrum resistance against rice pathogens. In this study, four negative regulator genes of rice blast, OsMads26, OsBsr-1, OsELF3-2 and OsERF922, were selected as CRISPR/Cas9 targets. By simultaneously knocking out all four genes via CRISPR/Cas9 technology, we created three mads26/bsr-1/elf3-2/erf922 quadruple knockout mutants. Our results demonstrated that all quadruple mutants exhibited much higher resistance not only to rice blast and bacterial blight but also to drought and salt stresses than the wildtype. Interestingly, grain yield of all three quadruple mutants was also drastically increased by 17.35% to 21.95%. Therefore, this study provides a novel strategy to rapidly improve rice varieties with broad-spectrum resistance to pathogens, elevated tolerance to abiotic stresses and enhanced yield potential. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 6199 KB  
Article
Multiplex Gene Editing and Effect Analysis of Yield, Fragrance, and Blast Resistance Genes in Rice
by Shuhui Guan, Yingchun Han, Jingwen Zhang, Yanxiu Du, Zhen Chen, Chunbo Miao and Junzhou Li
Genes 2026, 17(1), 77; https://doi.org/10.3390/genes17010077 - 9 Jan 2026
Viewed by 196
Abstract
Background: The coordinated improvement of yield, quality and resistance is a primary goal in rice breeding. Gene editing technology is a novel method for precise multiplex gene improvement. Methods: In this study, we constructed a multiplex CRISPR/Cas9 vector targeting yield-related genes (GS3 [...] Read more.
Background: The coordinated improvement of yield, quality and resistance is a primary goal in rice breeding. Gene editing technology is a novel method for precise multiplex gene improvement. Methods: In this study, we constructed a multiplex CRISPR/Cas9 vector targeting yield-related genes (GS3, OsPIL15, Gn1a), fragrance gene (OsBADH2) and rice blast resistance gene (Pi21) to pyramid traits for enhanced yield, quality, and disease resistance in rice. A tRNA-assisted CRISPR/Cas9 multiplex gene editing vector, M601-OsPIL15/GS3/Gn1a/OsBADH2/Pi21-gRNA, was constructed. Genetic transformation was performed using the Agrobacterium-mediated method with the japonica rice variety Xin Dao 53 as the recipient. Mutation editing efficiency was detected in T0 transgenic plants. Grain length, grain number per panicle, thousand-grain weight, 2-acetyl-1-pyrroline (2-AP) content, and rice blast resistance of homozygous lines were measured in the T3 generations. Results: Effectively edited plants were obtained in the T0 generation. The simultaneous editing efficiency for all five genes reached 9.38%. The individual gene editing efficiencies for Pi21, GS3, OsBADH2, Gn1a, and OsPIL15 were 78%, 63%, 56%, 54%, and 13%, respectively. Five five-gene homozygous edited lines with two genotypes were selected in the T2 generation. In the T3 generation, compared with the wild-type (WT), the edited homozygous lines showed increased grain number per panicle (14.60–25.61%), increased grain length (7.39–11.16%), increased grain length–width ratio (8.37–13.02%), increased thousand-grain weight (3.79–9.15%), a 42–64 folds increase in the fragrant substance 2-AP content, and significantly enhanced rice blast resistance. Meanwhile, there were no significant changes in other agronomic traits. Conclusions: CRISPR/Cas9-mediated multiplex gene editing technology enabled the simultaneous editing of genes related to rice yield, quality, and disease resistance. This provides an effective approach for obtaining new japonica rice germplasm with blast resistance, long grains, and fragrance. Full article
(This article belongs to the Special Issue Research on Genetics and Breeding of Rice)
Show Figures

Figure 1

11 pages, 841 KB  
Article
Dynamics of Avirulence Genes and Races in the Population of Magnaporthe oryzae in Jilin Province, China
by Shengjie Zhang, Zhaoyuan Jiang, Xiaomei Liu, Ling Sun, Hui Sun, Li Li and Songquan Wu
Agronomy 2026, 16(1), 41; https://doi.org/10.3390/agronomy16010041 - 23 Dec 2025
Viewed by 353
Abstract
Rice blast, caused by Magnaporthe oryzae, is a devastating global disease. Its control through the deployment of host resistance genes relies on a detailed knowledge of the pathogen’s race structure and the corresponding avirulence (Avr) genes. To guide effective rice [...] Read more.
Rice blast, caused by Magnaporthe oryzae, is a devastating global disease. Its control through the deployment of host resistance genes relies on a detailed knowledge of the pathogen’s race structure and the corresponding avirulence (Avr) genes. To guide effective rice breeding for blast resistance, this study investigated the population dynamics of M. oryzae in Jilin Province from 2022 to 2024. The distribution frequencies of seven Avr genes were detected using PCR and Avr gene-specific primers, and the physiological race structure of 193 isolates was characterized using a set of Chinese differential cultivars, which contains seven cultivars. The results revealed a high prevalence and stability of specific Avr genes, with Avr-Pi9, Avr-Pias, Avr-Piz-t, and Avr-Pib all exhibiting detection frequencies exceeding 80%. In particular, Avr-Pib showed a high frequency (80.83%) and a very low disease incidence (0.64%) on the differential variety Sifeng 43 (which carries Pib), confirming its low mutation rate and the ongoing effectiveness of the corresponding resistance gene. Conversely, the significant decline in Avr-co39 suggests that its corresponding resistance gene should be avoided. Race diversity increased over the three-year period, characterized by a shift toward a more complex structure dominated by ZG1, ZA17, ZA43, and ZB31. Based on the gene-for-gene interactions and pathogen population structure, we recommend a breeding strategy that prioritizes the incorporation of the highly effective Pib, Pi54, and Pik genes, utilizing resistant donors like Sifeng 43. These results can help inform the design of sustainable management strategies adapted to the changing pathogen population. Full article
(This article belongs to the Special Issue Managing Fungal Pathogens of Stable Crops in Sustainable Agriculture)
Show Figures

Figure 1

19 pages, 2350 KB  
Article
Differential Assembly of Rhizosphere Microbiome and Metabolome in Rice with Contrasting Resistance to Blast Disease
by Jian Wang, Deqiang Li, Daihua Lu, Cheng Chen, Qin Zhang, Rongtao Fu and Fu Huang
Microorganisms 2025, 13(12), 2789; https://doi.org/10.3390/microorganisms13122789 - 8 Dec 2025
Viewed by 375
Abstract
Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases threatening global rice production. Although host resistance represents a sustainable control strategy, the underlying mechanisms mediated by the rhizosphere microbiome remain poorly understood. In this study, we selected four [...] Read more.
Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases threatening global rice production. Although host resistance represents a sustainable control strategy, the underlying mechanisms mediated by the rhizosphere microbiome remain poorly understood. In this study, we selected four rice varieties with varying resistance to blast and demonstrated, through an integrated approach of 16S rRNA/ITS amplicon sequencing, untargeted metabolomics, and soil physicochemical analysis, that the rice genotype reprograms the genotype-root exudate-rhizosphere microbiome system. Results showed that the resistant variety P104 significantly decreased the soil pH while increasing the contents of total nitrogen, ammonium nitrogen, and nitrate nitrogen. On the other hand, the susceptible variety P302 exhibited higher pH and available phosphorus content. Furthermore, the rhizosphere of P104 was enriched with specific beneficial microbes such as Desulfobacterota, Ascomycota, and Pseudeurotium, and activated defense-related metabolic pathways including cysteine and methionine metabolism and phenylpropanoid biosynthesis. In contrast, susceptible varieties showed reduced bacterial diversity and fostered a microecological environment more conducive to pathogen proliferation. Our findings indicate that blast-resistant rice genotypes are associated with a protective rhizosphere microbiome, potentially mediated by alterations in root metabolism, thereby suppressing pathogen establishment. These insights elucidate the underground mechanisms of blast resistance and highlight the potential of microbiome-assisted breeding for sustainable crop protection. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

18 pages, 569 KB  
Article
Genomic Confirmation of Resistance Genes for Blast, Bacterial Leaf Blight, Rice Tungro Spherical Virus, and Brown Planthopper in Tropically Adapted Temperate Japonica Rice Varieties
by Myrish Alvarez Pacleb, Seongkyeong Lee, Sherry Lou Hechanova, Thelma Padolina, Lenie Pautin, Jesson Del-Amen, Dong-Soo Park, Il-Ryong Choi, Sung-Ryul Kim, Dongjin Shin and Jung-Pil Suh
Agronomy 2025, 15(11), 2585; https://doi.org/10.3390/agronomy15112585 - 10 Nov 2025
Viewed by 601
Abstract
The Rural Development Administration (RDA) of the Republic of Korea, in collaboration with International Rice Research Institute (IRRI), developed six temperate japonica rice varieties—MS11, Japonica 1, 2, 6, 7, and Cordillera 4—which were officially approved for release in tropical environments. These varieties offer [...] Read more.
The Rural Development Administration (RDA) of the Republic of Korea, in collaboration with International Rice Research Institute (IRRI), developed six temperate japonica rice varieties—MS11, Japonica 1, 2, 6, 7, and Cordillera 4—which were officially approved for release in tropical environments. These varieties offer improved eating quality, enhanced lodging resistance, and increased market value. Although initial evaluations indicated that the varieties were resistant to moderately resistant to major biotic stresses, recent field trials revealed a gradual increase in susceptibility over time. To address this, we conducted comprehensive evaluations of these varieties against rice blast under both greenhouse and field conditions and assessed their responses to bacterial leaf blight (BLB), rice tungro spherical virus (RTSV), and brown planthopper (BPH) under controlled environments. Additionally, whole-genome sequencing was employed to confirm the presence of known resistance alleles. Our findings revealed variable resistance profiles across the six varieties. Japonica 1 exhibited the most stable resistance to blast, supported by the presence of the Pi5 allele. Japonica 7 showed strong resistance to key BLB isolates and moderate resistance to a broader range of Xoo races, supported by the resistant Xa25/OsSWEET13 haplotype. In addition, Japonica 7, along with Japonica 6, carried the tsv1 gene for RTSV resistance. However, none of the six varieties possessed other major resistance genes for BPH. These results highlight the urgent need to introgress durable resistance genes into tropical japonica rice to enhance resilience and broaden the spectrum of biotic stress resistance—critical traits for sustainable rice production in tropical environments. Full article
(This article belongs to the Topic Plant Breeding, Genetics and Genomics, 2nd Edition)
Show Figures

Figure 1

16 pages, 1833 KB  
Article
Effects of Water Management Practices on Rice Grain Quality and Pest-Disease Incidence in Environmentally Friendly Cultivation Systems
by SeungKa Oh and Young-Son Cho
Agriculture 2025, 15(21), 2244; https://doi.org/10.3390/agriculture15212244 - 28 Oct 2025
Viewed by 720
Abstract
This study investigated the effects of different water management practices on the growth, yield, and grain quality of rice grown under environmentally friendly farming methods in Apgok-Ri, Gungnyu-Myeon, Uiryeong-Gun, from 2022 to 2024. Treatments included mid-season drainage for 2, 3, or 4 weeks [...] Read more.
This study investigated the effects of different water management practices on the growth, yield, and grain quality of rice grown under environmentally friendly farming methods in Apgok-Ri, Gungnyu-Myeon, Uiryeong-Gun, from 2022 to 2024. Treatments included mid-season drainage for 2, 3, or 4 weeks (2MD, 3MD, 4MD), followed by either low-level water management (MD-1) or alternate wetting and drying (MD-2), with continuous flooding (CF) as the control. The rice variety was machine-transplanted on 9–10 June, and organic fertilizer (90 kg N/ha) was applied as a basal dressing. Water treatments were initiated in mid-July each year. The highest yield was consistently recorded in the 2MD-2 treatment, with 5.85, 5.74, and 5.38 tons/ha from 2022 to 2024, representing 15.0%, 14.5%, and 7.8% increases over CF, respectively. On average, alternate irrigation (MD-2) resulted in higher yields than low-level water management (MD-1) by 1.19–5.90%. Grain quality was also highest in 2MD-2, showing the greatest percentage of ripened grains each year, whereas CF had the highest proportion of immature and unripe grains. Crude protein content in brown rice was lowest in 3MD-2 (6.12%), followed by 2MD-2 (7.51%). Incidences of major diseases such as sheath blight, rice blast, panicle blight, and bacterial grain blight were highest in the CF treatment. Rice leaf blight was not significantly different in 2022, but was most prevalent in CF in 2023 and 2024. There were no major differences in brown planthopper and false smut incidence, although false smut peaked in CF in 2024. These findings suggest that 2-week mid-season drainage followed by alternate irrigation (2MD-2) is an effective strategy to improve yield, grain quality, and disease resistance in sustainable rice farming systems. Full article
Show Figures

Figure 1

16 pages, 3732 KB  
Article
Comprehensive Transcriptomic Analysis of the Molecular Mechanisms Conferring Resistance to Rice Blast in the Elite Restorer Line Fuhui2165
by Shuijin Zhang, Yinyin Mao, Yonghe Hong, Feiyan Zheng, Ronghua Hu, Shihang Tu, Fantao Zhang and Peng Zhou
Int. J. Mol. Sci. 2025, 26(20), 10164; https://doi.org/10.3390/ijms262010164 - 19 Oct 2025
Viewed by 652
Abstract
Rice blast, caused by Magnaporthe oryzae (M. oryzae), severely threatens global rice production with substantial yield losses, endangering food security and driving demand for resistant varieties. Fuhui2165 (FH2165), an elite restorer line with stable blast resistance, superior agronomic traits, and high [...] Read more.
Rice blast, caused by Magnaporthe oryzae (M. oryzae), severely threatens global rice production with substantial yield losses, endangering food security and driving demand for resistant varieties. Fuhui2165 (FH2165), an elite restorer line with stable blast resistance, superior agronomic traits, and high grain quality, is valuable for hybrid breeding, but its resistance mechanisms remain unclear. In this study, we investigated the rice blast resistance and underlying mechanisms in FH2165 and its parental lines (Huahangsimiao/HHSM, Minghui86/MH86, and Shuhui527/SH527) using transcriptome sequencing analysis. Phenotypic analysis revealed that FH2165 and HHSM exhibited stronger resistance compared to MH86 and SH527. Differential expression analysis identified 3886, 2513, 3390, and 4678 differentially expressed genes (DEGs) in FH2165, HHSM, MH86, and SH527, respectively. Gene Ontology (GO) enrichment analysis highlighted DEGs associated with chloroplasts, plastids, thylakoids, and related cellular components. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified significant enrichment in pathways such as carbon metabolism, amino acid biosynthesis, and photosynthesis. This suggested that defense strategies could involve energy reprogramming and the synthesis of secondary metabolites. Additionally, the DEGs co-expressed specifically in FH2165 and HHSM were enriched in functions related to RNA processing, GTP binding, and L-ascorbic acid binding, with purine metabolism playing a role in the regulation of energy and signaling. These findings elucidated the critical metabolic and signaling networks that underlie the blast resistance of FH2165 and offered potential targets for breeding high-yield, disease-resistant hybrid rice varieties. Full article
(This article belongs to the Special Issue Plant Stress Biology)
Show Figures

Figure 1

20 pages, 2126 KB  
Article
Genomics-Assisted Improvement in Blast Resistance and Low Cadmium Accumulation in an Elite Rice Variety
by Zhi Xu, Zhizhou He, Yanglan He, Hailong Chen, Jihua Cheng, Changrong Ye, Zhouwei Li, Le Li, Hexing Yin, Lijia Zheng, Yuntian Wu, Bingchuan Tian and Junhua Peng
Agronomy 2025, 15(9), 2130; https://doi.org/10.3390/agronomy15092130 - 5 Sep 2025
Viewed by 892
Abstract
Xiangwanxian 13 (XWX13), an elite fragrant indica rice, is highly susceptible to rice blast and accumulates cadmium (Cd) in grain above the food safety limit in Cd-contaminated paddies, severely constraining its commercial use. Despite these shortcomings, the variety is widely grown for its [...] Read more.
Xiangwanxian 13 (XWX13), an elite fragrant indica rice, is highly susceptible to rice blast and accumulates cadmium (Cd) in grain above the food safety limit in Cd-contaminated paddies, severely constraining its commercial use. Despite these shortcomings, the variety is widely grown for its high yield and superior grain quality. To overcome these limitations, we conducted marker-assisted backcrossing (MABC) complemented by genome-wide background selection. Four major genes, namely Pi1, Pi2, OsHMA3, and OsNramp5, were precisely introduced into XWX13. Two preferable BC3MF5 improved lines iXWX13-1 (stacking Pi1 + Pi2 + OsHMA3) and iXWX13-2 (stacking Pi1 + Pi2 + OsNramp5) were obtained with genomic background recovery rates of 94.44% and 94.63%, evaluated by using the RICE 1K SNP array, respectively. Seedling resistance spectrum assays demonstrated more than a 97% blast resistance rate against 39 Magnaporthe oryzae isolates, and both lines showed enhanced leaf and panicle neck blast resistance in natural nurseries. Multi-site field trials revealed grain Cd concentrations of 0.009–0.077 mg kg−1 in iXWX13-2, 90.98–98.87% lower than those in XWX13. Importantly, yield, major agronomic traits, and grain quality remained indistinguishable from the original variety. This study provides the first demonstration that MABC coupled with SNP array background selection can simultaneously enhance blast resistance and reduce grain Cd in XWX13 without yield or quality penalties, offering a robust strategy for pyramiding multiple desirable genes into elite cultivars. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

26 pages, 13181 KB  
Article
Identification of Rice LncRNAs and Their Roles in the Rice Blast Resistance Network Using Transcriptome and Translatome
by Xiaoliang Shan, Shengge Xia, Long Peng, Cheng Tang, Shentong Tao, Ayesha Baig and Hongwei Zhao
Plants 2025, 14(17), 2752; https://doi.org/10.3390/plants14172752 - 3 Sep 2025
Cited by 1 | Viewed by 1256
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators in plant immune responses, yet their roles in rice resistance against Magnaporthe oryzae (M. oryzae) remain inadequately explored. In this study, we integrated translatome data with conventional genome annotations to construct an [...] Read more.
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators in plant immune responses, yet their roles in rice resistance against Magnaporthe oryzae (M. oryzae) remain inadequately explored. In this study, we integrated translatome data with conventional genome annotations to construct an optimized protein-coding dataset. Subsequently, we developed a robust pipeline (“RiceLncRNA”) for the accurate identification of rice lncRNAs. Using strand-specific RNA-sequencing (ssRNA-seq) data from the resistant (IR25), susceptible (LTH), and Nipponbare (NPB) varieties under M. oryzae infection, we identified 9003 high-confidence lncRNAs, significantly improving identification accuracy over traditional methods. Among the differentially expressed lncRNAs (DELs), those unique to IR25 were enriched in the biosynthetic pathways of phenylalanine, tyrosine, and tryptophan, which suggests that they are associated with the production of salicylic acid (SA) and auxin (IAA) precursors, which may be involved in defense responses. Conversely, DELs specific to LTH primarily clustered within carbon metabolism pathways, indicating a metabolic reprogramming mechanism. Notably, 21 DELs responded concurrently in both IR25 and LTH at 12 h and 24 h post-inoculation, indicating a synergistic regulation of jasmonic acid (JA) and ethylene (ET) signaling while partially suppressing IAA pathways. Weighted gene co-expression network analysis (WGCNA) and competing endogenous RNA (ceRNA) network analysis revealed that key lncRNAs (e.g., LncRNA.9497.1) may function as miRNA “sponges”, potentially influencing the expression of receptor-like kinases (RLKs), resistance (R) proteins, and hormone signaling pathways. The reliability of these findings was confirmed through qRT-PCR and cloning experiments. In summary, our study provides an optimized rice lncRNA annotation framework and reveals the mechanism by which lncRNAs enhance rice blast resistance through the regulation of hormone signaling pathways. These findings offer an important molecular basis for rice disease-resistant breeding. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

15 pages, 8406 KB  
Article
Agronomic Trait and Gene Analysis of Diangu 1839, a Newly Bred Fragrant and Soft Rice Variety Derived from Diantun 502 in Yunnan, China
by Haiyan Wu, Yuping Shi, Zhuoma Songji, Shihuang Pu, Junjun Guo, Juan Li, Dandan Li, Xueyu Yang and Jiancheng Wen
Agronomy 2025, 15(9), 2042; https://doi.org/10.3390/agronomy15092042 - 26 Aug 2025
Viewed by 1004
Abstract
The fragrant and soft rice variety Diantun 502 has been a major cultivar for high-quality rice production in Yunnan Province since its approval in 1993. Over 30 years of widespread cultivation, several issues affecting this variety—including high susceptibility to rice blast, reduced yield, [...] Read more.
The fragrant and soft rice variety Diantun 502 has been a major cultivar for high-quality rice production in Yunnan Province since its approval in 1993. Over 30 years of widespread cultivation, several issues affecting this variety—including high susceptibility to rice blast, reduced yield, and declining quality—have been noted. To address these limitations, this study aimed to improve and upgrade Diantun 502. During the breeding process, parent lines with soft rice traits were selected, and molecular marker-assisted selection was employed using the soft rice gene Wxhp and the fragrance gene badh2. Priority was given to grain quality while also considering agronomic performance. Natural induction tests were conducted in rice blast-prone regions. After 9 years of selection and evaluation, the new variety—Diangu 1839—was successfully developed. Comparative analysis of agronomic and economic traits, as well as gene loci between Diantun 502 and the improved variety Diangu 1839, revealed that the observed trait changes in Diangu 1839 corresponded with the presence of the targeted gene loci. This study involved a comparative analysis of agronomic and economic traits as well as key gene loci between Diantun 502 and the improved variety Diangu 1839. The results showed that, compared to Diantun 502, Diangu 1839 achieved a 14.1% increase in yield and a significant 25.6% reduction in chalky grain rate. Importantly, the retention of badh2 and Wxhp genes ensured the preservation of excellent eating quality, while rice blast resistance was enhanced. Although Diangu 1839 demonstrated significant improvements in yield, rice quality, and disease resistance, its resistance to brown planthopper remains limited due to the lack of corresponding resistance genes. The technical system and breeding experience established in this study provide important technical references for the genetic improvement of high-quality, fragrant, and soft rice varieties. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

14 pages, 2075 KB  
Article
Molecular Marker-Assisted Breeding of High-Quality and Salt-Tolerant Hybrid Japonica Rice Combination Shenyanyou 1
by Fuan Niu, Anpeng Zhang, Can Cheng, Huangwei Chu, Jun Fang, Jihua Zhou, Bin Sun, Yuting Dai, Jianming Zhang, Zhizun Feng and Liming Cao
Agronomy 2025, 15(8), 2006; https://doi.org/10.3390/agronomy15082006 - 21 Aug 2025
Viewed by 1557
Abstract
The development of a new salt–alkaline-tolerant hybrid japonica rice is crucial for enhancing japonica rice supply and ensuring national food security. Utilizing molecular marker-assisted selection (MAS) technology combining Kompetitive Allele-Specific PCR (KASP) markers and a gene breeding chip, the salt-tolerant gene SKC1 was [...] Read more.
The development of a new salt–alkaline-tolerant hybrid japonica rice is crucial for enhancing japonica rice supply and ensuring national food security. Utilizing molecular marker-assisted selection (MAS) technology combining Kompetitive Allele-Specific PCR (KASP) markers and a gene breeding chip, the salt-tolerant gene SKC1 was introgressed into a rice genotype Fan 14. This led to the development of Shenyanhui 1, a new high-quality, strongly heterotic, and salt-tolerant japonica restorer line. Subsequently, the high-quality, salt-tolerant japonica three-line hybrid rice variety Shenyanyou 1 was developed by crossing the BT-type japonica cytoplasmic male sterile (CMS) line Shen 21A with the restorer line Shenyanhui 1. Shenyanyou 1 carries the major salt tolerance gene SKC1, exhibiting excellent salt tolerance with seedling stage salt tolerance reaching level 5. Under precise salt tolerance evaluation throughout its growth cycle, Shenyanyou 1 achieved a yield of 3640.5 kg/hm2, representing an extremely significant increase of 20.7% over the control variety Yandao 21. Shenyanyou 1 exhibits superior grain quality, meeting the Grade 3 high-quality rice standards issued by the Ministry of Agriculture. Shenyanyou 1 has good comprehensive resistance, aggregating rice blast resistance genes such as Pi2, Pita, Pizt and LHCB5, bacterial blight resistance genes Xa26/Xa3, stripe blast resistance gene STV11, semi-dwarf gene Sdt97, nitrogen-efficient utilization gene NRT1.1B, the light repair activity enhancement gene qUVR-10, the cold resistance gene qLTG3-1, and the iron tolerance gene OsFRO1. It has good resistance to biotic and abiotic stresses. This paper details the breeding process, key agronomic traits, salt tolerance, yield performance, and grain quality characteristics of Shenyanyou 1. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

18 pages, 1689 KB  
Article
Evaluation of Blast Resistance in Zinc-Biofortified Rice
by Anita Nunu, Maina Mwangi, Nchore Bonuke, Wagatua Njoroge, Mwongera Thuranira, Emily Gichuhi, Ruth Musila, Rosemary Murori and Samuel K. Mutiga
Plants 2025, 14(13), 2016; https://doi.org/10.3390/plants14132016 - 1 Jul 2025
Viewed by 3460
Abstract
Rice is a staple food for over half of the world’s population, and it is grown in over 100 countries. Rice blast disease can cause 10% to 30% crop loss, enough to feed 60 million people. Breeding for resistance can help farmers avoid [...] Read more.
Rice is a staple food for over half of the world’s population, and it is grown in over 100 countries. Rice blast disease can cause 10% to 30% crop loss, enough to feed 60 million people. Breeding for resistance can help farmers avoid costly fungicides. This study assessed the relationship between rice blast disease and zinc or anthocyanin content in biofortified rice. Susceptibility to foliar and panicle blast was assessed in a rice panel which differed on grain zinc content and pigmentation. A rice panel (n = 23) was challenged with inoculum of two isolates of Magnaporthe oryzae in a screenhouse-based assay. The zinc content with foliar blast severity was analyzed in the leaves and grain of a subset of non-inoculated rice plants. The effect of foliar zinc supplementation on seedlings was assessed by varying levels of zinc fertilizer solution on four blast susceptible cultivars at 14 days after planting (DAP), followed by inoculation with the blast pathogen at 21 DAP. Foliar blast severity was scored on a 0–9 scale at 7 days after inoculation. The rice panel was scored for anthocyanin content, and the data were correlated with foliar blast severity. The panel was grown in the field, and panicle blast, grain yield and yield-related agronomic traits were measured. Significant differences were observed in foliar blast severity among the rice genotypes, with IRBLK-KA and IR96248-16-2-3-3-B having mean scores greater than 4, as well as BASMATI 370 (a popular aromatic variety), while the rest of the genotypes were resistant. Supplementation with foliar zinc led to a significant decrease in susceptibility. A positive correlation was observed between foliar and panicle blast. The Zn in the leaves was negatively correlated with foliar blast severity, and had a marginally positive correlation with panicle blast. There was no relationship between foliar blast severity and anthocyanin content. Grain yield had a negative correlation with panicle blast, but no correlation was observed between Zn in the grain and grain yield. This study shows that Zn biofortification in the grain may not enhance resistance to foliar and panicle blast. Furthermore, the zinc-biofortified genotypes were not agronomically superior to the contemporary rice varieties. There is a need to apply genomic selection to combine promising alleles into adapted rice genetic backgrounds. Full article
(This article belongs to the Special Issue Rice-Pathogen Interaction and Rice Immunity)
Show Figures

Figure 1

Back to TopTop