Nutraceutical Potential of Bitter Melon (Momordica charantia) on Cancer Treatment: An Overview of In Vitro and Animal Studies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. In Vitro Studies
3.1.1. Bitter Melon Compounds
3.1.2. Bitter Melon Extracts
3.1.3. Bitter Melon Derivative Combination Techniques
3.2. Animal Models
Bitter Melon Derivatives and Extracts
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, J.; Wang, W.; Liu, T.; Wang, Y.; Wei, X.; Qi, S.; Gu, B. Effects of Momordica charantia Exosomes on Platelet Activation, Adhesion, and Aggregation. Blood Coagul. Fibrinolysis 2022, 33, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Z.; Yang, G.; Ho, C.T.; Li, S. Momordica charantia: A Popular Health-Promoting Vegetable with Multifunctionality. Food Funct. 2017, 8, 1749–1762. [Google Scholar] [CrossRef]
- Bortolotti, M.; Mercatelli, D.; Polito, L. Momordica charantia, a Nutraceutical Approach for Inflammatory Related Diseases. Front. Pharmacol. 2019, 10, 486. [Google Scholar] [CrossRef]
- Sur, S.; Nakanishi, H.; Flaveny, C.; Ippolito, J.E.; McHowat, J.; Ford, D.A.; Ray, R.B. Inhibition of the Key Metabolic Pathways, Glycolysis and Lipogenesis, of Oral Cancer by Bitter Melon Extract. Cell Commun. Signal. 2019, 17, 131. [Google Scholar] [CrossRef]
- Reed, D.; Kumar, D.; Kumar, S.; Raina, K.; Punia, R.; Kant, R.; Saba, L.; Cruickshank-Quinn, C.; Tabakoff, B.; Reisdorph, N.; et al. Transcriptome and Metabolome Changes Induced by Bitter Melon (Momordica charantia)- Intake in a High-Fat Diet Induced Obesity Model. J. Tradit. Complement. Med. 2022, 12, 287–301. [Google Scholar] [CrossRef]
- Lepionka, T.; Białek, M.; Czauderna, M.; Szlis, M.; Białek, A. Lipidomic Profile and Enzymes Activity in Hepatic Microsomes of Rats in Physiological and Pathological Conditions. Int. J. Mol. Sci. 2022, 23, 442. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Ji, M.; Liu, W.; Chen, L.; Cai, Z.; Zhao, Y.; Bi, X. Antidiabetic Activities of a Cucurbitane-Type Triterpenoid Compound from Momordica charantia in Alloxan-Induced Diabetic Mice. Mol. Med. Rep. 2016, 14, 4865–4872. [Google Scholar] [CrossRef] [PubMed]
- Elekofehinti, O.O.; Ariyo, E.O.; Akinjiyan, M.O.; Olayeriju, O.S.; Lawal, A.O.; Adanlawo, I.G.; Rocha, J.B.T. Potential Use of Bitter Melon (Momordica charantia) Derived Compounds as Antidiabetics: In Silico and In Vivo Studies. Pathophysiology 2018, 25, 327–333. [Google Scholar] [CrossRef]
- Białek, A.; Białek, M.; Lepionka, T.; Pachniewicz, P.; Czauderna, M. Oxysterols and Lipidomic Profile of Myocardium of Rats Supplemented with Pomegranate Seed Oil and/or Bitter Melon Aqueous Extract—Cardio-Oncological Animal Model Research. Chem. Phys. Lipids 2021, 235, 105057. [Google Scholar] [CrossRef]
- Saengsai, J.; Kongtunjanphuk, S.; Yoswatthana, N.; Kummalue, T.; Jiratchariyakul, W. Antibacterial and Antiproliferative Activities of Plumericin, an Iridoid Isolated from Momordica charantia Vine. Evid. Based Complement. Altern. Med. 2015, 2015, 823178. [Google Scholar] [CrossRef]
- Kim, K.B.; Lee, S.; Kang, I.; Kim, J.H. Momordica charantia Ethanol Extract Attenuates H2O2-Induced Cell Death by Its Antioxidant and Anti-Apoptotic Properties in Human Neuroblastoma SK-N-MC Cells. Nutrients 2018, 10, 1368. [Google Scholar] [CrossRef]
- Sharma, Y.; Kaur, A.; Mishra, R.; Kulkarni, S.; Bharadwaj, M.; Bala, K. Antiproliferative Efficacy of the Antioxidant Bioactive Compounds of Defatted Seeds of Azadirachta Indica and Momordica charantia against the Regulatory Function of Tumor Suppressor Gene Inducing Oral Carcinoma. J. Biomol. Struct. Dyn. 2023, 41, 5246–5260. [Google Scholar] [CrossRef]
- Yang, W.S.; Yang, E.; Kim, M.J.; Jeong, D.; Yoon, D.H.; Sung, G.H.; Lee, S.; Yoo, B.C.; Yeo, S.G.; Cho, J.Y. Momordica charantia Inhibits Inflammatory Responses in Murine Macrophages via Suppression of TAK1. Am. J. Chin. Med. 2018, 46, 435–452. [Google Scholar] [CrossRef]
- Peng, K.; Deng, N.; Meng, Y.; He, Q.; Meng, H.; Luo, T.; Wei, Y.; Kang, Y.; Zhou, X.; Shen, F. Alpha-Momorcharin Inhibits Proinflammatory Cytokine Expression by M1 Macrophages but Not Anti-Inflammatory Cytokine Expression by M2 Macrophages. J. Inflamm. Res. 2022, 15, 4853–4872. [Google Scholar] [CrossRef]
- Rao, C.V. Immunomodulatory Effects of Momordica charantia Extract in the Prevention of Oral Cancer. Cancer Prev. Res. 2018, 11, 185–186. [Google Scholar] [CrossRef]
- Haripriya, S.; Vijayalakshmi, M.; Ala, C.; Murugesan, S.; Pavadai, P.; Kunjiappan, S.; Pandian, S.R.K. Pharmacoinformatics-Based Prediction of Checkpoint Kinase-1 Inhibitors from Momordica charantia Linn. for Cancer. Comput. Biol. Chem. 2025, 115, 108286. [Google Scholar] [CrossRef]
- Weng, J.R.; Bai, L.Y.; Lin, W.Y. Identification of a Triterpenoid as a Novel PPARγ Activator Derived from Formosan Plants. Phytother. Res. 2017, 31, 1722–1730. [Google Scholar] [CrossRef]
- Nieto-Veloza, A.; Wang, Z.; Zhong, Q.; Krishnan, H.B.; Dia, V.P. BG-4 from Bitter Gourd (Momordica charantia) Differentially Affects Inflammation In Vitro and In Vivo. Antioxidants 2019, 8, 175. [Google Scholar] [CrossRef]
- Jones, L.D.; Pangloli, P.; Krishnan, H.B.; Dia, V.P. BG-4, a Novel Bioactive Peptide from Momordica charantia, Inhibits Lipopolysaccharide-Induced Inflammation in THP-1 Human Macrophages. Phytomedicine 2018, 42, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Dia, V.P.; Krishnan, H.B. BG-4, a Novel Anticancer Peptide from Bitter Gourd (Momordica charantia), Promotes Apoptosis in Human Colon Cancer Cells. Sci. Rep. 2016, 6, 33532. [Google Scholar] [CrossRef] [PubMed]
- Ravichandiran, K.; Parani, M. Transcriptome Analysis of Five Different Tissues of Bitter Gourd (Momordica charantia L.) Fruit Identifies Full-Length Genes Involved in Seed Oil Biosynthesis. Sci. Rep. 2022, 12, 15374. [Google Scholar] [CrossRef]
- Panchal, K.; Nihalani, B.; Oza, U.; Panchal, A.; Shah, B. Exploring the Mechanism of Action Bitter Melon in the Treatment of Breast Cancer by Network Pharmacology. World J. Exp. Med. 2023, 13, 142–155. [Google Scholar] [CrossRef]
- Ling, T.; Boyd, L.; Rivas, F. Triterpenoids as Reactive Oxygen Species Modulators of Cell Fate. Chem. Res. Toxicol. 2022, 35, 569–584. [Google Scholar] [CrossRef]
- Bai, L.Y.; Chiu, C.F.; Chu, P.C.; Lin, W.Y.; Chiu, S.J.; Weng, J.R. A Triterpenoid from Wild Bitter Gourd Inhibits Breast Cancer Cells. Sci. Rep. 2016, 6, 22419. [Google Scholar] [CrossRef]
- Lee, Y.T.; Pao, L.H.; Chen, C.Y.; Huang, S.Q.; Kumaran, A.; Chyuan, J.H.; Chiu, C.H. Microwave-and Ultrasound-Assisted Extraction of Cucurbitane-Type Triterpenoids from Momordica charantia L. Cultivars and Their Antiproliferative Effect on SAS Human Oral Cancer Cells. Foods 2022, 11, 729. [Google Scholar] [CrossRef]
- Psilopatis , I.; Vrettou, K.; Giaginis , C.; Theocharis, S. The Role of Bitter Melon in Breast and Gynecological Cancer Prevention and Therapy. Int. J. Mol. Sci. 2023, 24, 8918. [Google Scholar] [CrossRef]
- Yue, J.; Sun, Y.; Xu, J.; Zhang, X.; Zhao, Y. Four New Cucurbitane-Type Triterpenes from Momordica charantia L. with Their Cytotoxic Activities and Protective Effects on H2O2-Damaged Pancreatic Cells. J. Nat. Med. 2020, 74, 34–40. [Google Scholar] [CrossRef]
- Nguyen, B.C.Q.; Taira, N.; Maruta, H.; Tawata, S. Artepillin C and Other Herbal PAK1-Blockers: Effects on Hair Cell Proliferation and Related PAK1-Dependent Biological Function in Cell Culture. Phytother. Res. 2016, 30, 120–127. [Google Scholar] [CrossRef]
- Yue, J.; Sun, Y.; Xu, J.; Cao, J.; Chen, G.; Zhang, H.; Zhang, X.; Zhao, Y. Cucurbitane Triterpenoids from the Fruit of Momordica charantia L. and Their Anti-Hepatic Fibrosis and Anti-Hepatoma Activities. Phytochemistry 2019, 157, 21–27. [Google Scholar] [CrossRef]
- Liaw, C.C.; Huang, H.T.; Liu, H.K.; Lin, Y.C.; Zhang, L.J.; Wei, W.C.; Shen, C.C.; Wu, C.L.; Huang, C.Y.; Kuo, Y.H. Cucurbitane-Type Triterpenoids from the Vines of Momordica charantia and Their Anti-Inflammatory, Cytotoxic, and Antidiabetic Activity. Phytochemistry 2022, 195, 113026. [Google Scholar] [CrossRef]
- Huang, H.T.; Lo, I.W.; Lin, Y.C.; Geng-You, L.; Lin, Y.S.; Zhang, L.J.; Li, T.L.; Liaw, C.C.; Kuo, Y.H. Kaguacidine A: A Novel Spirohydantoin-Containing Cucurbitane Glycoside from Vines of Momordica charantia L. Nat. Prod. Res. 2024, 38, 2179–2186. [Google Scholar] [CrossRef] [PubMed]
- Pitchakarn, P.; Umsumarng, S.; Mapoung, S.; Ting, P.; Temviriyanukul, P.; Punfa, W.; Pompimon, W.; Limtrakul, P. Kuguacin J Isolated from Bitter Melon Leaves Modulates Paclitaxel Sensitivity in Drug-Resistant Human Ovarian Cancer Cells. J. Nat. Med. 2017, 71, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Sur, S.; Steele, R.; Isbell, T.S.; Venkata, K.N.; Rateb, M.E.; Ray, R.B. Momordicine-I, a Bitter Melon Bioactive Metabolite, Displays Anti-Tumor Activity in Head and Neck Cancer Involving c-Met and Downstream Signaling. Cancers 2021, 13, 1432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shi, Z.; Pang, K.; He, H.; Chen, J.; Zhang, Z.; Zhang, Q.; Hao, L.; Han, C. MAP30 Inhibits Bladder Cancer Cell Migration and Invasion In Vitro through Suppressing Akt Pathway and the Epithelial/Mesenchymal Transition Process. DNA Cell Biol. 2020, 39, 1948–1960. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Pang, K.; Yang, W.; Zhou, J.; Dong, B.; Zhang, Z.; Zhao, Y.; Han, C.; Hao, L. Antitumor Mechanism of MAP30 in Bladder Cancer T24 Cells, and Its Potential Toxic Effects in Mice. Cell Mol. Biol. 2020, 66, 42–48. [Google Scholar] [CrossRef]
- Qian, S.; Sun, L.; Li, J.; Wu, J.; Hu, G.; Han, Y.; Yu, K.; Zhang, S. MAP30 Inhibits Autophagy through Enhancing Acetyltransferase P300 and Induces Apoptosis in Acute Myeloid Leukemia Cells. Oncol. Rep. 2016, 35, 3705–3713. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, D.; Qiang, Z.; Meng, Y.; Li, R.; Fan, X.; Zhao, W.; Meng, Y. Ribosome-Inactivating Protein MAP30 Isolated from Momordica charantia L. Induces Apoptosis in Hepatocellular Carcinoma Cells. Recent Pat. Anticancer Drug Discov. 2022, 19, 223–232. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhu, J.Q.; Fu, X.Q.; Su, T.; Li, T.; Guo, H.; Zhu, P.L.; Lee, S.K.W.; Yu, H.; Tse, A.K.W.; et al. Ribosome-Inactivating Protein α-Momorcharin Derived from Edible Plant Momordica charantia Induces Inflammatory Responses by Activating the NF-KappaB and JNK Pathways. Toxins 2019, 11, 694. [Google Scholar] [CrossRef]
- Deng, N.; Li, M.; Shen, D.; He, Q.; Sun, W.; Liu, M.; Liu, Y.; Zhou, Y.; Zheng, J.; Shen, F. LRP1 Receptor-Mediated Immunosuppression of α-MMC on Monocytes. Int. Immunopharmacol. 2019, 70, 80–87. [Google Scholar] [CrossRef]
- Deng, N.; Sun, Y.; Liu, M.; He, Q.; Wang, L.; Zhang, Y.; Sun, W.; Lei, N.; Liu, Y.; Luo, Y.; et al. Alpha-Momorcharin Regulates Cytokine Expression and Induces Apoptosis in Monocytes. Immunopharmacol. Immunotoxicol. 2019, 41, 258–266. [Google Scholar] [CrossRef]
- Fan, X.; He, L.; Meng, Y.; Li, G.; Li, L.; Meng, Y. A-MMC and MAP30, Two Ribosome-Inactivating Proteins Extracted from Momordica charantia, Induce Cell Cycle Arrest and Apoptosis in A549 Human Lung Carcinoma Cells. Mol. Med. Rep. 2015, 11, 3553–3558. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Sun, Y.; Wang, L.; He, Q.; Zheng, J.; Deng, F.; Deng, S.; Chang, S.; Yu, X.; Li, M.; et al. Alpha-Momorcharin (α-MMC) Exerts Effective Anti-Human Breast Tumor Activities but Has a Narrow Therapeutic Window In Vivo. Fitoterapia 2015, 100, 139–149. [Google Scholar] [CrossRef]
- Muhammad, N.; Steele, R.; Scott Isbell, T.; Philips, N.; Ray, R.B. Bitter Melon Extract Inhibits Breast Cancer Growth in Preclinical Model by Inducing Autophagic Cell Death. Oncotarget 2017, 8, 66226–66236. [Google Scholar] [CrossRef]
- Kakuturu, A.; Choi, H.; Noe, L.G.; Scherer, B.N.; Sharma, B.; Khambu, B.; Bhetwal, B.P. Bitter Melon Extract Suppresses Metastatic Breast Cancer Cells (MCF-7 Cells) Growth Possibly by Hindering Glucose Uptake. Micropubl. Biol. 2023, 2023, 10-17912. [Google Scholar] [CrossRef]
- Ehigie, A.F.; Wei, P.; Wei, T.; Yan, X.; Olorunsogo, O.O.; Ojeniyi, F.D.; Ehigie, L.O. Momordica charantia L. Induces Non-Apoptotic Cell Death in Human MDA-MB-436 Breast and A549 Lung Cancer Cells by Disrupting Energy Metabolism and Exacerbating Reactive Oxygen Species’ Generation. J. Ethnopharmacol. 2021, 277, 114036. [Google Scholar] [CrossRef]
- Cao, Q.; Guo, Q.; Bai, J.; Dong, Y.; Zhang, X.; Hong, W. The Apoptosis Mechanisms of HepG2 Cells Induced by Bitter Melon Seed. J. Food Biochem. 2021, 45, e13683. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, S.; Arapoc, D.J.; Shafie, N.H.; Keong, Y.Y.; Bahari, H.; Adam, Z.; Ei, T. Momordica charantia (Indian and Chinese Bitter Melon) Extracts Inducing Apoptosis in Human Lung Cancer Cell Line A549 via ROS-Mediated Mitochodria Injury. Evid.-Based Complement. Altern. Med. 2019, 2019, 2821597. [Google Scholar] [CrossRef]
- Kandhari, K.; Paudel, S.; Raina, K.; Agarwal, C.; Kant, R.; Wempe, M.F.; O’Bryant, C.; Agarwal, R. Comparative Pre-Clinical Efficacy of Chinese and Indian Cultivars of Bitter Melon (Momordica charantia) against Pancreatic Cancer. J. Cancer Prev. 2021, 26, 266–276. [Google Scholar] [CrossRef]
- Dhar, D.; Deep, G.; Kumar, S.; Wempe, M.F.; Raina, K.; Agarwal, C.; Agarwal, R. Bitter Melon Juice Exerts Its Efficacy against Pancreatic Cancer via Targeting Both Bulk and Cancer Stem Cells. Mol. Carcinog. 2018, 57, 1166–1180. [Google Scholar] [CrossRef]
- Yung, M.M.H.; Ross, F.A.; Hardie, D.G.; Leung, T.H.Y.; Zhan, J.; Ngan, H.Y.S.; Chan, D.W. Bitter Melon (Momordica charantia) Extract Inhibits Tumorigenicity and Overcomes Cisplatin-Resistance in Ovarian Cancer Cells Through Targeting AMPK Signaling Cascade. Integr. Cancer Ther. 2016, 15, 376–389. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Fang, E.F.; Zhang, H.T.; Liu, L.L.; Yun, J.P. Momordica charantia Lectin Exhibits Antitumor Activity towards Hepatocellular Carcinoma. Investig. New Drugs 2015, 33, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Muhammad, N.; Steele, R.; Kornbluth, J.; Ray, R.B. Bitter Melon Enhances Natural Killer-Mediated Toxicity against Head and Neck Cancer Cells. Cancer Prev. Res. 2017, 10, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Luo, Q.; Chen, X.; Chen, F. Bitter Melon Derived Extracellular Vesicles Enhance the Therapeutic Effects and Reduce the Drug Resistance of 5-Fluorouracil on Oral Squamous Cell Carcinoma. J. Nanobiotechnol. 2021, 19, 259. [Google Scholar] [CrossRef]
- Feng, T.; Wan, Y.; Dai, B.; Liu, Y. Anticancer Activity of Bitter Melon-Derived Vesicles Extract against Breast Cancer. Cells 2023, 12, 824. [Google Scholar] [CrossRef]
- Tan, M.J.; Cao, X.W.; Li, P.F.; Zhai, Y.Z.; Zhou, Y.; Liu, Y.J.; Zhao, J.; Wang, F.J. Effectively Enhancing Cytotoxic and Apoptotic Effects of Alpha-Momorcharin by Integrating a Heparin-Binding Peptide. Biotechnol. Appl. Biochem. 2017, 64, 918–926. [Google Scholar] [CrossRef]
- Luo, Z.; Cao, X.W.; Li, C.; Wu, M.D.; Yang, X.Z.; Zhao, J.; Wang, F.J. The Heparin-Binding Domain of HB-EGF as an Efficient Cell-Penetrating Peptide for Drug Delivery. J. Pept. Sci. 2016, 22, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.T.; Zhang, L.W.; Fan, L.Q.; Kong, J.W.; Mao, J.H.; Zhao, J.; Wang, F.J. Enhanced Anticancer Effect of MAP30-S3 by Cyclosproin A through Endosomal Escape. Anticancer. Drugs 2018, 29, 736–747. [Google Scholar] [CrossRef]
- Chen, W.-W.; Zhang, H.-R.; Huang, Z.-G.; Zhou, Z.-Y.; Lou, Q.-W.; Jiang, X.-Y.; Zhu, Z.-H. Expression and Purification of a Recombinant ELRL-MAP30 with Dual-Targeting Anti-Tumor Bioactivity. Protein Expr. Purif. 2021, 185, 105893. [Google Scholar] [CrossRef]
- Jha, M.; Shimpi, N.G. Green Synthesis of Zero Valent Colloidal Nanosilver Targeting A549 Lung Cancer Cell: In Vitro Cytotoxicity. J. Genet. Eng. Biotechnol. 2018, 16, 115–124. [Google Scholar] [CrossRef]
- Dhar, D.; Raina, K.; Kant, R.; Wempe, M.F.; Serkova, N.J.; Agarwal, C.; Agarwal, R. Bitter Melon Juice-Intake Modulates Glucose Metabolism and Lactate Efflux in Tumors in Its Efficacy against Pancreatic Cancer. Carcinogenesis 2019, 40, 1164–1176. [Google Scholar] [CrossRef]
- Sur, S.; Steele, R.; Aurora, R.; Varvares, M.; Schwetye, K.E.; Ray, R.B. Bitter Melon Prevents the Development of 4-NQO-Induced Oral Squamous Cell Carcinoma in an Immunocompetent Mouse Model by Modulating Immune Signaling. Cancer Prev. Res. 2018, 11, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Muhammad, N.; Steele, R.; Peng, G.; Ray, R.B. Immunomodulatory Role of Bitter Melon Extract in Inhibition of Head and Neck Squamous Cell Carcinoma Growth. Oncotarget 2016, 7, 33202–33209. [Google Scholar] [CrossRef]
- Hiramoto, K.; Oikawa, H. Momordica charantia Extract Ameliorates Melanoma Cell Proliferation and Invasion into Mouse Lungs by Suppressing PAX3 Expression. Int. J. Mol. Sci. 2024, 25, 12800. [Google Scholar] [CrossRef]
- Ali, M.M.; Borai, I.H.; Ghanem, H.M.; Abdel-Halim, A.H.; Mousa, F.M. The Prophylactic and Therapeutic Effects of Momordica charantia Methanol Extract through Controlling Different Hallmarks of the Hepatocarcinogenesis. Biomed. Pharmacother. 2018, 98, 491–498. [Google Scholar] [CrossRef]
- Chan, D.W.; Yung, M.M.; Chan, Y.S.; Xuan, Y.; Yang, H.; Xu, D.; Zhan, J.B.; Chan, K.K.; Ng, T.B.; Ngan, H.Y. MAP30 Protein from Momordica charantia Is Therapeutic and Has Synergic Activity with Cisplatin against Ovarian Cancer In Vivo by Altering Metabolism and Inducing Ferroptosis. Pharmacol. Res. 2020, 161, 105157. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Tran, E.T.; Patel, R.A.; Luetzen, M.A.; Cho, K.; Shriver, L.P.; Patti, G.J.; Varvares, M.A.; Ford, D.A.; McCommis, K.S.; et al. Momordicine-I Suppresses Head and Neck Cancer Growth by Modulating Key Metabolic Pathways. Cell Commun. Signal. 2024, 22, 597. [Google Scholar] [CrossRef] [PubMed]
- Sur, S.; Bhartiya, P.; Steele, R.; Brennan, M.; DiPaolo, R.J.; Ray, R.B. Momordicine-I Suppresses Head and Neck Cancer Growth by Reprogrammimg Immunosuppressive Effect of the Tumor-Infiltrating Macrophages and B Lymphocytes. Mol. Cancer Ther. 2024, 23, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Das, S.K.; Sinha, K.; Ghosh, B.; Sen, K.; Ghosh, N.; Sil, P.C. The Emerging Role of Natural Products in Cancer Treatment. Arch. Toxicol. 2024, 98, 2353–2391. [Google Scholar] [CrossRef]
- Fang, C.-Y.; Lou, D.-Y.; Zhou, L.-Q.; Wang, J.-C.; Yang, B.; He, Q.-J.; Wang, J.-J.; Weng, Q.-J. Natural Products: Potential Treatments for Cisplatin-Induced Nephrotoxicity. Acta Pharmacol. Sin. 2021, 42, 1951–1969. [Google Scholar] [CrossRef]
- Anwar, S.; Almatroudi, A.; Alsahli, M.A.; Khan, M.A.; Khan, A.A.; Rahmani, A.H. Natural Products: Implication in Cancer Prevention and Treatment through Modulating Various Biological Activities. Anticancer. Agents Med. Chem. 2020, 20, 2025–2040. [Google Scholar] [CrossRef]
- Aly, S.H.; Elbadry, A.M.M.; Doghish, A.S.; El-Nashar, H.A.S. Unveiling the Pharmacological Potential of Plant Triterpenoids in Breast Cancer Management: An Updated Review. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 5571–5596. [Google Scholar] [CrossRef]
- Özdemir, Z.; Wimmer, Z. Selected Plant Triterpenoids and Their Amide Derivatives in Cancer Treatment: A Review. Phytochemistry 2022, 203, 113340. [Google Scholar] [CrossRef] [PubMed]
- Patlolla, J.M.; Rao, C.V. Triterpenoids for Cancer Prevention and Treatment: Current Status and Future Prospects. Curr. Pharm. Biotechnol. 2012, 13, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Tsopelas, F.; Giaginis, C.; Tsantili-Kakoulidou, A. Lipophilicity and Biomimetic Properties to Support Drug Discovery. Expert Opin. Drug Discov. 2017, 12, 885–896. [Google Scholar] [CrossRef]
- Montgomery, A.P.; Joyce, J.M.; Danon, J.J.; Kassiou, M. An Update on Late-Stage Functionalization in Today’s Drug Discovery. Expert Opin. Drug Discov. 2023, 18, 597–613. [Google Scholar] [CrossRef]
- Srivastava, R. Quantum Computing in Drug Discovery. Inf. Syst. Smart City 2023, 3, 294. [Google Scholar] [CrossRef]
- Qureshi, R.; Irfan, M.; Gondal, T.M.; Khan, S.; Wu, J.; Hadi, M.U.; Heymach, J.; Le, X.; Yan, H.; Alam, T. AI in Drug Discovery and Its Clinical Relevance. Heliyon 2023, 9, e17575. [Google Scholar] [CrossRef]
- Turzo, S.B.A.; Hantz, E.R.; Lindert, S. Applications of Machine Learning in Computer-Aided Drug Discovery. QRB Discov. 2022, 3, e14. [Google Scholar] [CrossRef]
- Huq, A.K.M.M.; Roney, M.; Issahaku, A.R.; Sapari, S.; Razak, F.I.A.; Soliman, M.E.S.; Aluwi, M.F.F.M.; Tajuddin, S.N. Selected Phytochemicals of Momordica charantia L. as Potential Anti-DENV-2 through the Docking, DFT and Molecular Dynamic Simulation. J. Biomol. Struct. Dyn. 2023, 42, 9325–9336. [Google Scholar] [CrossRef]
- Choudhury, A.A.; Arumugam, M.; Ponnusamy, N.; Sivaraman, D.; Sertsemariam, W.; Thiruvengadam, M.; Pandiaraj, S.; Rahaman, M.; Devi Rajeswari, V. Anti-Diabetic Drug Discovery Using the Bioactive Compounds of Momordica charantia by Molecular Docking and Molecular Dynamics Analysis. J. Biomol. Struct. Dyn. 2024, 1–15. [Google Scholar] [CrossRef]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F. Nutraceuticals, Functional Foods and Dietary Supplements in Health and Disease. J. Food Drug Anal. 2012, 20, 78. [Google Scholar] [CrossRef]
- Chopra, A.S.; Lordan, R.; Horbańczuk, O.K.; Atanasov, A.G.; Chopra, I.; Horbańczuk, J.O.; Jóźwik, A.; Huang, L.; Pirgozliev, V.; Banach, M.; et al. The Current Use and Evolving Landscape of Nutraceuticals. Pharmacol. Res. 2022, 175, 106001. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.M.; Lee, D.J.; Lee, D.G.; Yeom, J.H.; Lee, J.W.; Chung, N. Gold Nanoparticle Resveratrol Complex Increases Apoptosis in KRAS Mutant Pancreatic Cancer Cells. Sci. Rep. 2025, 15, 13760. [Google Scholar] [CrossRef] [PubMed]
- Monfoulet, L.E.; Ruskovska, T.; Ajdžanović, V.; Havlik, J.; Vauzour, D.; Bayram, B.; Krga, I.; Corral-Jara, K.F.; Kistanova, E.; Abadjieva, D.; et al. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol. Nutr. Food Res. 2021, 65, 2100227. [Google Scholar] [CrossRef]
- Vettorazzi, A.; de Cerain, A.L.; Sanz-Serrano, J.; Gil, A.G.; Azqueta, A. European Regulatory Framework and Safety Assessment of Food-Related Bioactive Compounds. Nutrients 2020, 12, 613. [Google Scholar] [CrossRef]
- Aronson, J.K. Defining ‘Nutraceuticals’: Neither Nutritious nor Pharmaceutical. Br. J. Clin. Pharmacol. 2017, 83, 8–19. [Google Scholar] [CrossRef]
- Trautenmuller, A.L.; de Almeida Soares, J.; Behm, K.C.; Guimarães, L.M.M.; Xavier-Silva, K.R.; Monteiro de Melo, A.; Caixeta, G.A.B.; Abadia Marciano de Paula, J.; Luiz Cardoso Bailão, E.F.; Amaral, V.C.S. Cytotoxicity and Maternal Toxicity Attributed to Exposure to Momordica charantia L. (Cucurbitaceae) Dry Leaf Extract. J. Toxicol. Environ. Health Part A 2023, 86, 36–50. [Google Scholar] [CrossRef]
Criterion | Inclusion |
---|---|
Study type | In vitro (cell cultures) Animals (mice, rats) |
Language | English |
Publication date | January 2015–December 2024 |
Intervention | Momordica charantia extracts (aqueous, organic solvents) Momordica charantia isolated compounds |
Outcomes | Antitumor activity (cytotoxicity/cell viability) Antitumor activity (modulation of tumor growth in animals) |
Compound Investigated | Dose or IC50 | Cell Lines Tested | Key Outcomes |
---|---|---|---|
3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al | 19 μM (MCF-7), 23 μM (MDA-MB-231) | MCF-7, MDA-MB-231, SAS | Suppressed proliferation, PPARγ activation, Akt-NF-κB downregulation, apoptosis induction |
5β,19-epoxy-19-methoxycucurbita-6,23-dien-3β,25-diol | 10 μM | MCF-7 | Cytotoxic, PPARγ activation |
Charantoside XIII | 11.18 μM | HeLa, MIN6 β-cells | Cytotoxic to HeLa, cytoprotective in MIN6 β-cells |
Cucurbitacin I | 140 nM | A549, Hair follicle dermal papilla cells, B16F10 | Growth inhibition in lung cancer cells |
Karaviloside III | 4.12 μM (HepG2), 16.68 μM (Hep3B) | HepG2, Hep3B | Antiproliferative activity |
Kaguaovin K | 9.45–9.66 μM | MCF-7, HEp2, HepG2, WiDr | Moderate cytotoxicity, anti-inflammatory potential |
Kaguacidine A | 31–33.8 μM | HEp2, MCF-7, HepG2, WiDr | Anti-inflammatory, antiproliferative |
Kuguacin J | 18.3 μM (A2780), 43.33 μM (SKOV3) | A2780, SKOV3 | Reduced ovarian cancer cell growth, enhanced paclitaxel cytotoxicity |
Momordicine-I | 10.4 μg/ml | JHU022, JHU029, Cal27 | Inhibited viability, suppressed STAT3 signaling |
MAP30 | 320.48 μg/mL (T24), 2.6 μM (HL-60), 9.2 μM (THP-1) | 5637, T24, HL-60, THP-1, AML cells | Apoptosis induction, suppression of AKT/EMT pathways |
α-MMC | 20–160 μg/mL (THP-1), 0.5–8 μM (A549, HepG2), 33.66 μg/mL (MCF-7) | THP-1, A549, HepG2, MCF-7 | Apoptosis induction, cytokine regulation, and caspase-3 activation |
Extract Type | Dose or IC50 | Cell Lines Tested | Key Outcomes |
---|---|---|---|
Crude bitter melon extract (filtered) | 2% v/v | MCF-7 | Induced autophagy, accumulated p62 protein, potential apoptotic link |
2% v/v | MCF-7 high glucose culture | Reduced cell viability (~95%) after 48 h | |
0.25–1% v/v | A2780cp, A2780s, C13, OV2008, HOSE17-1, HOSE96-9-18 | Inhibited cancer cell growth (20–87%), limited cytotoxicity in normal ovarian cells, increased PARP/caspase-3 cleavage | |
Bitter melon juice | 2–4% v/v | MiaPaCa2, PANC-1, AsPC1 | Decreased total cell number, dose- and time-dependent cell death |
Lyophilized juice (Chinese variety) | 2–4% v/v | PANC-1 | Dose-dependent cell death (up to 90% reduction) |
Aqueous extract fractions (ethyl acetate, n-hexane, dichloromethane) | 100–125 μg/mL | MDA-MB-436, A549 | Dichloromethane fraction reduced mitochondrial potential, increased ROS levels, no apoptotic features observed |
Aqueous extract | 600–1000 μg/mL (IC50: 586.27 μg/mL) | HepG2 | Increased ROS, decreased mitochondrial membrane potential, apoptosis induction, downregulated miR-421 |
Hot and cold aqueous extracts (Chinese and Indian varieties) | 100–1000 μg/mL (IC50: 32.5 μg/mL, 36.9 μg/mL) | A549 | Inhibited cell proliferation, increased ROS (5-fold), increased caspase-3/7 activity |
Aqueous-methanolic extracts (Indian variety) | 2–6% v/v | PANC-1 | Limited cell death effects |
Investigated Approach | Dose or IC50 | Cell Lines Tested | Key Outcomes |
---|---|---|---|
Momordica charantia lectin + Sorafenib | 2.5 μM, 5.0 μM | HepG2, PLC/PRF/5 | Induced apoptosis, reduced colony formation, enhanced sorafenib-induced cytotoxicity |
Bitter melon crude extract + NK cells | 1% v/v | Cal27, JHU-29 | Improved NK-cell-mediated tumor killing, increased granzyme B expression |
Bitter melon extracellular vesicles + 5-Fluorouracil | 4–20 μg/mL | Cal27, WSU-HN6 | Enhanced 5-Fluorouracil cytotoxicity, reduced cell viability, modulated inflammatory markers |
Bitter melon extracellular vesicles | 20–40 μg/mL | 4T1, MCF-7 | Inhibited cell proliferation, suppressed migration, induced apoptosis |
α-MMC-HBP fusion protein | 0.25–5 μM | HeLa, MGC80-3, MCF-7, 95D | Enhanced cytotoxicity, increased apoptosis via caspase activation |
MAP30-HBP fusion protein | 0.25–5 μM | HeLa, 95D, B16, MCF-7, MGC803, HepG2 | Strong cytotoxic effects, apoptosis activation via mitochondrial and receptor-mediated pathways |
MAP30-S3 fusion protein + Cyclosporin A | 2 μmol/L | HeLa | Increased cytotoxicity, enhanced apoptosis (77.55% increase) |
EGFR-targeting peptides combined with MAP30 | 54.64–466.4 μg/mL | HepG2, MDA-MB-231, HUVEC, MCF-7 | Induced apoptosis, upregulated Bax expression |
MAP30 liposomes | IC50: 51.06 μg/mL | T24 | Improved cytotoxic potential compared to MAP30 alone |
Colloidal silver NPs loaded with bitter melon extract | IC50: 51.93 µg/ml | A549 | Enhanced cytotoxicity compared to crude extract |
Intervention Type | Mice Type and Cancer Setting | Dose and Intervention Duration | Key Outcomes |
---|---|---|---|
Bitter melon juice | Athymic nude mice, PANC-1 cells | 200 mg/kg, 5 days/week, Group 1: 24 h post-injection for ~5 weeks, Group 3: ~7 weeks | Increased ADC values, indicating treatment response; slower tumor growth; no significant toxicity observed |
Bitter melon extract | C57BL/6j mice, melanoma (lung metastasis) | 50 mg/kg, 3 times/day for 2 weeks | Reduced melanoma proliferation and lung infiltration, suppressed PAX3 expression, regulated PTEN/PI3K/Akt signaling |
Nude, Balb/c, and C57BL/6 mice, breast cancer (syngeneic and xenograft) | 30% v/v, 600 mg/mouse/day, ~4 weeks | Reduced tumor weight, induced autophagy and apoptotic cell death, increased p62 accumulation | |
C57BL/6 mice, oral cancer induced by 4-nitroquinoline 1-oxide | 30% v/v, 600 mg/mouse, ~16 weeks | Reduced oral cancer incidence, downregulation of pro-inflammatory markers | |
C3H/HeNTac mice, oral cancer (subcutaneous tumor model) | 100 μL, 5 days/week, ~4 weeks | Reduced tumor growth, PCNA and Myc-oncogene expression | |
Bitter melon extract (methanol) | Albino western rats, hepatocellular carcinoma | 40 mg/kg orally, different timings (before/simultaneous/after treatment), 16 weeks | Decreased COX-2, VEGF, MMP-2/9 activity, activated caspase-3/8 (apoptosis) |
Bitter melon extract + Cisplatin | BALB/cAnN-nu female nude mice, ovarian cancer cells (ES-2) | Crude extract (0.25–10%) + Cisplatin every other day, 6 doses over 12 days | Reduced tumor growth |
MAP30 + Cisplatin | BALB/cAnN-nu mice, ovarian cancer | 250 μg/kg every 2 days, evaluated at higher dose (500 μg/kg) | Reduced tumor growth, synergistic effect with cisplatin, minor liver damage at higher dose |
MAP30 | Mice, bladder cancer | Administered after 48 h injection, ~32 days | Reduced tumor growth, mild histological changes in liver and kidneys |
Momordicine-I | C57BL/6 mice, head and neck cancer (MOC2 cells) | 20–30 mg/kg daily, 21–30 days | Reduced tumor growth, no significant weight loss, reduced expression of c-Met and c-Myc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deligiannidou, G.-E.; Pritsa, A.; Nikolaou, A.; Poulios, E.; Kontogiorgis, C.; Papadopoulou, S.K.; Giaginis, C. Nutraceutical Potential of Bitter Melon (Momordica charantia) on Cancer Treatment: An Overview of In Vitro and Animal Studies. Curr. Issues Mol. Biol. 2025, 47, 425. https://doi.org/10.3390/cimb47060425
Deligiannidou G-E, Pritsa A, Nikolaou A, Poulios E, Kontogiorgis C, Papadopoulou SK, Giaginis C. Nutraceutical Potential of Bitter Melon (Momordica charantia) on Cancer Treatment: An Overview of In Vitro and Animal Studies. Current Issues in Molecular Biology. 2025; 47(6):425. https://doi.org/10.3390/cimb47060425
Chicago/Turabian StyleDeligiannidou, Georgia-Eirini, Agathi Pritsa, Anastasios Nikolaou, Efthymios Poulios, Christos Kontogiorgis, Sousana K. Papadopoulou, and Constantinos Giaginis. 2025. "Nutraceutical Potential of Bitter Melon (Momordica charantia) on Cancer Treatment: An Overview of In Vitro and Animal Studies" Current Issues in Molecular Biology 47, no. 6: 425. https://doi.org/10.3390/cimb47060425
APA StyleDeligiannidou, G.-E., Pritsa, A., Nikolaou, A., Poulios, E., Kontogiorgis, C., Papadopoulou, S. K., & Giaginis, C. (2025). Nutraceutical Potential of Bitter Melon (Momordica charantia) on Cancer Treatment: An Overview of In Vitro and Animal Studies. Current Issues in Molecular Biology, 47(6), 425. https://doi.org/10.3390/cimb47060425