Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = black and odorous water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3977 KiB  
Article
Process Optimization and Odor Analysis of Instant Black Tea Powder
by Yuqin Xiong, Haomu Liao, Haiyue Liao, Xiaoyue Song, Chunhua Ma and Yan Huang
Foods 2025, 14(9), 1552; https://doi.org/10.3390/foods14091552 - 28 Apr 2025
Viewed by 606
Abstract
This study enhanced the odor retention of instant black tea powder by utilizing ultrasonic-assisted extraction and β-cyclodextrin embedding technology. Through single-factor tests considering variables such as the tea-to-water ratio, extraction temperature, ultrasonic extraction duration, and β-cyclodextrin addition, the optimal extraction conditions were determined. [...] Read more.
This study enhanced the odor retention of instant black tea powder by utilizing ultrasonic-assisted extraction and β-cyclodextrin embedding technology. Through single-factor tests considering variables such as the tea-to-water ratio, extraction temperature, ultrasonic extraction duration, and β-cyclodextrin addition, the optimal extraction conditions were determined. The ideal parameters were identified as follows: β-cyclodextrin was added at a rate of 7.5%, the tea-to-water ratio was 1:16, the ultrasonic extraction temperature was 52 °C, and the extraction duration was 30 min, and then the extract was processed by freeze-drying to obtain instant tea powder. Electronic nose trials revealed that the primary volatile odor compounds distinguishing the 14 groups of instant black tea soups were sulfides, terpenes, nitrogen oxides, alkanes, and aromatic compounds. HS-SPME-GC-MS analysis identified 65 effective volatile compounds, among which 11 key odor compounds, including Benzyl alcohol, Phytol, phenylethyl alcohol, 1,6,10-Dodecatrien-3-ol,3,7,11-trimethyl-,(E)-, Benzeneacetaldehyde, Undecanoic acid, ethyl ester, Dodecanoic acid, ethyl ester, Tetradecane, 2,4-Di-tert-butylphenol, 2-Pentadecanone, 6,10,14-trimethyl-, and indole, were the main contributors to the odor profile of instant black tea. The instant black tea powder produced under these conditions exhibited high quality, providing a valuable reference for further research on the production process of instant black tea powder. Full article
Show Figures

Graphical abstract

16 pages, 4129 KiB  
Article
Rapid Analysis of Chemical Oxygen Demand by Using a SPE Sensor Based on rGO/Cu/Ni Composite Catalyst Synthesized via One-Step Chemical Reduction
by Yu Zhou, Kaixin Zheng, Yihao Zhang, Yong Zhao, Zhi Ouyang, Xu Zhang and Xianhua Liu
Catalysts 2025, 15(3), 197; https://doi.org/10.3390/catal15030197 - 20 Feb 2025
Viewed by 710
Abstract
Black-odorous water (BOW) in urban areas poses significant risks to water safety and human health. Chemical oxygen demand (COD) is a critical parameter for the control and monitoring of BOW. However, traditional methods for COD determination are expensive, time-consuming, and involve the use [...] Read more.
Black-odorous water (BOW) in urban areas poses significant risks to water safety and human health. Chemical oxygen demand (COD) is a critical parameter for the control and monitoring of BOW. However, traditional methods for COD determination are expensive, time-consuming, and involve the use of hazardous chemicals. In this study, reduced graphene oxide (rGO) and transitional metal particles (Cu, Ni) were used as working electrode materials for facile on-site determination of COD in BOW. Three composite materials (rGO/Cu, rGO/Ni, and rGO/Cu/Ni) were synthesized by one-step chemical reduction with different ratios, and their microstructure and chemical composition were characterized. Glucose solution and real water were used to evaluate the electrocatalytic performance of the different sensors. The ternary composite (rGO/Cu/Ni) screen-printed electrode sensor demonstrated excellent performance in COD analysis, with a low limit of detection (18.9 mg L−1), a broad linear detection range from 53 to 1500 mg L−1, and a 1.61% relative error for real water samples. The testing results were highly consistent with those obtained using the standard chromium sulfate method. This study offers promising prospects for the mass production of cost-effective COD electrochemical sensors, facilitating real-time, on-site monitoring of water bodies in major urban areas. Full article
(This article belongs to the Special Issue Advances in Environmental Catalysis for a Sustainable Future)
Show Figures

Graphical abstract

22 pages, 1230 KiB  
Review
Bioconversion of Poultry Litter into Insect Meal and Organic Frasstilizer Using Black Soldier Fly Larvae as a Circular Economy Model for the Poultry Industry: A Review
by Anand Raj Kumar Kullan, Arumuganainar Suresh, Hong Lim Choi, Elke Gabriel Neumann and Fatima Hassan
Insects 2025, 16(1), 12; https://doi.org/10.3390/insects16010012 - 27 Dec 2024
Cited by 3 | Viewed by 3415
Abstract
Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel [...] Read more.
Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel technology that involves the bioconversion of organic waste utilizing insects (known as entomoremediation), particularly focusing on black soldier fly larvae (BSFL), and has demonstrated successful transformation of various organic waste materials into insect meal and frass (referred to as organic frasstilizer). Black soldier flies have the capacity to consume any organic waste material (ranging from livestock litter, food scraps, fruit and vegetable residues, sewage, sludge, municipal solid waste, carcasses, and defatted seed meal) and convert it into valuable BSFL insect meal (suitable for animal feed) and frass (serving as an organic fertilizer). The bioconversion of poultry litter by black soldier flies offers numerous advantages over traditional methods, notably in terms of reduced land and water requirements, lower emissions, cost-effectiveness, swift processing, and the production of both animal feeds and organic fertilizers. This review focuses on the existing knowledge of BSFL, their potential in bioconverting poultry litter into BSFL meal and frass, and the utilization of BSFL in poultry nutrition, emphasizing the necessity for further innovation to enhance this sustainable circular economy approach. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

17 pages, 3699 KiB  
Article
Application of Immobilized Microorganism Gel Beads in Black-Odor Water with High Nitrogen and Phosphorus Removal Performance
by Fengbin Zhao, Shumin Liu, Xin Fang and Ning Yang
Water 2024, 16(17), 2534; https://doi.org/10.3390/w16172534 - 7 Sep 2024
Cited by 2 | Viewed by 1584
Abstract
Black-odor water, which is caused by the excessive accumulation of nitrogen and phosphorus in water, is a significant problem. Immobilized microorganisms are considered to be an effective technical solution, but there are still many key parameters to be determined, such as organic matter [...] Read more.
Black-odor water, which is caused by the excessive accumulation of nitrogen and phosphorus in water, is a significant problem. Immobilized microorganisms are considered to be an effective technical solution, but there are still many key parameters to be determined, such as organic matter dissolution, insufficient stability, and insufficient phosphorus removal capacity, among other problems. In this study, the optimum raw material ratios of immobilized microorganism gel beads were determined by means of a response surface experiment. The optimal ratio of raw materials was 5% polyvinyl alcohol (PVA), 1% sodium alginate (SA), and 6% bacterial powder. In addition, the nitrogen and phosphorus removal performance of the materials was improved by loading inorganic compounds, such as 0.5 wt.% zeolite, 0.5 wt.% iron powder, and 0.2 wt.% activated carbon. Tolerance analysis determined that these gel beads could maintain a good performance in a series of harsh environments, such as during intense agitation, at high temperatures, and at low pH values, etc. The total nitrogen (TN), ammonia nitrogen (NH3-N), and phosphorus (TP) removal efficiencies were 88.9%, 90%, and 95%. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

16 pages, 1545 KiB  
Article
Optimized Design of Modular Constructed Wetland for Treating Rural Black–Odorous Water
by Luyang Li, Zheng Zhang, Yu Shen, Bing He, Yuang Fu, Shuangshuang Kou and Jingqing Gao
Water 2024, 16(17), 2492; https://doi.org/10.3390/w16172492 - 2 Sep 2024
Cited by 2 | Viewed by 1823
Abstract
In recent years, the phenomenon of black–odorous water has occurred frequently, and constructed wetlands have been widely used as an effective means of treating black–odorous water. In order to achieve the goal of low-carbon and high-efficiency long-term clean-up of black–odorous water, the modular [...] Read more.
In recent years, the phenomenon of black–odorous water has occurred frequently, and constructed wetlands have been widely used as an effective means of treating black–odorous water. In order to achieve the goal of low-carbon and high-efficiency long-term clean-up of black–odorous water, the modular constructed wetland system was optimized in this study. The optimized modular constructed wetland consisted of aeration, denitrification, and phosphorus removal, of which the denitrification module was a sulfur–iron autotrophic denitrification unit and the phosphorus removal module was a polyaluminum chloride composite filler phosphorus-removal unit. Experimental findings indicated that modular systems with layout ratios of 1:3:1 (A) and 1:2:2 (B) exhibit outstanding performance in remediating contaminants from black–odorous water. Notably, system B demonstrated superior treatment efficiency. Under conditions of high pollution loading, system B consistently achieved stable removal rates for COD (95.79%), TN (91.74%), NH4+-N (95.17%), and TP (82.21%). The combination of along-track changes and high-throughput sequencing results showed that the synergies among the units did not produce negative effects during the purification process, and each unit realized its predefined function. Changes in the substrate and internal environment of the wetland units caused changes in the microbial populations, and the unique microbial community structure of the units ensured that they were effective in removing different pollutants. Full article
(This article belongs to the Special Issue Advances in Biological Technologies for Wastewater Treatment)
Show Figures

Figure 1

25 pages, 3460 KiB  
Article
Dynamic Research on the Collaborative Governance in Urban and Rural Black-Odorous Water: A Tripartite Stochastic Evolutionary Game Perspective
by Kangjun Peng, Changqi Dong and Jianing Mi
Systems 2024, 12(8), 307; https://doi.org/10.3390/systems12080307 - 18 Aug 2024
Cited by 4 | Viewed by 1868
Abstract
The issue of black-odorous water (BOW) represents a formidable challenge to the current aquatic ecosystems, and its governance exhibits characteristics of low efficiency, susceptibility to relapse, and fragmented management under the Central Environmental Protection Inspection, thereby emerging as a dynamically complex issue in [...] Read more.
The issue of black-odorous water (BOW) represents a formidable challenge to the current aquatic ecosystems, and its governance exhibits characteristics of low efficiency, susceptibility to relapse, and fragmented management under the Central Environmental Protection Inspection, thereby emerging as a dynamically complex issue in the ecological governance of urban and rural settings. This study introduces Gaussian white noise to simulate environmental uncertainty and design a stochastic evolutionary game model encompassing the central government, local governments, and societal forces based on evolutionary game theory and classical governance theories and concepts. Numerical simulations are conducted to explore trajectories of the strategic evolution of various subjects influenced by numerous factors. Results indicate that under the environment of random disturbances, the strategies of the game subjects show significant fluctuations, but actively cultivating the subject’s initial willingness facilitates collaboration governance in inspection. Moreover, joint construction of a “belief system” by multi-subjects, the intensity of inspection interventions, the integration of heterogeneous resources, and effective punitive measures all influence the governance of BOW, but the efficiency of resource allocation should be considered throughout the governance process. Recommendations are made finally for collaborative governance of urban and rural BOW, promoting the sustainable development of the ecological environment. Full article
Show Figures

Figure 1

18 pages, 2667 KiB  
Article
Evaluation of Urban Quality Improvement Based on the MABAC Method and VIKOR Method: A Case Study of Shandong Province, China
by Doudou Liu, Liang Qiao, Chunlu Liu, Bin Liu and Shijing Liu
Sustainability 2024, 16(8), 3308; https://doi.org/10.3390/su16083308 - 15 Apr 2024
Cited by 3 | Viewed by 1749
Abstract
In the current stage of urbanization in China, urban construction has gradually shifted from incremental construction dominated by real estate to stock transformation based on improving urban quality. The evaluation of urban renewal projects is crucial for decision-making and resource allocation. However, there [...] Read more.
In the current stage of urbanization in China, urban construction has gradually shifted from incremental construction dominated by real estate to stock transformation based on improving urban quality. The evaluation of urban renewal projects is crucial for decision-making and resource allocation. However, there is no consensus on the evaluation indicators and methods. This study evaluates the current status of urban quality using the MABAC method based on numerical indicators. It evaluates the improvement of urban quality using the VIKOR method based on public satisfaction indicators. It is found that the comprehensive weights and subjective weights of the five first-level indicators in the evaluation index system of urban quality improvement in Shandong Province, namely blue–green space improvement, air cleanliness improvement, road traffic improvement, life service improvement, and governance capacity improvement, are quite different. The weight distribution of these indicators needs to be adjusted and optimized, especially for improving living services, as well as secondary indicators such as black and odorous water treatment, urban clean heating, the number of public vehicles per 10,000 people in the city, the 15 min living circle, the renovation of old residential areas, and the construction of urban intelligent management platforms. Based on the comprehensive evaluation results, an attempt is made to propose a more scientific evaluation index system, providing valuable references for urban renewal management. Full article
Show Figures

Figure 1

12 pages, 4803 KiB  
Article
In-Situ Improvement of the Sediment Microenvironment by Nitrate in Tailwater of Wastewater Treatment Plants Combined with Aerobic Denitrifying Bacteria under Low-DO Regulation
by Junyi Chen, Chao Zhang, Yun Liu, Jie Tian and Jianbo Guo
Water 2024, 16(7), 1000; https://doi.org/10.3390/w16071000 - 29 Mar 2024
Cited by 1 | Viewed by 1597
Abstract
Preventing the rebound of black and odorous water bodies is critical for improving the ecological environment of water bodies. This study examined the effect and underlying mechanism of in-situ improvement of the sediment microenvironment by nitrate in the tailwater of wastewater treatment plants [...] Read more.
Preventing the rebound of black and odorous water bodies is critical for improving the ecological environment of water bodies. This study examined the effect and underlying mechanism of in-situ improvement of the sediment microenvironment by nitrate in the tailwater of wastewater treatment plants combined with aerobic denitrifying bacteria under low-DO regulation (TailN + CFM + LDO). On the 60th day of remediation, the levels of dissolved oxygen and oxidation–reduction potential in the overlying water rose to 5.6 mg/L and 300 mV, respectively, the concentration of acid volatile sulfide within the sediment significantly decreased by 70.4%, and the organic matter content in the sediment was reduced by 62.7%, in which the heavy fraction organic matter was degraded from 105 g/kg to 56 g/kg, and the potential risk of water reverting to black and odorous conditions significantly decreased. Amplicon sequencing analysis revealed that the relative abundance of the electroactive bacteria Thiobacillus and Pseudomonas with denitrification capacity was found to be significantly higher in the TailN + CFM + LDO group than in the other remediation groups. Functional prediction of the 16S sequencing results indicated that both the quantity and activity of critical microbial enzymes involved in nitrification and denitrification processes could be enhanced in the TailN + CFM + LDO group. These results improved our understanding of the improvement of the sediment microenvironment and could thus facilitate its application. Full article
Show Figures

Figure 1

11 pages, 2834 KiB  
Article
Functional Microorganisms Drive the Formation of Black-Odorous Waters
by Yuchen Wu, Wenjing Wang, Xiaozhu Liu and Yanqing Sheng
Microorganisms 2024, 12(3), 487; https://doi.org/10.3390/microorganisms12030487 - 28 Feb 2024
Cited by 6 | Viewed by 1568
Abstract
Black-odorous waters are water bodies that are noticeably abnormal in color or emit unpleasant odors. River water pollution and ecological degradation have gradually emerged with urbanization and rapid economic development, and BOW has become frequent. The black-odorous evolution of urban water bodies is [...] Read more.
Black-odorous waters are water bodies that are noticeably abnormal in color or emit unpleasant odors. River water pollution and ecological degradation have gradually emerged with urbanization and rapid economic development, and BOW has become frequent. The black-odorous evolution of urban water bodies is a serious environmental problem in many areas, posing a serious threat to both human health and the ecological environment. Functional microorganisms are closely related to the formation of black-odorous phenomena in water bodies, but the understanding of the mechanisms by which functional microorganisms influence the formation of BOW is very limited. In this study, water samples from the Guangdang River in Yantai, Shandong Province, China, were collected as the bacterial solution in the study, and how environmental factors and functional microorganisms affect the formation of black smelly water was investigated by artificially simulating black smelly water. The results indicated that different environmental factors have different effects on the formation of BOW. Anaerobic conditions accelerated the formation of BOW, and species diversity and species abundance were lowest under this condition. Hydraulic disturbance and nitrate effectively mitigated the BOW phenomenon, in which species diversity and species abundance were higher; controlling either of these variables was effective in mitigating the BOW phenomenon. Desulfobacterota played a key role in the formation of BOW, and reducing the proportion of Desulfobacterota in the microbial community could effectively improve the water quality. Possible directions of electron transfer in the process were hypothesized. This study contributes to identifying the biological driving factors for black-odorous evolution, presents insight for preventing BOW formation, and provides a scientific basis for subsequent BOW management. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

13 pages, 5753 KiB  
Article
Development of Assessment Criteria for Managing the Quality of Taishan Black Tea
by Xiaochen Wen, Tongtong Xie, Xinying Chen, Jie Li, Xiaoyang Han and Haiwei Sun
Agronomy 2024, 14(2), 360; https://doi.org/10.3390/agronomy14020360 - 10 Feb 2024
Cited by 1 | Viewed by 1490
Abstract
In order to obtain the quality information of Taishan black tea and provide data support for the establishment of assessment criteria for quality control of Taishan black tea, in this study, 45 samples of Taishan black tea were collected during the summer to [...] Read more.
In order to obtain the quality information of Taishan black tea and provide data support for the establishment of assessment criteria for quality control of Taishan black tea, in this study, 45 samples of Taishan black tea were collected during the summer to investigate their quality characteristics. The results showed that the Taishan black tea typically exhibited a dark-brown, curly appearance and a uniform texture. The tea soup displayed a bright orange-red color. The tea was mainly described as having a fruity aroma, followed by a caramel flavor, sweet aroma, flowery flavor, and clean aroma, with a strong and enduring fragrance. The taste profile was mostly heavy and mellow or heavy and strong, with fewer samples exhibiting slight bitterness and astringency. The tea leaves were characterized by a reddish-auburn color, a soft texture, and an even appearance. The main biochemical components of the Taishan black tea fell within the following ranges: water extracts (38.65–43.35%), free amino acids (1.41–3.45%), tea polyphenols (9.80–15.05%), catechins (6.11–9.03%), and caffeine (1.65–3.05%). The phenolic acid/amino acid ratio was 2.31–6.65%. Catechins and tea polyphenols emerged as critical indicators influencing taste quality, followed by amino acids, water extracts, and caffeine. The aroma analysis identified common compounds, such as 3-methyl-butanal, 2-methyl-butanal, decanal, 2-methyl-propanal, 1-octen-3-ol, and β-ionone, in most samples. These compounds exhibited relatively high contents and high odor activity values, making them the primary contributors to the tea’s aroma. This investigation into the quality of Taishan black tea offers valuable scientific insights, providing a foundation for the standardization of Taishan black tea’s quality. Full article
(This article belongs to the Special Issue Mineral Nutrient and Quality Control in Tea Plant)
Show Figures

Figure 1

21 pages, 7027 KiB  
Article
Detection of Black and Odorous Water in Gaofen-2 Remote Sensing Images Using the Modified DeepLabv3+ Model
by Jianjun Huang, Jindong Xu, Weiqing Yan, Peng Wu and Haihua Xing
Sustainability 2024, 16(1), 92; https://doi.org/10.3390/su16010092 - 21 Dec 2023
Cited by 1 | Viewed by 2058
Abstract
The detection of black and odorous water using remote sensing technology has become an effective method. The high-resolution remote sensing images can extract target features better than low-resolution images. However, the high-resolution images often introduce complex background details and intricate textures, which often [...] Read more.
The detection of black and odorous water using remote sensing technology has become an effective method. The high-resolution remote sensing images can extract target features better than low-resolution images. However, the high-resolution images often introduce complex background details and intricate textures, which often have problems with accurate feature extraction. In this paper, based on remote sensing images acquired by the Gaofen-2 satellite, we proposed a Modified DeepLabv3+ model to detect black and odorous water. To reduce the complexity of the encoder part of the model, Modified Deeplabv3+ incorporates a lightweight MobileNetV2 network. A convolutional attention module was introduced to improve the focus on the features of black and odorous water. Then, a fuzzy block was crafted to reduce the uncertainty of the raw data. Additionally, a new loss function was formulated to solve the problem of category imbalance. A series of experiments were conducted on both remote sensing images for the black and odorous water detection (RSBD) dataset and the water pollution dataset, demonstrating that the Modified DeepLabv3+ model outperforms other commonly used semantic segmentation networks. It effectively captures detailed information and reduces image segmentation errors. In addition, in order to better identify black and odorous water and enrich the spectral information of the image, we have generated derived bands using the black and odorous water index. These derived bands were fused together with the original image to construct the RSBD-II dataset. The experimental results show that adding a black and odorous water feature index can achieve a better detection effect. Full article
(This article belongs to the Special Issue Remote Sensing and Image Processing in Environmental Field)
Show Figures

Figure 1

14 pages, 4743 KiB  
Article
Micro- and Nano-Bubbles Enhanced the Treatment of an Urban Black-Odor River
by Qinqin Xu, Zheng Zhou and Xiaoli Chai
Sustainability 2023, 15(24), 16695; https://doi.org/10.3390/su152416695 - 9 Dec 2023
Cited by 1 | Viewed by 1719
Abstract
Black-odor water is prevalent in southeastern coastal regions of China, compromising both the aquatic ecosystem and urban aesthetics. Micro- and nano-bubbles (MNBs) aeration, identified as an innovative approach, offers potential improvements in water ecological function. This study introduces and implements an MNBs technique [...] Read more.
Black-odor water is prevalent in southeastern coastal regions of China, compromising both the aquatic ecosystem and urban aesthetics. Micro- and nano-bubbles (MNBs) aeration, identified as an innovative approach, offers potential improvements in water ecological function. This study introduces and implements an MNBs technique to rehabilitate an urban black-odor river. Results indicate that MNBs aeration achieved a significantly higher increment rate of dissolved oxygen (89.4%) and higher removal efficiencies of biological oxygen demand (54.4%), chemical oxygen demand (39.0%), ammonia nitrogen (63.2%), total phosphorus (28.0%) and dimethyl trisulfide (100%) in the water compared to conventional blast aeration. Concurrently, a 25.0% increase in the ratio of iron/aluminum-bonded phosphorus (Fe/Al-P) to total sediment phosphorus effectively curtailed endogenous phosphorus release. Additionally, MNBs aeration markedly reduced plankton biomass, suggesting direct removal by MNBs. This enhanced performance is attributable to the improved oxygen mass transfer coefficient and oxygenation capacity, fostering more efficient pollutants. Furthermore, MNBs significantly encouraged the growth of aerobic microorganisms (e.g., Actinobacteria, Firmicutes and Myxococcota) in the sediment, bolstering the water’s self-purification ability. Consequently, this study validates MNBs as a highly promising solution for treating black odorous water bodies. Full article
Show Figures

Figure 1

18 pages, 3376 KiB  
Article
Effects of Sun Withering Degree on Black Tea Quality Revealed via Non-Targeted Metabolomics
by Zhuanrong Wu, Yuanfang Jiao, Xinfeng Jiang, Chen Li, Weijiang Sun, Yuqiong Chen, Zhi Yu and Dejiang Ni
Foods 2023, 12(12), 2430; https://doi.org/10.3390/foods12122430 - 20 Jun 2023
Cited by 7 | Viewed by 3364
Abstract
In this study, the effects of different sun withering degrees (75% (CK), 69% (S69), 66% (S66), 63% (S63), and 60% (S60) water content in the withered leaves) on black tea sensory quality were investigated by means of sensory evaluation plus metabolomics analysis. Sensory [...] Read more.
In this study, the effects of different sun withering degrees (75% (CK), 69% (S69), 66% (S66), 63% (S63), and 60% (S60) water content in the withered leaves) on black tea sensory quality were investigated by means of sensory evaluation plus metabolomics analysis. Sensory evaluation results showed higher sensory quality scores for the black tea in S69–S66, due to better freshness, sweeter taste, and a sweet and even floral and fruity aroma. Additionally, 65 non-volatile components were identified using Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF/MS). Among them, the content increase of amino acids and theaflavins was found to promote the freshness and sweetness of black tea. The aroma of tea was analyzed using combined Solvent Assisted Flavor Evaporation-Gas Chromatography-Mass Spectrometry (SAFE-GC-MS) and Headspace-Solid Phase Micro Extract-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), and 180 volatiles were identified, including 38 variable importance in projection (VIP) > 1 (p < 0.05) and 25 Odor Activity Value (OAV) > 1 volatiles. Statistical analysis revealed 11 volatiles as potential major aroma differential metabolites in black tea with a different sun withering degree, such as volatile terpenoids (linalool, geraniol, (E)-citral, and β-myrcene), amino-acid-derived volatiles (benzeneethanol, benzeneacetaldehyde, and methyl salicylate), carotenoid-derived volatiles (jasmone and β-damascenone), and fatty-acid-derived volatiles ((Z)-3-hexen-1-ol and (E)-2-hexenal). Among them, volatile terpenoids and amino acid derived volatiles mainly contributed to the floral and fruity aroma quality of sun-withered black tea. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

13 pages, 6333 KiB  
Article
The Impact of Sediment–Water Ratio and Hydraulic Residence Time on the Release of Inorganic Nitrogen from Sediments in the Pearl River Delta
by Zerui Gong, Yanling Wang, Heping Hu, Pengfei Chen, Yao Lu, Lei Wang and Shaobin Huang
Water 2023, 15(9), 1789; https://doi.org/10.3390/w15091789 - 7 May 2023
Viewed by 2490
Abstract
Black-odorous water bodies in the Pearl River Delta have been treated. However, the re-release of nitrogen (N)-containing compounds in sediment can cause a relapse of black-odorous water bodies. Sediment–water ratio (SWR) and hydraulic residence time (HRT) influence pollutant release. Therefore, how to control [...] Read more.
Black-odorous water bodies in the Pearl River Delta have been treated. However, the re-release of nitrogen (N)-containing compounds in sediment can cause a relapse of black-odorous water bodies. Sediment–water ratio (SWR) and hydraulic residence time (HRT) influence pollutant release. Therefore, how to control SWR and HRT during the treatment process has become an urgent problem. This study focuses on the dynamic release of endogenous inorganic N from sediments into overlying water in a river channel of Dongguan City, Guangdong Province. Physicochemical parameters (dissolved inorganic nitrogen (DIN), NH4+-N, NO3-N, NO2-N, dissolved oxygen (DO), pH, oxidation-reduction potential (ORP), chemical oxygen demand (COD), Fe and total phosphorus (TP)) of overlying water were monitored under different SWRs (0.71, 0.38, and 0.16) and HRTs (13 days and 6.5 days), and the nitrogen release flux under different conditions was compared. Finally, the correlation and influence pathways among environmental factors were analyzed. The results showed that SWR significantly affected DO, pH, ORP, and sediment N release fluxes while prolonging HRT-promoted denitrification. DIN → NO2-N → DO pathway had a total effect of 19.6%, and DIN may promote low DO concentration via NO2 oxidation. Maintaining reasonable SWR and HRT can reduce the release of inorganic N from sediment into the overlying water. This study provides a theoretical basis for controlling black-odorous water bodies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

13 pages, 7639 KiB  
Article
Home-Based Electrochemical Rapid Sensor (HERS): A Diagnostic Tool for Bacterial Vaginosis
by Melissa Banks, Farbod Amirghasemi, Evelyn Mitchell and Maral P. S. Mousavi
Sensors 2023, 23(4), 1891; https://doi.org/10.3390/s23041891 - 8 Feb 2023
Cited by 9 | Viewed by 6684
Abstract
Bacterial vaginosis (BV) is the most frequently occurring vaginal infection worldwide, yet it remains significantly underdiagnosed as a majority of patients are asymptomatic. Untreated BV poses a serious threat as it increases one’s risk of STI acquisition, pregnancy complications, and infertility. We aim [...] Read more.
Bacterial vaginosis (BV) is the most frequently occurring vaginal infection worldwide, yet it remains significantly underdiagnosed as a majority of patients are asymptomatic. Untreated BV poses a serious threat as it increases one’s risk of STI acquisition, pregnancy complications, and infertility. We aim to minimize these risks by creating a low-cost disposable sensor for at-home BV diagnosis. A clinical diagnosis of BV is most commonly made according to the Amsel criteria. In this method, a fish-like odor, caused by increased levels of trimethylamine (TMA) in vaginal fluid, is used as a key diagnostic. This paper outlines the development of a Home-Based Electrochemical Rapid Sensor (HERS), capable of detecting TMA in simulated vaginal fluid (sVF). Instead of odor-based detection of volatilized TMA, we identify TMA in trimethylammonium form by utilizing HERS and a potentiometric readout. We fabricated the ion selective electrode using a carbon-black-coated cotton string and a TMA-selective membrane consisting of calix[4]arene and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate. When paired with a standard reference electrode, our device was able to quantify TMA concentration in deionized (DI) water, as well as sVF samples at multiple pH levels with a clinically relevant limit of detection (8.66 µM, and theoretically expected Nernstian slope of 55.14 mV/decade). Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Sensors)
Show Figures

Figure 1

Back to TopTop