Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (159)

Search Parameters:
Keywords = blade-element momentum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4099 KiB  
Article
Numerical Study of the Effect of Unsteady Aerodynamic Forces on the Fatigue Load of Yawed Wind Turbines
by Dereje Haile Hirgeto, Guo-Wei Qian, Xuan-Yi Zhou and Wei Wang
Machines 2025, 13(7), 607; https://doi.org/10.3390/machines13070607 - 15 Jul 2025
Viewed by 257
Abstract
The intentional yaw offset of wind turbines has shown potential to redirect wakes, enhancing overall plant power production, but it may increase fatigue loading on turbine components. This study analyzed fatigue loads on the NREL 5 MW reference wind turbine under varying yaw [...] Read more.
The intentional yaw offset of wind turbines has shown potential to redirect wakes, enhancing overall plant power production, but it may increase fatigue loading on turbine components. This study analyzed fatigue loads on the NREL 5 MW reference wind turbine under varying yaw offsets using blade element momentum theory, dynamic blade element momentum, and the converging Lagrange filaments vortex method, all implemented in OpenFAST. Simulations employed yaw angles from −40° to 40°, with turbulent inflow generated by TurbSim, an OpenFAST tool for realistic wind conditions. Fatigue loads were calculated according to IEC 61400-1 design load case 1.2 standards, using thirty simulations per yaw angle across five wind speed bins. Damage equivalent load was evaluated via rainflow counting, Miner’s rule, and Goodman correction. Results showed that the free vortex method, by modeling unsteady aerodynamic forces, yielded distinct differences in damage equivalent load compared to the blade element method in yawed conditions. The free vortex method predicted lower damage equivalent load for the low-speed shaft bending moment at negative yaw offsets, attributed to its improved handling of unsteady effects that reduce load variations. Conversely, for yaw offsets above 20°, the free vortex method indicated higher damage equivalent for low-speed shaft torque, reflecting its accurate capture of dynamic inflow and unsteady loading. These findings highlight the critical role of unsteady aerodynamics in fatigue load predictions and demonstrate the free vortex method’s value within OpenFAST for realistic damage equivalent load estimates in yawed turbines. The results emphasize the need to incorporate unsteady aerodynamic models like the free vortex method to accurately assess yaw offset impacts on wind turbine component fatigue. Full article
(This article belongs to the Special Issue Aerodynamic Analysis of Wind Turbine Blades)
Show Figures

Figure 1

14 pages, 1805 KiB  
Proceeding Paper
Helicopter Rotor Aerodynamic Characteristics in Ground Effect: Numerical Study
by Gabriel Georgiev
Eng. Proc. 2025, 100(1), 13; https://doi.org/10.3390/engproc2025100013 - 4 Jul 2025
Viewed by 226
Abstract
This article represents a full estimation of helicopter rotor aerodynamic characteristics in ground effect conditions through the application of a coupled empirical blade element–momentum theory algorithm. The main focus of this research includes the evaluation of the required weighted power coefficients [...] Read more.
This article represents a full estimation of helicopter rotor aerodynamic characteristics in ground effect conditions through the application of a coupled empirical blade element–momentum theory algorithm. The main focus of this research includes the evaluation of the required weighted power coefficients CPσ for a hovering state in close proximity to obstacles and their relation to the weighted thrust force coefficients’ values CTσ, varying the relative distance from the helicopter rotational plane to the ground surface HR and the rotor’s collective pitch angle (θ). The represented numerical and experimental results show that an increase in the collective pitch angles (θ) leads to a rise in the generated weighted thrust force coefficients CTσ and in the weighted power coefficients CPσ for every individual fixed normalized distance from the ground surface HR. Moreover, a decline in the relative distance from the ground HR requires less power to keep the rotation going in hover. The dependencies indicate that the ground effect zone covers a distance of up to 2R from the rotational plane to the ground surface. Full article
Show Figures

Figure 1

27 pages, 2239 KiB  
Article
Propeller Design Optimization and an Evaluation of Variable Rotational Speed Flight Operation Under Structural Vibration Constraints
by Nicolas Lima Oliveira, Afonso Celso de Castro Lemonge, Patricia Habib Hallak, Konstantinos Kyprianidis, Stavros Vouros and Manuel A. Rendón
Machines 2025, 13(6), 490; https://doi.org/10.3390/machines13060490 - 5 Jun 2025
Viewed by 607
Abstract
This paper presents a methodology for optimizing an aeronautical propeller to minimize power consumption. A multi-objective approach using blade element momentum (BEM) theory and evolutionary algorithms is employed to optimize propeller design by minimizing power consumption during takeoff and top-of-climb. Three different evolutionary [...] Read more.
This paper presents a methodology for optimizing an aeronautical propeller to minimize power consumption. A multi-objective approach using blade element momentum (BEM) theory and evolutionary algorithms is employed to optimize propeller design by minimizing power consumption during takeoff and top-of-climb. Three different evolutionary algorithms generated a Pareto front, from which the optimal propeller design is selected. The selected propeller design is evaluated under optimal operational conditions for a specific mission. In this context, two operational approaches for the optimized propellers during flight missions are evaluated. The first approach considers the possibility of only three values for the propeller rotation, while the second allows continuous changes in the rotational speed and pitch angle values, known as the multi-rotational-speed approach. In the second approach, a modal analysis of the propeller is performed using rotating beam theory. The natural frequencies of vibration, constrained by the Campbell diagram, enable an operational analysis and ensure structural integrity by preventing resonance between propeller blades and the rotational procedures. The multi-rotational approach is conducted with and without frequency constraints, resulting in general flight energy reductions of 1.40% and 1.47%, respectively. However, substantial power savings are achieved, namely up to 10% during critical flight states, which can have a significant impact on future engine design and operability. The main contributions of the research lie in analyzing the multi-rotational approach with vibrational constraints of the optimized propeller. This research advances sustainable aviation practices by focusing on reducing power consumption while maintaining performance. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

19 pages, 5624 KiB  
Article
Research on the Improvement of BEM Method for Ultra-Large Wind Turbine Blades Based on CFD and Artificial Intelligence Technologies
by Shiyu Yang, Mingming Zhang, Yu Feng, Haikun Jia, Na Zhao and Qingwei Chen
Fluids 2025, 10(5), 112; https://doi.org/10.3390/fluids10050112 - 27 Apr 2025
Viewed by 540
Abstract
With the development of the wind power industry, wind turbine blades are increasingly adopting ultra-large-scale designs. However, as the size of blades continues to increase, existing aerodynamic calculation methods struggle to achieve both relatively high computational accuracy and efficiency simultaneously. To tackle this [...] Read more.
With the development of the wind power industry, wind turbine blades are increasingly adopting ultra-large-scale designs. However, as the size of blades continues to increase, existing aerodynamic calculation methods struggle to achieve both relatively high computational accuracy and efficiency simultaneously. To tackle this challenge, this research focuses on the low accuracy issues of the traditional Blade Element Momentum theory (BEM) in predicting the aerodynamic performance of wind turbine blades. Consequently, a correction framework is proposed, to integrate the Computational Fluid Dynamics (CFD) method with the Multilayer Perceptron (MLP) neural network. In this approach, the CFD method is used to predict the airflow characteristics around the blades, and the MLP neural network is employed to model the intricate functional relationships between multiple influencing factors and key aerodynamic parameters. This process results in high-precision predictive functions for key aerodynamic parameters, which are then used to correct the traditional BEM. When this correction framework is applied to the rotor of the IEA 15 MW wind turbine, the effectiveness of MLP in predicting key aerodynamic parameters is demonstrated. The research findings suggest that this framework can enhance the accuracy of BEM aerodynamic load predictions to a level comparable to that of RANS. Full article
Show Figures

Figure 1

16 pages, 3658 KiB  
Article
Hydrodynamic Analysis of a NREL 5 MW Monopile Wind Turbine Under the Effect of the 30 October 2020 İzmir-Samos Tsunami
by Barış Namlı, Cihan Bayındır and Fatih Ozaydin
J. Mar. Sci. Eng. 2025, 13(5), 857; https://doi.org/10.3390/jmse13050857 - 25 Apr 2025
Viewed by 544
Abstract
Although offshore wind turbines are essential for renewable energy, their construction and design are quite complex when environmental factors are taken into account. It is quite difficult to examine their behavior under rare but dangerous natural events such as tsunamis, which bring great [...] Read more.
Although offshore wind turbines are essential for renewable energy, their construction and design are quite complex when environmental factors are taken into account. It is quite difficult to examine their behavior under rare but dangerous natural events such as tsunamis, which bring great danger to their structural safety and serviceability. With this motivation, this study investigates the effects of tsunami and wind on an offshore National Renewable Energy Laboratory (NREL) 5 MW wind turbine both hydrodynamically and aerodynamically. First, the NREL 5 MW monopile offshore wind turbine model was parameterized and the aerodynamic properties of the rotor region at different wind speeds were investigated using the blade element momentum (BEM) approach. The tsunami data of the İzmir-Samos (Aegean) tsunami on 30 October 2020 were reconstructed using the data acquired from the UNESCO data portal at Bodrum station. The obtained tsunami wave elevation dataset was imported to the QBlade software to investigate the hydrodynamic and aerodynamic characteristics of the NREL 5 MW monopile offshore under the tsunami effect. It was observed that the hydrodynamics significantly changed as a result of the tsunami effect. The total Morison wave force and the hydrodynamic inertia forces significantly changed due to the tsunami–monopile interaction, showing similar cyclic behavior with amplified forces. An increase in the horizontal force levels to values greater than twofold of the pre-event can be observed due to the İzmir-Samos tsunami with a waveheight of 7 cm at the Bodrum station. However, no significant change was observed on the rated power time series, aerodynamics, and bending moments on the NREL 5 MW monopile offshore wind turbine due to this tsunami. Full article
Show Figures

Figure 1

21 pages, 2562 KiB  
Article
A New Aerodynamic Domain Model (ADM) for Enhancing the Reliability of Spin Flight Vehicle Simulations
by Shenghui Lv and Zhong Su
Aerospace 2025, 12(4), 350; https://doi.org/10.3390/aerospace12040350 - 16 Apr 2025
Viewed by 255
Abstract
A spin flight vehicle is characterized by its inherent active or passive spinning motion, resulting in complex movements that pose challenges for accurately calculating aerodynamic forces. This often leads to significant discrepancies between simulation results and actual performance. To address the low reliability [...] Read more.
A spin flight vehicle is characterized by its inherent active or passive spinning motion, resulting in complex movements that pose challenges for accurately calculating aerodynamic forces. This often leads to significant discrepancies between simulation results and actual performance. To address the low reliability of simulations for single-wing spin flight vehicles caused by difficulties in aerodynamic force estimation, this paper introduces the concept of an aerodynamic domain model. Based on the configuration of a specific single-wing spin flight vehicle, the model applies rigid body dynamics and uses blade element-momentum theory for aerodynamic calculations. By considering both relative and absolute error characteristics between actual and computed aerodynamic values, the aerodynamic domain model is established with explicit methods for determining error factor function bounds. The theoretical and practical value of the model is demonstrated through a simulation example, showing its ability to represent the range of true aerodynamic forces and moments experienced by the vehicle. This approach reduces the dependence on highly accurate aerodynamic calculations while maintaining engineering feasibility, enabling effective flight risk assessments within a specified range. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 2550 KiB  
Article
Analytical Modeling of Shrouded Rotors in Hover with Experimental and Computational Validation
by Abdallah Dayhoum, Alejandro Ramirez-Serrano and Robert J. Martinuzzi
Actuators 2025, 14(3), 138; https://doi.org/10.3390/act14030138 - 11 Mar 2025
Cited by 1 | Viewed by 865
Abstract
Rotors have been utilized for aircraft propulsion since the dawn of aviation, but their performance can degrade significantly if not properly designed. This study focuses on developing an accurate design tool and model validation for shrouded rotors. An experimental test rig was designed [...] Read more.
Rotors have been utilized for aircraft propulsion since the dawn of aviation, but their performance can degrade significantly if not properly designed. This study focuses on developing an accurate design tool and model validation for shrouded rotors. An experimental test rig was designed and manufactured to measure the rotor thrust and total thrust separately as well as the rotor torque. A key aspect was to account for the impact of a test rig on experimental results using computational simulations for the shrouded rotor configuration with and without the test rig. The findings indicate that the effects of the test rig were minimal and could be neglected, ensuring the validity of the experimental data compared to the analytical model. The analytical model employs a hybrid approach combining blade element momentum theory (BEMT) and the sphere-cap model which are used in conjunction with the shrouded rotor inflow ratio, as well as post-stall and tip gap clearance models. BEMT is used to calculate rotor performance, while the sphere-cap model addresses the aerodynamic influence of the shroud. The results demonstrate that the analytical model predicts shrouded rotor performance with considerable accuracy, addressing both the rotor dynamics and the shroud’s contribution to performance. Full article
(This article belongs to the Special Issue Aerospace Mechanisms and Actuation—Second Edition)
Show Figures

Figure 1

26 pages, 5898 KiB  
Article
Research on the Impact of the Slider on the Aerodynamic Characteristics of a Terrestrial–Aerial Spherical Robot
by Dongshuai Huo, Hanxu Sun, Xiaojuan Lan and Minggang Li
Actuators 2025, 14(3), 118; https://doi.org/10.3390/act14030118 - 27 Feb 2025
Viewed by 670
Abstract
This research introduces the first design concept for a ducted coaxial-rotor amphibious spherical robot (BYQ-A1), utilizing the principle of variable mass control. It investigates whether the BYQ-A1’s variable-mass slider has a certain regularity in its impact on the aerodynamic properties of the BYQ-A1. [...] Read more.
This research introduces the first design concept for a ducted coaxial-rotor amphibious spherical robot (BYQ-A1), utilizing the principle of variable mass control. It investigates whether the BYQ-A1’s variable-mass slider has a certain regularity in its impact on the aerodynamic properties of the BYQ-A1. Utilizing the Blade Element Momentum Theory (BEM) and Wall Jet Theory, an aerodynamic calculation model for the BYQ-A1 is established. An orthogonal experimental method is used to conduct tests on the impact of the variable-mass slider on the aerodynamic properties of the ducted coaxial-rotor system and validate the effectiveness of the aerodynamic calculation model. The results show that the slider generates an internal ground effect and ceiling effect within the BYQ-A1 that enhance the lift of the upper and lower rotors when the robot is equipped with it. The increased total lift compensates for the additional aerodynamic drag caused by the presence of the slider. This novel finding provides guidance for the subsequent optimization design and control method research of the BYQ-A1 and also offers valuable references for configuration schemes that incorporate necessary devices between coaxial dual rotors. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

21 pages, 5167 KiB  
Article
A New Modified Blade Element Momentum Method for Calculating the Aerodynamic Performance of a Wind Turbine in Yaw
by Jiaying Wu, Zhenye Sun, Weijun Zhu, Shifeng Fu, Chang Xu and Wenzhong Shen
Energies 2025, 18(5), 1063; https://doi.org/10.3390/en18051063 - 21 Feb 2025
Viewed by 908
Abstract
The yaw state constitutes a typical operating condition for wind turbines. However, the widely used Blade Element Moment (BEM) theory, due to its adoption of planar disc assumptions, introduces certain computational inaccuracies in yaw conditions. This research aims to develop a new modified [...] Read more.
The yaw state constitutes a typical operating condition for wind turbines. However, the widely used Blade Element Moment (BEM) theory, due to its adoption of planar disc assumptions, introduces certain computational inaccuracies in yaw conditions. This research aims to develop a new modified BEM method by replacing the momentum theory in traditional BEM with the Madsen analytical linear two-dimensional actuator disc model in order to enhance the accuracy in calculating the aerodynamic performance of yawed wind turbines. Two approaches are introduced to determine the variable parameters in the new modified model: one based on traditional BEM predictions in non-yaw conditions and the other using empirical values determined using experimental data. The new modified model is evaluated against experimental data, CENER FAST, and HAWC2 for the MEXICO rotor. From the comparisons, the new modified method demonstrates closer agreements with experimental values, particularly in the mid and outer parts of the blades. At a wind speed of 15 m/s and a yaw angle of 30°, the discrepancies between computation and measurement are reduced by at least 2.33, 1.22, and 3.25 times at spanwise locations of 60%Radius (R), 82%R, and 92%R, respectively, compared to CENER FAST or HAWC2, demonstrating the feasibility of the proposed methodology. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

25 pages, 4799 KiB  
Article
Optimized Structural Design of a Reciprocating Wing for the Reciprocating Airfoil (RA)-Driven Vertical Take-Off and Landing (VTOL) Aircraft
by Johnson Imumbhon Okoduwa, Osezua Obehi Ibhadode and Yiding Cao
Actuators 2025, 14(3), 104; https://doi.org/10.3390/act14030104 - 20 Feb 2025
Viewed by 1105
Abstract
The development of unconventional and hybrid unoccupied aerial vehicles (UAVs) has gained significant momentum in recent years, with many designs utilizing small fans or rotary blades for vertical take-off and landing (VTOL). However, these systems often inherit the limitations of traditional helicopter rotors, [...] Read more.
The development of unconventional and hybrid unoccupied aerial vehicles (UAVs) has gained significant momentum in recent years, with many designs utilizing small fans or rotary blades for vertical take-off and landing (VTOL). However, these systems often inherit the limitations of traditional helicopter rotors, including susceptibility to aerodynamic inefficiencies and mechanical issues. Additionally, achieving a seamless transition from VTOL to fixed-wing flight mode remains a significant challenge for hybrid UAVs. A novel approach is the reciprocating airfoil (RA) or reciprocating wing (RW) VTOL aircraft, which employs a fixed-wing configuration driven by a reciprocating mechanism to generate lift. The RA wing is uniquely designed to mimic a fixed-wing while leveraging its reciprocating motion for efficient lift production and a smooth transition between VTOL and forward flight. Despite its advantages, the RA wing endures substantial stress due to the high inertial forces involved in its operation. This study presents an optimized structural design of the RA wing through wing topology optimization and finite element analysis (FEA) to enhance its load-bearing capacity and stress performance. A comparative analysis with existing RA wing configurations at maximum operating velocities highlights significant improvements in the safety margin, failure criteria, and overall stress distribution. The key results of this study show an 80.4% reduction in deformation, a 43.8% reduction in stress, and a 78% improvement in safety margin. The results underscore the RA wing’s potential as an effective and structurally stable lift mechanism for RA-driven VTOL aircraft, demonstrating its capability to enhance the performance and reliability of next-generation UAVs. Full article
(This article belongs to the Special Issue Aerospace Mechanisms and Actuation—Second Edition)
Show Figures

Figure 1

37 pages, 31679 KiB  
Article
Mooring Failure Analysis of Semisubmersible Floating Offshore Wind Turbines Considering Mooring Redundancy at Each Azimuth Angle
by Shuai Hao, Xuning Zhang, Yang Yu, Bin Wang and Xingdao Bo
J. Mar. Sci. Eng. 2025, 13(2), 360; https://doi.org/10.3390/jmse13020360 - 15 Feb 2025
Viewed by 1187
Abstract
Semisubmersible floating structures are becoming the predominant understructure type for floating offshore wind turbines (FOWTs) worldwide. As FOWTs are erected far away from land and in deep seas, they inevitably suffer violent and complicated sea conditions, including extreme waves and winds. Mooring lines [...] Read more.
Semisubmersible floating structures are becoming the predominant understructure type for floating offshore wind turbines (FOWTs) worldwide. As FOWTs are erected far away from land and in deep seas, they inevitably suffer violent and complicated sea conditions, including extreme waves and winds. Mooring lines are the representative flexible members of the whole structure and are likely to incur damage due to years of impact, corrosion, or fatigue. To improve mooring redundancy at each azimuth angle around a wind turbine, a group of mooring lines are configured in the same direction instead of just one mooring line. This study focuses on the mooring failure problems that would probably occur in a realistic redundant mooring system of a semisubmersible FOWT, and the worst residual mooring layout is considered. An FOWT numerical model with a 3 × 3 mooring system is established in terms of 3D potential flow and BEM (blade element momentum) theories, and aero-hydro floating-body mooring coupled analyses are performed to discuss the subsequent time histories of dynamic responses after different types of mooring failure. As under extreme failure conditions, the final horizontal offsets of the structure and the layout of the residual mooring system are evaluated under still water, design, and extreme environmental conditions. The results show that the transient tension in up-wave mooring lines can reach more than 12,000 kN under extreme environmental conditions, inducing further failure of the whole chain group. Then, a deflection angle of 60° may occur on the residual laid chain, which may bring about dangerous anchor dragging. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 3401 KiB  
Article
Numerical Analysis of Fatigue Life of Wind Turbine Blades Reinforced with Graphene Platelets
by Hyeong Jin Kim and Jin-Rae Cho
Appl. Sci. 2025, 15(4), 1866; https://doi.org/10.3390/app15041866 - 11 Feb 2025
Cited by 1 | Viewed by 1771
Abstract
The rapid growth of wind energy has necessitated the development of advanced materials to address the increasing structural demands of wind turbine blades. Graphene platelets (GPLs) have garnered attention as a promising reinforcement material due to their outstanding mechanical properties, such as high [...] Read more.
The rapid growth of wind energy has necessitated the development of advanced materials to address the increasing structural demands of wind turbine blades. Graphene platelets (GPLs) have garnered attention as a promising reinforcement material due to their outstanding mechanical properties, such as high strength and low density. This study investigates the fatigue life of wind turbine blades reinforced with GPLs, benchmarking their performance against conventional fiberglass blades. A finite element model of a 5 MW wind turbine blade was developed to evaluate stresses within the blade structure. The traditional fiberglass blade was modeled based on the SNL 61.5 m design by Sandia National Laboratories, while the GPL-reinforced composite (GPLRC) blade was designed by substituting fiberglass with GPLRCs. Material properties of the GPLRCs were determined using the rule of mixtures and the Halpin–Tsai micromechanics model. Wind speed data were randomly sampled following the probability distribution observed at European wind farms, and corresponding aerodynamic loads were computed using blade element momentum theory. Finite element analyses were performed to derive stress time histories, and fatigue life was predicted using the S-N curve approach, incorporating the Goodman diagram and the Palmgren–Miner rule. The results reveal that while GPLRC-reinforced blades exhibit some limitations in fatigue performance compared to traditional fiberglass blades, potential solutions for improving their durability are proposed, highlighting avenues for further research and optimization in the application of GPLRCs to wind turbine blades. Full article
Show Figures

Figure 1

24 pages, 4894 KiB  
Article
Unsteady Loading on a Tidal Turbine Due to the Turbulent Wake of an Upstream Turbine Interacting with a Seabed Ridge
by Sulaiman Hurubi, Hannah Mullings, Pablo Ouro, Peter Stansby and Tim Stallard
Energies 2025, 18(1), 151; https://doi.org/10.3390/en18010151 - 2 Jan 2025
Cited by 1 | Viewed by 1095
Abstract
Tidal sites can present uneven seabed bathymetry features that induce favourable or adverse pressure gradients and are sources of turbulence, and so are likely to affect the operation, performance, and wake recovery dynamics of deployed tidal-stream turbines. Large-eddy simulations are conducted to analyse [...] Read more.
Tidal sites can present uneven seabed bathymetry features that induce favourable or adverse pressure gradients and are sources of turbulence, and so are likely to affect the operation, performance, and wake recovery dynamics of deployed tidal-stream turbines. Large-eddy simulations are conducted to analyse the unsteady loading of a tidal turbine subjected to the wake of an upstream turbine that interacts with a two-dimensional ridge located between the two turbines. Relative to an isolated turbine, blade fatigue loading is increased by up to 43% when subject to the wake of a turbine located 8 turbine diameters upstream interacting with a ridge located 2 turbine diameters upstream, whereas for the same spacing, the turbine wake led to a limited 6% reduction in loading and the ridge wake only caused a 79% increase. For larger spacings, the trends were similar, but the magnitude of difference reduced. Predictions of fatigue loads with a blade element momentum model (BEMT) provided a good agreement for flat bed conditions. However, the ridge-induced pressure gradient drives rapid spatial change of coherent flow structures, which limits the applicability of Taylor’s frozen turbulence hypothesis adopted in the BEMT. Reasonable prediction of rotor loading with BEMT was found to be obtained using the turbulent onset flow field at a plane one-diameter upstream of the turbine. This is more accurate than use of the planes at the rotor plane or two-diameters upstream, as coherent structures represent those modified by wake recovery and rotor induction in the approach flow to the turbine. Full article
Show Figures

Figure 1

16 pages, 718 KiB  
Article
Performance Analysis and Conceptual Design of Lightweight UAV for Urban Air Mobility
by Francesco Mazzeo, Emanuele L. de Angelis, Fabrizio Giulietti, Alessandro Talamelli and Francesco Leali
Drones 2024, 8(9), 507; https://doi.org/10.3390/drones8090507 - 20 Sep 2024
Cited by 3 | Viewed by 2400
Abstract
In the present study, a performance analysis of three different VTOL configurations is presented within an urban air mobility context. A classical lightweight helicopter was employed as a reference configuration to design a dual-rotor side-by-side helicopter and a hexacopter drone layout. An analytical [...] Read more.
In the present study, a performance analysis of three different VTOL configurations is presented within an urban air mobility context. A classical lightweight helicopter was employed as a reference configuration to design a dual-rotor side-by-side helicopter and a hexacopter drone layout. An analytical model based on general momentum and blade element theories was developed for single- and multiple-rotor configurations in horizontal and vertical flight conditions. Suitable battery pack and electric motor designs were produced to evaluate the endurance and range of the different configurations for a specific mission. This paper provides fundamental insights into the endurance and range capabilities of multiple-rotor unmanned aerial vehicles (UAVs) and a qualitative discussion on the safety and acceptability features of each configuration implemented in an advanced air mobility context. As a result, the side-by-side helicopter configuration was identified as the best solution to be introduced within urban environments, fulfilling all the performance and mission requirements. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

18 pages, 5474 KiB  
Article
Performance Estimation of Fixed-Wing UAV Propulsion Systems
by Mohamed Etewa, Ahmed F. Hassan, Ehab Safwat, Mohammed A. H. Abozied, Mohamed M. El-Khatib and Alejandro Ramirez-Serrano
Drones 2024, 8(9), 424; https://doi.org/10.3390/drones8090424 - 25 Aug 2024
Cited by 1 | Viewed by 4286
Abstract
The evaluation of propulsion systems used in UAVs is of paramount importance to enhance the flight endurance, increase the flight control performance, and minimize the power consumption. This evaluation, however, is typically performed experimentally after the preliminary hardware design of the UAV is [...] Read more.
The evaluation of propulsion systems used in UAVs is of paramount importance to enhance the flight endurance, increase the flight control performance, and minimize the power consumption. This evaluation, however, is typically performed experimentally after the preliminary hardware design of the UAV is completed, which tends to be expensive and time-consuming. In this paper, a comprehensive theoretical UAV propulsion system assessment is proposed to assess both static and dynamic performance characteristics via an integrated simulation model. The approach encompasses the electromechanical dynamics of both the motor and its controller. The proposed analytical model estimates the propeller and motor combination performance with the overarching goal of enhancing the overall efficiency of the aircraft propulsion system before expensive costs are incurred. The model embraces an advanced blade element momentum theory underpinned by the development of a novel mechanism to predict the propeller performance under low Reynolds number conditions. The propeller model utilizes XFOIL and various factors, including post-stall effects, 3D correction, Reynolds number fluctuations, and tip loss corrections to predict the corresponding aerodynamic loads. Computational fluid dynamics are used to corroborate the dynamic formulations followed by extensive experimental tests to validate the proposed estimation methodology. Full article
Show Figures

Figure 1

Back to TopTop