Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = bitter melon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2239 KiB  
Article
Synthesis of Silver Nanoparticles from Bitter Melon (Momordica charantia) Extracts and Their Antibacterial Effect
by Nanh Lovanh, Getahun Agga, Graciela Ruiz-Aguilar, John Loughrin and Karamat Sistani
Microorganisms 2025, 13(8), 1809; https://doi.org/10.3390/microorganisms13081809 (registering DOI) - 2 Aug 2025
Abstract
We utilized silver nanoparticles synthesized from bitter melon (Momordica charantia) extracts for testing against the common agricultural pathogen Escherichia coli. The synthesized nanoparticles were characterized and confirmed as silver nanoparticles by using ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and scanning [...] Read more.
We utilized silver nanoparticles synthesized from bitter melon (Momordica charantia) extracts for testing against the common agricultural pathogen Escherichia coli. The synthesized nanoparticles were characterized and confirmed as silver nanoparticles by using ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy analysis. The results show that AgNPs were effective against E. coli ATCC25922 strain. The AgNPs had an increased potency against the E. coli strain in optimum culture media compared to silver ions alone. AgNP-treated cultures achieved a kill percentage of 100% in less incubation time and at a lower dosage than those treated with silver ions alone. The powder form of the AgNPs also showed remarkable potency against E. coli in solution. Based on these findings, the current method is suitable for the industrial-scale production of AgNPs from a commonly available edible plant with known medicinal benefits in the fight against foodborne pathogens, including antibiotic-resistant strains. Full article
Show Figures

Figure 1

19 pages, 4653 KiB  
Article
YOLOv8-LSW: A Lightweight Bitter Melon Leaf Disease Detection Model
by Shuang Liu, Haobin Xu, Ying Deng, Yixin Cai, Yongjie Wu, Xiaohao Zhong, Jingyuan Zheng, Zhiqiang Lin, Miaohong Ruan, Jianqing Chen, Fengxiang Zhang, Huiying Li and Fenglin Zhong
Agriculture 2025, 15(12), 1281; https://doi.org/10.3390/agriculture15121281 - 13 Jun 2025
Cited by 1 | Viewed by 487
Abstract
Bitter melon, an important medicinal and edible economic crop, is often threatened by diseases such as downy mildew, powdery mildew, viral diseases, anthracnose, and blight during its growth. Efficient and accurate disease detection is of significant importance for achieving sustainable disease management in [...] Read more.
Bitter melon, an important medicinal and edible economic crop, is often threatened by diseases such as downy mildew, powdery mildew, viral diseases, anthracnose, and blight during its growth. Efficient and accurate disease detection is of significant importance for achieving sustainable disease management in bitter melon cultivation. To address the issues of weak generalization ability and high computational demands in existing deep learning models in complex field environments, this study proposes an improved lightweight YOLOv8-LSW model. The model incorporates the inverted bottleneck structure of LeYOLO-small to design the backbone network, utilizing depthwise separable convolutions and cross-stage feature reuse modules to achieve lightweight design, reducing the number of parameters while enhancing multi-scale feature extraction capabilities. It also integrates the ShuffleAttention mechanism, strengthening the feature response in lesion areas through channel shuffling and spatial attention dual pathways. Finally, WIoUv3 replaces the original loss function, optimizing lesion boundary regression based on a dynamic focusing mechanism. The results show that YOLOv8-LSW achieves a precision of 95.3%, recall of 94.3%, mAP50 of 98.1%, mAP50-95h of 95.6%, and F1-score of 94.80%, which represent improvements of 2.2%, 2.7%, 1.2%, 2.2%, and 2.46%, respectively, compared to the original YOLOv8n. The effectiveness of the improvements was verified through heatmap analysis and ablation experiments. The number of parameters and GFLOPS were reduced by 20.58% and 20.29%, respectively, with an FPS of 341.58. Comparison tests with various mainstream deep learning models also demonstrated that YOLO-LSW performs well in the bitter melon disease detection task. This research provides a technical solution with both lightweight design and strong generalization ability for real-time detection of bitter melon diseases in complex environments, which holds significant application value in promoting precision disease control in smart agriculture. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

12 pages, 434 KiB  
Communication
Preliminary Characterization and Consumer Insights of Juice Enzymatically Extracted from North American Pawpaw (Asimina triloba)
by Robert G. Brannan
Beverages 2025, 11(3), 86; https://doi.org/10.3390/beverages11030086 - 9 Jun 2025
Viewed by 556
Abstract
This study reports for the first time parameters and consumer preferences about juice prepared from North American pawpaw fruit (Asimina triloba). Enzymatic extraction using a commercial preparation of pectinases, hemicellulases, and beta-glucanases (Pectinex® Ultra SP-L) significantly increased juice yield compared [...] Read more.
This study reports for the first time parameters and consumer preferences about juice prepared from North American pawpaw fruit (Asimina triloba). Enzymatic extraction using a commercial preparation of pectinases, hemicellulases, and beta-glucanases (Pectinex® Ultra SP-L) significantly increased juice yield compared to non-enzyme extraction, but enzyme concentration (0.05% vs. 0.1%) and acidification method (citric vs. tartaric acid) showed no significant differences. Sensory panelists found no significant differences between citric and tartaric acid acidified juices, or between juices prepared from fresh pawpaw and pawpaw stored refrigerated for 14 days. Blending pawpaw juice with fruit juices improved overall acceptability compared to blending with fruit purees. Consumer testing revealed no overall preference among five juice formulations (100% pawpaw juice, sweetened pawpaw juice, pawpaw juice with the addition of 10% apple, orange, or pineapple juice). Consumers highlighted the complex flavor profile of pawpaw, with sweet and bitter tastes, and melon, papaya, and pear flavors being most frequently identified. Sweetening the juice altered the flavor profile, masking sourness and certain flavors. Based on this preliminary study, challenges and opportunities were identified for the development of a pawpaw-based juice. Full article
Show Figures

Figure 1

22 pages, 755 KiB  
Review
Nutraceutical Potential of Bitter Melon (Momordica charantia) on Cancer Treatment: An Overview of In Vitro and Animal Studies
by Georgia-Eirini Deligiannidou, Agathi Pritsa, Anastasios Nikolaou, Efthymios Poulios, Christos Kontogiorgis, Sousana K. Papadopoulou and Constantinos Giaginis
Curr. Issues Mol. Biol. 2025, 47(6), 425; https://doi.org/10.3390/cimb47060425 - 6 Jun 2025
Viewed by 1097
Abstract
Bitter melon (Momordica charantia) has been extensively investigated for its potential in cancer treatment. In this work, we provide an overview of in vitro and animal studies exploring its bioactive compounds, extracts, extracellular vesicles, fusion proteins, co-treatment with conventional pharmaceuticals, and [...] Read more.
Bitter melon (Momordica charantia) has been extensively investigated for its potential in cancer treatment. In this work, we provide an overview of in vitro and animal studies exploring its bioactive compounds, extracts, extracellular vesicles, fusion proteins, co-treatment with conventional pharmaceuticals, and utilization of nanoparticles, demonstrating promising cytotoxic and apoptotic effects across various cancer cell lines. A comprehensive search of online databases, e.g., PubMed, Scopus, and Web of Science, and Google Scholar was performed in the last decade, utilizing relevant keywords and applying several inclusion and exclusion criteria. The plant and its derivatives exhibit significant antiproliferative properties and modulate key signaling pathways. Additionally, animal studies have validated its antitumor potential, highlighting its ability to suppress tumor growth, modulate immune responses, and enhance chemotherapeutic efficacy in vivo. Although several compounds of the plant have been investigated, the insights regarding their mechanisms of action remain limited. Also, plant-derived extracellular vesicles show promise as natural carriers for targeted drug delivery, while fusion proteins improve cellular uptake and apoptosis induction. Finally, the integration of bitter melon components into nanomedicine underscores their potential for advanced therapeutic applications. Collectively, these findings reinforce the growing interest in utilizing bitter melon-derived compounds for cancer treatment and signal the need for further research to optimize their clinical translation. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer Therapy)
Show Figures

Figure 1

13 pages, 3079 KiB  
Article
Oviposition Competition Between Zeugodacus cucurbitae and Bactrocera dorsalis Adults in Five Hosts
by Hongai Su, Jin Zhao, Haikuo Yu, Saleem Jaffar, Zhenyu Hao, Guangwen Liang, Ling Zeng and Yongyue Lu
Insects 2025, 16(4), 419; https://doi.org/10.3390/insects16040419 - 15 Apr 2025
Viewed by 616
Abstract
The Zeugodacus cucurbitae and Bactrocera dorsalis are economically significant pests that share similar habitats and host plants, leading to intense interspecific competition. To elucidate their competitive interactions, this study investigated the oviposition competition behavior of mixed laboratory populations on five common host plants: [...] Read more.
The Zeugodacus cucurbitae and Bactrocera dorsalis are economically significant pests that share similar habitats and host plants, leading to intense interspecific competition. To elucidate their competitive interactions, this study investigated the oviposition competition behavior of mixed laboratory populations on five common host plants: pumpkin (Cucurbita moschata), cucumber (Cucumis sativus), winter melon (Benincasa hispida), bitter melon (Momordica charantia) and guava (Psidium guajava). The results exhibited that among the five hosts tested, B. dorsalis exhibited a significant competitive advantage in oviposition on pumpkin and bitter melon, with its fecundity greater than that of Z. cucurbitae across all ratios. Conversely, Z. cucurbitae showed a clear preference for cucumber. Except at the extreme ratio of 16:4, where B. dorsalis laid slightly more eggs than that of Z. cucurbitae, Z. cucurbitae laid more eggs at all ratios. The results can provide a reference for further investigation on the oviposition selectivity and interspecific competition between the adults of Z. cucurbitae and B. dorsalis. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

17 pages, 5098 KiB  
Article
Preparation, Characterization, and Safety Evaluation of a Submicron Emulsion Processed Using High-Pressure Homogenization to Protect Bitter Melon Seed Oil
by Huiling Wang, Heng Guo, Xiaoyan Shuai, Yan Ma, Rui Zhang, Muci Wu, Jingren He and Jiayan Ling
Foods 2025, 14(5), 850; https://doi.org/10.3390/foods14050850 - 1 Mar 2025
Viewed by 986
Abstract
Bitter melon seed oil (BMSO), as a by-product of bitter gourd fruit processing, is rich in active ingredients and has unique medicinal potential. However, its solubility and dispersibility in water are poor when used directly. Therefore, this study aims to develop an eco-friendly [...] Read more.
Bitter melon seed oil (BMSO), as a by-product of bitter gourd fruit processing, is rich in active ingredients and has unique medicinal potential. However, its solubility and dispersibility in water are poor when used directly. Therefore, this study aims to develop an eco-friendly submicron emulsion containing BMSO for intravenous injection and evaluate its safety. The BMSO submicron emulsion (BMSOSE) was prepared by high-pressure homogenization. The size, polydispersity index (PDI), ζ-potential, Turbiscan stability index (TSI), apparent viscosity, and morphology were characterized; in addition, an in vitro hemolysis test and acute toxicity test in mice were investigated in detail to evaluate the emulsion. The results demonstrated that the formulation and technological parameters of the BMSOSE were as follows: BMSO, 8% (w/w); egg yolk lecithin, 1.2% (w/w); F-68, 0.2% (w/w); pH, 5.0; homogenization pressure, 600 Pa; and number of homogenization cycle, 9. The obtained BMSOSE droplets exhibited a spherical shape with uniform size distribution with an average diameter of 221.3 nm, a PDI of 0.2, and a ζ-potential of −36 mV. There was no significant change in the fatty acid composition of BMSO and the BMSOSE. The safety tests demonstrated that the BMSOSE had no signs of hemolysis and had no toxicity to mice with LD50 > 64 mL/kg. This study provides a foundation for further development of BMSO and its preparations. Full article
Show Figures

Graphical abstract

15 pages, 1572 KiB  
Article
Qualitative Phytochemical Profiling and In Vitro Antioxidant Potential Evaluation of South African Momordica Balsamina Linn Fruit Pulp
by Buang Matseke, Sipho Mapfumari and Mmamosheledi Mothibe
Life 2025, 15(1), 4; https://doi.org/10.3390/life15010004 - 24 Dec 2024
Viewed by 1052
Abstract
Momordica balsamina Linn is a well-known African traditional herb due to its tremendous medicinal and nutritional properties. It is used worldwide for the treatment of different ailments and diseases. In the present study, the phytochemical and antioxidant activity of South African M. balsamina [...] Read more.
Momordica balsamina Linn is a well-known African traditional herb due to its tremendous medicinal and nutritional properties. It is used worldwide for the treatment of different ailments and diseases. In the present study, the phytochemical and antioxidant activity of South African M. balsamina fruit pulp extracts was evaluated. The fruit pulp extracts were obtained by using the serial exhaustive extraction procedure using the solvents hexane, DCM, acetone, and methanol. The resulting extracts were subjected to different standard colorimetric tests for phytochemical analysis. The presence of compounds with antioxidant activity was determined using dot plot and TLC. The DPPH radical scavenging assay, hydrogen peroxide activity, and reducing power assay, coupled with linear regression, were employed to determine the quantity of antioxidants and their IC50. The results for qualitative phytochemical screening have shown that the fruit pulp contains alkaloids, cardiac glycosides, saponins, phenolic compounds, tannins, flavonoids, terpenoids, and steroids. All the extracts revealed the presence of antioxidant activity in both dot plot and TLC. Acetone extracts (0.279 mg/mL) showed the lowest IC50 compared to the standards gallic acid (0.4 mg/mL) and diosgenin (0.42 mg/mL). These findings confirmed that M. balsamina is very rich in phytochemical compounds and has strong antioxidant potential; therefore, it could be a potential source of drugs which in the future may serve the production of synthetically improved therapeutic agents. Full article
Show Figures

Figure 1

16 pages, 8192 KiB  
Article
Improved CSW-YOLO Model for Bitter Melon Phenotype Detection
by Haobin Xu, Xianhua Zhang, Weilin Shen, Zhiqiang Lin, Shuang Liu, Qi Jia, Honglong Li, Jingyuan Zheng and Fenglin Zhong
Plants 2024, 13(23), 3329; https://doi.org/10.3390/plants13233329 - 27 Nov 2024
Cited by 3 | Viewed by 1080
Abstract
As a crop with significant medicinal value and nutritional components, the market demand for bitter melon continues to grow. The diversity of bitter melon shapes has a direct impact on its market acceptance and consumer preferences, making precise identification of bitter melon germplasm [...] Read more.
As a crop with significant medicinal value and nutritional components, the market demand for bitter melon continues to grow. The diversity of bitter melon shapes has a direct impact on its market acceptance and consumer preferences, making precise identification of bitter melon germplasm resources crucial for breeding work. To address the limitations of time-consuming and less accurate traditional manual identification methods, there is a need to enhance the automation and intelligence of bitter melon phenotype detection. This study developed a bitter melon phenotype detection model named CSW-YOLO. By incorporating the ConvNeXt V2 module to replace the backbone network of YOLOv8, the model’s focus on critical target features is enhanced. Additionally, the SimAM attention mechanism was introduced to compute attention weights for neurons without increasing the parameter count, further enhancing the model’s recognition accuracy. Finally, WIoUv3 was introduced as the bounding box loss function to improve the model’s convergence speed and positioning capabilities. The model was trained and tested on a bitter melon image dataset, achieving a precision of 94.6%, a recall of 80.6%, a mAP50 of 96.7%, and an F1 score of 87.04%. These results represent improvements of 8.5%, 0.4%, 11.1%, and 4% in precision, recall, mAP50, and F1 score, respectively, over the original YOLOv8 model. Furthermore, the effectiveness of the improvements was validated through heatmap analysis and ablation experiments, demonstrating that the CSW-YOLO model can more accurately focus on target features, reduce false detection rates, and enhance generalization capabilities. Comparative tests with various mainstream deep learning models also proved the superior performance of CSW-YOLO in bitter melon phenotype detection tasks. This research provides an accurate and reliable method for bitter melon phenotype identification and also offers technical support for the visual detection technologies of other agricultural products. Full article
Show Figures

Figure 1

16 pages, 8437 KiB  
Article
Genome-Wide Analysis of the Serine Carboxypeptidase-like (SCPL) Protein Family of Bitter Gourd and Functional Validation of McSCPL22 in Fusarium oxysporum f. sp. Momordicae (FOM) Resistance
by Feng Guan, Xuetong Yang, Bo Shi, Kai Wang, Jingyun Zhang, Yuanyuan Xie and Xinjian Wan
Int. J. Mol. Sci. 2024, 25(21), 11816; https://doi.org/10.3390/ijms252111816 - 3 Nov 2024
Cited by 1 | Viewed by 1589
Abstract
Bitter gourd is increasingly being recognized for its value as a vegetable and medicinal use, but the molecular mechanisms of pathogen resistance remain relatively poorly understood. The serine carboxypeptidase-like (SCPL) protein family plays a key role in plant growth, pathogen defense, and so [...] Read more.
Bitter gourd is increasingly being recognized for its value as a vegetable and medicinal use, but the molecular mechanisms of pathogen resistance remain relatively poorly understood. The serine carboxypeptidase-like (SCPL) protein family plays a key role in plant growth, pathogen defense, and so on. However, a comprehensive identification and functional characterization of the SCPL gene family has yet to be conducted in bitter melon. In this study, 32 SCPL genes were identified in bitter gourd and divided into three classes. The number of SCPL genes contained in the three clusters was 7, 7, and 18, respectively. Most SCPL gene promoters contain cis-acting elements with light, hormone, and stress responses. The RNA sequencing data showed that the expression of several SCPL genes changed significantly after pathogen infection. In particular, expression of the McSCPL4, 10, 17, 22, and 25 genes increased substantially in the resistant varieties after infection, and their expression levels were higher than those in the susceptible varieties. These results suggested that genes such as McSCPL4, 10, 17, 22, and 25 may play a significant role in conferring resistance to fungal infections. Moreover, the expression levels of the McSCPL10, 17, 22, 23, and 25 genes were likewise significantly changed after being induced by salicylic acid (SA) and jasmonic acid (JA). In situ hybridization showed that McSCPL22 was expressed in the vascular tissues of infected plants, which largely overlapped with the location of Fusarium oxysporum f. sp. Momordicae (FOM) infection and the site of hydrogen peroxide production. Our results showed that McSCPL22 may be involved in the regulation of the SA and JA pathways and enhance resistance to FOM in bitter gourd plants. This is the first study to perform SCPL gene family analysis in bitter gourd. McSCPL22 may have the potential to enhance FOM resistance in bitter gourd, and further investigation into its function is warranted. The results of this study may enhance the yield and molecular breeding of bitter gourd. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 4010 KiB  
Article
Exploring the Antidiabetic and Antihypertensive Potential of Peptides Derived from Bitter Melon Seed Hydrolysate
by Wei-Ting Hung, Christoper Caesar Yudho Sutopo, Tunjung Mahatmanto, Mei-Li Wu and Jue-Liang Hsu
Biomedicines 2024, 12(11), 2452; https://doi.org/10.3390/biomedicines12112452 - 25 Oct 2024
Cited by 3 | Viewed by 1687
Abstract
Background/Objectives: Type 2 diabetes (T2D) has become a critical global health issue, with an increasing prevalence that contributes to significant morbidity and mortality. Inhibiting dipeptidyl peptidase-IV (DPP4) is a promising strategy for managing T2D. This study aimed to explore the DPP4 inhibitory peptide [...] Read more.
Background/Objectives: Type 2 diabetes (T2D) has become a critical global health issue, with an increasing prevalence that contributes to significant morbidity and mortality. Inhibiting dipeptidyl peptidase-IV (DPP4) is a promising strategy for managing T2D. This study aimed to explore the DPP4 inhibitory peptide derived from bitter melon seed protein (BMSP) hydrolysate. Methods: Reversed-phase high-performance liquid chromatography (RP-HPLC) was utilized to fractionate the hydrolysate. Peptide in the highest activity fraction was analyzed using liquid chromatography-mass spectrometry (LC-MS/MS). Peptide synthetic was used for further characterizations, such as bioactivity exploration, inhibition mechanism, molecular docking, and peptide stability against in vitro simulated gastrointestinal (SGI) digestion. Results: The BMSP hydrolysate was digested with gastrointestinal proteases (GP) and assessed for DPP4 inhibitory activity, yielding an IC50 of 1448 ± 105 μg/mL. Following RP-HPLC fractionation, MPHW (MW4) and VPSGAPF (VF7) were identified from fraction F8 with DPP4 IC50 values of 128.0 ± 1.3 µM and 150.6 ± 3.4 µM, respectively. Additionally, MW4 exhibited potential antihypertensive effects through ACE inhibition with an IC50 of 172.2 ± 10.6 µM. The inhibitory kinetics and molecular docking simulations indicated that both MW4 and VF7 were competitive inhibitors of DPP4, while MW4 was also a competitive inhibitor of ACE. Importantly, both peptides remained stable during simulated gastrointestinal digestion, suggesting their resistance to human digestive processes and their capacity to maintain biological activity. Conclusions: The findings suggest that BMSP-GP hydrolysate may have potential in terms of the development of health foods or therapeutic agents. However, in vivo studies are also essential for further confirmation of efficacy. Full article
(This article belongs to the Special Issue Peptides and Amino Acids in Drug Development: Here and Now)
Show Figures

Figure 1

19 pages, 2457 KiB  
Article
Influences of Lactiplantibacillus plantarum dy-1 Fermentation on the Bitterness of Bitter Melon Juice, the Composition of Saponin Compounds, and Their Bioactivities
by Juan Bai, Zihan Yang, Wei Luo, Ying Zhu, Yansheng Zhao, Beibei Pan, Jiayan Zhang, Lin Zhu, Shiting Huang and Xiang Xiao
Foods 2024, 13(20), 3341; https://doi.org/10.3390/foods13203341 - 21 Oct 2024
Cited by 2 | Viewed by 1992
Abstract
Lactic acid bacteria fermentation is a beneficial bioprocessing method that can improve the flavor, transform nutrients, and maintain the biological activity of foods. The aim of this study is to investigate the effects of Lactiplantibacillus plantarum dy-1 fermentation on the nutritional components, flavor [...] Read more.
Lactic acid bacteria fermentation is a beneficial bioprocessing method that can improve the flavor, transform nutrients, and maintain the biological activity of foods. The aim of this study is to investigate the effects of Lactiplantibacillus plantarum dy-1 fermentation on the nutritional components, flavor and taste properties, and composition of saponin compounds and their hypolipidemic and antioxidant activities. The results suggested that the total polyphenol content increased, and the soluble polysaccharides and total saponin contents decreased in fermented bitter melon juice (FJ) compared with those in non-fermented bitter melon juice (NFJ). The determination of volatile flavor substances by GC-MS revealed that the response values of acetic acid, n-octanol, sedumol, etc., augmented significantly, and taste analysis with an electronic tongue demonstrated lower bitterness and higher acidity in FJ. Furthermore, UPLC-Q-TOF-MS/MS testing showed a significant decrease in bitter compounds, including momordicines I and II, and a significant increase in the active saponin momordicine U in the fermented bitter melon saponin group (FJBMS). The in vitro assays indicated that FJBMS exhibited similar antioxidant activities as the non-fermented bitter melon saponin group (NFBMS). The in vitro results show that both NFBMS and FJBMS, when used at 50 μg/mL, could significantly reduce fat accumulation and the malondialdehyde (MDA) content and increased the catalase (CAT) activity, while there was no significant difference in the bioactivities of NFBMS and FJBMS. In conclusion, Lactiplantibacillus plantarum dy-1 fermentation is an effective means to lower the bitterness value of bitter melon and preserve the well-known bioactivities of its raw materials, which can improve the edibility of bitter melon. Full article
(This article belongs to the Special Issue Fermented Foods: Microbiology, Technology, and Health Benefits)
Show Figures

Figure 1

19 pages, 6491 KiB  
Article
Identification and Location Method of Bitter Gourd Picking Point Based on Improved YOLOv5-Seg
by Sheng Jiang, Yechen Wei, Shilei Lyu, Hualin Yang, Ziyi Liu, Fangnan Xie, Jiangbo Ao, Jingye Lu and Zhen Li
Agronomy 2024, 14(10), 2403; https://doi.org/10.3390/agronomy14102403 - 17 Oct 2024
Cited by 1 | Viewed by 1128
Abstract
Aiming at the problems of small stems and irregular contours of bitter gourd, which lead to difficult and inaccurate location of picking points in the picking process of mechanical arms, this paper proposes an improved YOLOv5-seg instance segmentation algorithm with a coordinate attention [...] Read more.
Aiming at the problems of small stems and irregular contours of bitter gourd, which lead to difficult and inaccurate location of picking points in the picking process of mechanical arms, this paper proposes an improved YOLOv5-seg instance segmentation algorithm with a coordinate attention (CA) mechanism module, and combines it with a refinement algorithm to identify and locate the picking points of bitter gourd. Firstly, the improved algorithm model was used to identify and segment bitter gourd and melon stems. Secondly, the melon stem mask was extracted, and the thinning algorithm was used to refine the skeleton of the extracted melon stem mask image. Finally, a skeleton refinement graph of bitter gourd stem was traversed, and the midpoint of the largest connected region was selected as the picking point of bitter gourd. The experimental results show that the prediction precision (P), precision (R) and mean average precision (mAP) of the improved YOLOv5-seg model in object recognition were 98.04%, 97.79% and 98.15%, respectively. Compared with YOLOv5-seg, the P, R and mA values were increased by 2.91%, 4.30% and 1.39%, respectively. In terms of object segmentation, mask precision (P(M)) was 99.91%, mask recall (R(M)) 99.89%, and mask mean average precision (mAP(M)) 99.29%. Compared with YOLOv5-seg, the P(M), R(M), and mAP(M) values were increased by 6.22%, 7.81%, and 5.12%, respectively. After testing, the positioning error of the three-dimensional coordinate recognition of bitter gourd picking points was X-axis = 7.025 mm, Y-axis =5.6135 mm, and Z-axis = 11.535 mm, and the maximum allowable error of the cutting mechanism at the end of the picking manipulator was X-axis = 30 mm, Y-axis = 24.3 mm, and Z-axis = 50 mm. Therefore, this results of study meet the positioning accuracy requirements of the cutting mechanism at the end of the manipulator. The experimental data show that the research method in this paper has certain reference significance for the accurate identification and location of bitter gourd picking points. Full article
Show Figures

Figure 1

19 pages, 1993 KiB  
Review
Therapeutic Potential of Momordicine I from Momordica charantia: Cardiovascular Benefits and Mechanisms
by Pai-Feng Kao, Chun-Han Cheng, Tzu-Hurng Cheng, Ju-Chi Liu and Li-Chin Sung
Int. J. Mol. Sci. 2024, 25(19), 10518; https://doi.org/10.3390/ijms251910518 - 29 Sep 2024
Cited by 1 | Viewed by 4205
Abstract
Momordica charantia (bitter melon), a traditional medicinal plant, has been demonstrated to have potential in managing diabetes, gastrointestinal problems, and infections. Among its bioactive compounds, momordicine I, a cucurbitane-type triterpenoid, has attracted attention due to its substantial biological activities. Preclinical studies have indicated [...] Read more.
Momordica charantia (bitter melon), a traditional medicinal plant, has been demonstrated to have potential in managing diabetes, gastrointestinal problems, and infections. Among its bioactive compounds, momordicine I, a cucurbitane-type triterpenoid, has attracted attention due to its substantial biological activities. Preclinical studies have indicated that momordicine I possesses antihypertensive, anti-inflammatory, antihypertrophic, antifibrotic, and antioxidative properties, indicating its potential as a therapeutic agent for cardiovascular diseases. Its mechanisms of action include modulating insulin signaling, inhibiting inflammatory pathways, and inducing apoptosis in cancer cells. The proposed mechanistic pathways through which momordicine I exerts its cardiovascular benefits are via the modulation of nitric oxide, angiotensin-converting enzymes, phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt), oxidative stress, apoptosis and inflammatory pathways. Furthermore, the anti-inflammatory effects of momordicine I are pivotal. Momordicine I might reduce inflammation through the following mechanisms: inhibiting pro-inflammatory cytokines, reducing adhesion molecules expression, suppressing NF-κB activation, modulating the Nrf2 pathway and suppressing c-Met/STAT3 pathway. However, its therapeutic use requires the careful consideration of potential side effects, contraindications, and drug interactions. Future research should focus on elucidating the precise mechanisms of momordicine I, validating its efficacy and safety through clinical trials, and exploring its pharmacokinetics. If proven effective, momordicine I could considerably affect clinical cardiology by acting as a novel adjunct or alternative therapy for cardiovascular diseases. To date, no review article has been published on the role of bitter-melon bioactive metabolites in cardiovascular prevention and therapy. The present work constitutes a comprehensive, up-to-date review of the literature, which highlights the promising therapeutic potential of momordicine I on the cardiovascular system and discusses future research recommendations. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

14 pages, 2389 KiB  
Article
MoMo30 Binds to SARS-CoV-2 Spike Variants and Blocks Infection by SARS-CoV-2 Pseudovirus
by Kenya DeBarros, Mahfuz Khan, Morgan Coleman, Vincent C. Bond, Virginia Floyd, Erick Gbodossou, Amad Diop, Lauren R. H. Krumpe, Barry R. O’Keefe and Michael D. Powell
Viruses 2024, 16(9), 1433; https://doi.org/10.3390/v16091433 - 7 Sep 2024
Cited by 1 | Viewed by 1997
Abstract
MoMo30 is an antiviral protein isolated from aqueous extracts of Momordica balsamina L. (Senegalese bitter melon). Previously, we demonstrated MoMo30’s antiviral activity against HIV-1. Here, we explore whether MoMo30 has antiviral activity against the COVID-19 virus, SARS-CoV-2. MLV particles pseudotyped with the SARS-CoV-2 [...] Read more.
MoMo30 is an antiviral protein isolated from aqueous extracts of Momordica balsamina L. (Senegalese bitter melon). Previously, we demonstrated MoMo30’s antiviral activity against HIV-1. Here, we explore whether MoMo30 has antiviral activity against the COVID-19 virus, SARS-CoV-2. MLV particles pseudotyped with the SARS-CoV-2 Spike glycoprotein and a Luciferase reporter gene (SARS2-PsV) were developed from a three-way co-transfection of HEK293-T17 cells. MoMo30’s inhibition of SARS2-PsV infection was measured using a luciferase assay and its cytotoxicity using an XTT assay. Additionally, MoMo30’s interactions with the variants and domains of Spike were determined by ELISA. We show that MoMo30 inhibits SARS2-PsV infection. We also report evidence of the direct interaction of MoMo30 and SARS-CoV-2 Spike from WH-1, Alpha, Delta, and Omicron variants. Furthermore, MoMo30 interacts with both the S1 and S2 domains of Spike but not the receptor binding domain (RBD), suggesting that MoMo30 inhibits SARS-CoV-2 infection by inhibiting fusion of the virus and the host cell via interactions with Spike. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

14 pages, 4267 KiB  
Article
Biochar Prepared from Steam-Exploded Bitter Melon Vine for the Adsorption of Methylene Blue from Aqueous Solution: Kinetics, Isotherm, Thermodynamics and Mechanism
by Xia Li, Hongyu Jia, Lihua Jiang, Zhengwei Mou, Bo Zhang, Zihui Zhang and Yan Chen
Sustainability 2024, 16(17), 7278; https://doi.org/10.3390/su16177278 - 24 Aug 2024
Cited by 5 | Viewed by 1532
Abstract
Bitter melon vine (an agricultural waste product with high fiber content) is difficult to treat and has caused problems in the environment. This research aims to produce biochar through low-temperature pyrolysis assisted by non-polluting steam explosion. The physical and chemical properties of the [...] Read more.
Bitter melon vine (an agricultural waste product with high fiber content) is difficult to treat and has caused problems in the environment. This research aims to produce biochar through low-temperature pyrolysis assisted by non-polluting steam explosion. The physical and chemical properties of the biochar were characterized using scanning electron microscopy (SEM) images, specific surface area measurements (BET), X-ray diffraction patters (XRD), elemental analysis (EA), and Fourier transform infrared spectroscopy (FTIR). Next, the adsorption mechanism of methylene blue (MB) on the steam-exploded bitter melon vine biochar pyrolyzed at 200 °C (qBC200) and the effects of adsorption time, pH, initial concentration, adsorption temperature, and adsorbent dosage on the adsorption effect were investigated. Steam explosion destroyed the dense structure of the plant, increased the number of oxygen-containing surface functional groups, and improved the adsorption performance of the material. Therefore, qBC200 more effectively adsorbed MB than untreated biochar, reaching a saturated adsorption capacity of 267.72 mg/g. The MB adsorption kinetics and isothermal adsorption process of qBC200 align with the pseudo-second-order kinetic model and Langmuir isothermal equation (monolayer adsorption), respectively. The thermodynamic results show that MB adsorbs via a spontaneous, entropy-increasing exothermic reaction. The adsorption mechanism involves electrostatic attraction, hydrogen bonding, and π–π interactions. The prepared biomass with high fiber content is a promising new material for wastewater treatment. Full article
(This article belongs to the Special Issue Advances in Waste Biomass and Environmental Sustainability)
Show Figures

Figure 1

Back to TopTop