Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = biphasic solvent system evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3084 KiB  
Article
The Cascade Transformation of Furfural to Cyclopentanone: A Critical Evaluation Concerning Feasible Process Development
by Christian A. M. R. van Slagmaat
ChemEngineering 2025, 9(4), 74; https://doi.org/10.3390/chemengineering9040074 - 19 Jul 2025
Viewed by 230
Abstract
Furfural is a fascinating bio-based platform molecule that can be converted into useful cyclic compounds, among others. In this work, the hydrogenative rearrangement-dehydration of furfural towards cyclopentanone using a commercially available Pt/C catalyst was investigated in terms of its reaction performance to assess [...] Read more.
Furfural is a fascinating bio-based platform molecule that can be converted into useful cyclic compounds, among others. In this work, the hydrogenative rearrangement-dehydration of furfural towards cyclopentanone using a commercially available Pt/C catalyst was investigated in terms of its reaction performance to assess its feasibility as an industrial process. However, acquiring an acceptable cyclopentanone yield proved very difficult, and the reaction was constrained by unforeseen parameters, such as the relative liquid volume in the reactor and the substrate concentration. Most strikingly, the sacrificial formation of furanoic oligomers that precipitated onto the catalyst’s surface was a troublesome key factor that mediated the product’s selectivity versus the carbon mass balance. By applying a biphasic water–toluene solvent system, the yield of cyclopentanone was somewhat improved to a middling 59%, while tentatively positive distributions of reaction components over these solvent phases were observed, which could be advantageous for anticipated down-stream processing. Overall, the sheer difficulty of controlling this one-pot cascade transformation towards a satisfactory product output under rather unfavorable reaction parameters renders it unsuitable for industrial process development, and a multi-step procedure for this chemical transformation might be considered instead. Full article
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
Continuous Liquid–Liquid Extraction of High-Purity Lutein from Chlorella vulgaris via Centrifugal Partition Chromatography: Utilizing Limonene as Renewable Solvent for Microalgae Biomass Valorization
by Weiheng Kong, Xianjiang Lin, Jing Ye and Yanbin Lu
Foods 2025, 14(9), 1637; https://doi.org/10.3390/foods14091637 - 6 May 2025
Viewed by 666
Abstract
In this study, an efficient and eco-friendly method was developed for continuous liquid–liquid extraction of lutein from microalgae Chlorella vulgaris. By employing a limonene-based biphasic liquid system, high-purity lutein was successfully obtained from the crude extract in a single run via centrifugal [...] Read more.
In this study, an efficient and eco-friendly method was developed for continuous liquid–liquid extraction of lutein from microalgae Chlorella vulgaris. By employing a limonene-based biphasic liquid system, high-purity lutein was successfully obtained from the crude extract in a single run via centrifugal partition chromatography (CPC). Evaluation and optimization results demonstrated that limonene could effectively serve as a replacement for n-hexane as the solvent system for lutein extraction, exhibiting natural renewability and minimal environmental impact. Furthermore, the elution–extrusion operation mode was employed to fully exploit the liquid nature of the stationary phase in the extraction process, allowing for continuous sampling and separation without interruption. This proposed protocol offers a sustainable and environmentally friendly alternative for extracting valuable ingredients from microalgae biomass, demonstrating its potential as a scalable solution for producing lutein-enriched ingredients applicable to functional foods and nutraceuticals. Full article
Show Figures

Graphical abstract

20 pages, 4037 KiB  
Article
Can Magnoflorine Improve Memory? Immunohistochemical Studies on Parvalbumin Immunoreactive Neurons and Fibers of Mice Hippocampus
by Radosław Szalak, Małgorzata Komar, Edyta Kowalczuk-Vasilev, Marta Kruk-Slomka, Justyna Zagórska, Marcin B. Arciszewski, Marcin Dziedzic, Wojciech Koch and Wirginia Kukula-Koch
Nutrients 2025, 17(1), 137; https://doi.org/10.3390/nu17010137 - 31 Dec 2024
Viewed by 1086
Abstract
Background/Objectives: We assessed the influence of long-term injection of magnoflorine (MAG) on memory acquisition in mice for the first time. Methods: This isoquinoline alkaloid that belongs to the aporphines was isolated from the roots of Berberis vulgaris by centrifugal partition chromatography [...] Read more.
Background/Objectives: We assessed the influence of long-term injection of magnoflorine (MAG) on memory acquisition in mice for the first time. Methods: This isoquinoline alkaloid that belongs to the aporphines was isolated from the roots of Berberis vulgaris by centrifugal partition chromatography (CPC) using a biphasic solvent system composed of chloroform: methanol: water in the ratio 4:3:3 (v/v/v) with 20 mM of hydrochloric acid and triethylamine, within 64 min. Results: Our results indicated that long-term injection of MAG 20 mg/kg dose improve the long-term memory acquisition in mice that were evaluated in the passive avoidance (PA) test with no toxicity records. The analysis of brain lysates and animal plasma by HPLC-ESI-QTOF-MS/MS showed the ability of the compound to cross the blood–brain barrier, and an elevated level of phosphatidylcholine PC (14:1(9Z)/14:1(9Z)) with the molecular formula of C36H69NO8P was observed in both treated groups with 10 mg/kg and 20 mg/kg MAG in comparison to the control group. Conclusions: This phenomenon may explain MAG’s cognition-enhancing properties as the PC may induce the synthesis and strengthening of neuronal cells. Also, the 7-day-long administration of MAG at 10 mg/kg and 20 mg/kg increased the mean number of parvalbumin (PV)-IR neurons in the hippocampus. Statistically, the largest PV-IR neurons were observed at the 20 mg/kg dose, which may indicate a potential effect of MAG on Ca2+ metabolism. However, no statistical differences were observed in the mean number of PV-IR nerve fibers in both doses of MAG, regardless of the hippocampal fields. This positive effect of MAG on hippocampal neurons provides further support for the neuroprotective effect of this alkaloid. Full article
Show Figures

Figure 1

14 pages, 2153 KiB  
Article
Span 60/Cholesterol Niosomal Formulation as a Suitable Vehicle for Gallic Acid Delivery with Potent In Vitro Antibacterial, Antimelanoma, and Anti-Tyrosinase Activity
by Sara Zolghadri, Ali Ghanbari Asad, Fatemeh Farzi, Fatemeh Ghajarzadeh, Zeinab Habibi, Mahdie Rahban, Samaneh Zolghadri and Agata Stanek
Pharmaceuticals 2023, 16(12), 1680; https://doi.org/10.3390/ph16121680 - 2 Dec 2023
Cited by 11 | Viewed by 3244
Abstract
Natural compounds such as gallic acid (GA) have attracted more attention in cosmetic and pharmaceutical skin care products. However, the low solubility and poor stability of GA have limited its application. This study aimed to synthesize and characterize the GA niosomal dispersion (GAN) [...] Read more.
Natural compounds such as gallic acid (GA) have attracted more attention in cosmetic and pharmaceutical skin care products. However, the low solubility and poor stability of GA have limited its application. This study aimed to synthesize and characterize the GA niosomal dispersion (GAN) and investigate the potential of an optimal formulation as a skin drug delivery system for GA. For this purpose, GAN formulations were synthesized using the thin layer evaporation method with different molar ratios of Tween 60/Span 60, along with a constant molar ratio of polyethylene glycol 4000 (PEG-4000) and cholesterol in a methanol and chloroform solvent (1:4 v/v). The physicochemical properties of nanosystems in terms of size, zeta potential, drug entrapment, drug release, morphology, and system–drug interaction were characterized using different methods. In addition, in vitro cytotoxicity, anti-tyrosinase activity, and antibacterial activity were evaluated by MTT assay, the spectrophotometric method, and micro-well dilution assay. All formulations revealed a size of 80–276 nm, polydispersity index (PDI) values below 0.35, and zeta potential values below—9.7 mV. F2 was selected as the optimal formulation due to its smaller size and high stability. The optimal formulation of GAN (F2) was as follows: a 1:1 molar ratio of Span 60 to cholesterol and 1.5 mM GA. The release of the F2 drug showed a biphasic pattern, which was fast in the first 12 h until 58% was released. Our results showed the high antibacterial activity of GAN against Escherichia coli and Pseudomonas aeruginosa. The MTT assay showed that GA encapsulation increased its effect on B6F10 cancer cells. The F2 formulation exhibited potent anti-tyrosinase activity and inhibited melanin synthesis. These findings suggest that it can be used in dermatological skin care products in the cosmetic and pharmaceutical industries due to its significant antibacterial, anti-melanoma, and anti-tyrosinase activity. Full article
(This article belongs to the Special Issue Recent Advances in Skin Drug Delivery)
Show Figures

Figure 1

20 pages, 4136 KiB  
Article
In Silico-Assisted Isolation of trans-Resveratrol and trans-ε-Viniferin from Grapevine Canes and Their Sustainable Extraction Using Natural Deep Eutectic Solvents (NADES)
by Mats Kiene, Malte Zaremba, Hendrik Fellensiek, Edwin Januschewski, Andreas Juadjur, Gerold Jerz and Peter Winterhalter
Foods 2023, 12(22), 4184; https://doi.org/10.3390/foods12224184 - 20 Nov 2023
Cited by 10 | Viewed by 4116
Abstract
Grapevine canes are an important source of bioactive compounds, such as stilbenoids. This study aimed to evaluate an in silico method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS) to isolate stilbenoids from a grapevine cane extract by offline heart-cut high-performance [...] Read more.
Grapevine canes are an important source of bioactive compounds, such as stilbenoids. This study aimed to evaluate an in silico method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS) to isolate stilbenoids from a grapevine cane extract by offline heart-cut high-performance countercurrent chromatography (HPCCC). For the following extraction of resveratrol and ε-viniferin from grapevine canes, natural deep eutectic solvents (NADES) were used as an environmentally friendly alternative to the traditionally used organic solvents. In order to evaluate a variety of combinations of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) for the targeted extraction of stilbenoids, COSMO-RS was applied. In particular, ultrasonic-assisted extraction using a solvent mixture of choline chloride/1,2-propanediol leads to higher extraction yields of resveratrol and ε-viniferin. COSMO-RS calculations for NADES extraction combined with HPCCC biphasic solvent system calculations are a powerful combination for the sustainable extraction, recovery, and isolation of natural products. This in silico-supported workflow enables the reduction of preliminary experimental tests required for the extraction and isolation of natural compounds. Full article
(This article belongs to the Special Issue Extraction Technology and Characters of Bioactive Substances in Foods)
Show Figures

Graphical abstract

12 pages, 2897 KiB  
Article
Efficient Co-Production of Xylooligosaccharides and Glucose from Vinegar Residue by Biphasic Phenoxyethanol-Maleic Acid Pretreatment
by Yuanyuan Zhu, Ruijun Tang, Yongjian Yu, Zhen Yu, Ke Wang, Yuqin Wang, Peng Liu and Dong Han
Fermentation 2023, 9(1), 61; https://doi.org/10.3390/fermentation9010061 - 11 Jan 2023
Cited by 18 | Viewed by 2591
Abstract
A new biphasic organic solvent, phenoxyethanol-maleic acid, was carried out to pretreat and fractionate vinegar residue into glucan, xylan and lignin under mild conditions. Additional effects of key factors, temperature and phenoxyethanol concentration, on vinegar residue, were evaluated. Under the biphasic system (0.5% [...] Read more.
A new biphasic organic solvent, phenoxyethanol-maleic acid, was carried out to pretreat and fractionate vinegar residue into glucan, xylan and lignin under mild conditions. Additional effects of key factors, temperature and phenoxyethanol concentration, on vinegar residue, were evaluated. Under the biphasic system (0.5% maleic acid, 60% phenoxyethanol), 140 °C cooking vinegar residue for 1 h, 80.91% of cellulose retention in solid residue, 75.44% of hemicellulose removal and 69.28% of lignin removal were obtained. Optimal identified conditions resulted in maximum XOS of 47.3%. Then, the solid residue was enzymatically digested with a glucose yield of 82.67% at 72 h with the addition of 2.5 g/L bovine serum albumin. Finally, the residue was characterized by SEM, FTIR, XRD and BET analysis. This work demonstrated the phenoxyethanol-maleic acid pretreatment yielded XOS, fermentable sugar, and lignin with high processibility. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Decomposition and Bioconversion)
Show Figures

Figure 1

19 pages, 4099 KiB  
Review
Application of Phase-Selective Organogelators (PSOGs) for Marine Oil Spill Remediation
by Huifang Bi, Chunjiang An, Catherine N. Mulligan, Zhi Chen, Kenneth Lee, Jiyuan Wen, Zhaonian Qu and Xinya Chen
J. Mar. Sci. Eng. 2022, 10(8), 1111; https://doi.org/10.3390/jmse10081111 - 12 Aug 2022
Cited by 12 | Viewed by 4136
Abstract
Oil spill incidents frequently cause serious impacts on the ecosystem, society, and economy. To cope with this problem, the use of phase-selective organogelators (PSOGs) has been developed in recent years as a promising oil spill response tool, which can congeal oils from biphasic [...] Read more.
Oil spill incidents frequently cause serious impacts on the ecosystem, society, and economy. To cope with this problem, the use of phase-selective organogelators (PSOGs) has been developed in recent years as a promising oil spill response tool, which can congeal oils from biphasic systems, accelerating oil removal and recovery and reducing impacts on the environment. This article systematically reviews reported technologies for the use of PSOGs for potential oil spill remediation in the literature from January 2016 to May 2022. It discusses several kinds of PSOGs based on molecular structures which are possible for gelling oil in the presence of water/seawater. Their mechanisms for phase-selective gelation are summarized, including hydrogen bonding, π–π stacking interactions, van der Waals force, hydrophobic interactions, etc. The currently possible deployment methods for the application of PSOGs are explored; carrier solvents and powder form are frequently used. Moreover, the challenges and the corresponding recommendations regarding standardized testing protocols and evaluation framework, gelation selectivity, as well as challenges in field tests, are further discussed. Full article
(This article belongs to the Special Issue Reviews in Marine Environmental Science and Engineering)
Show Figures

Figure 1

14 pages, 1805 KiB  
Article
Isolation of N-Ethyl-2-pyrrolidinone-Substituted Flavanols from White Tea Using Centrifugal Countercurrent Chromatography Off-Line ESI-MS Profiling and Semi-Preparative Liquid Chromatography
by Weidong Dai, Maria Ramos-Jerz, Dongchao Xie, Jiakun Peng, Peter Winterhalter, Gerold Jerz and Zhi Lin
Molecules 2021, 26(23), 7284; https://doi.org/10.3390/molecules26237284 - 30 Nov 2021
Cited by 9 | Viewed by 2601
Abstract
N-Ethyl-2-pyrrolidinone-substituted flavanols (EPSF) are marker compounds for long-term stored white teas. However, due to their low contents and diasteromeric configuration, EPSF compounds are challenging to isolate. In this study, two representative epimeric EPSF compounds, 5′′′R- and 5′′′S-epigallocatechin gallate-8-C [...] Read more.
N-Ethyl-2-pyrrolidinone-substituted flavanols (EPSF) are marker compounds for long-term stored white teas. However, due to their low contents and diasteromeric configuration, EPSF compounds are challenging to isolate. In this study, two representative epimeric EPSF compounds, 5′′′R- and 5′′′S-epigallocatechin gallate-8-C N-ethyl-2-pyrrolidinone (R-EGCG-cThea and S-EGCG-cThea), were isolated from white tea using centrifugal partition chromatography (CPC). Two different biphasic solvent systems composed of 1. N-hexane-ethyl acetate-methanol-water (1:5:1:5, v/v/v/v) and 2. N-hexane-ethyl acetate-acetonitrile-water (0.7:3.0:1.3:5.0, v/v/v/v) were used for independent pre-fractionation experiments; 500 mg in each separation of white tea ethyl acetate partition were fractionated. The suitability of the two solvent systems was pre-evaluated by electrospray mass-spectrometry (ESI-MS/MS) analysis for metabolite distribution and compared to the results of the CPC experimental data using specific metabolite partition ratio KD values, selectivity factors α, and resolution factors RS. After size-exclusion and semi-preparative reversed-phase liquid chromatography, 6.4 mg of R-EGCG-cThea and 2.9 mg of S-EGCG-cThea were recovered with purities over 95%. Further bioactivity evaluation showed that R- and S-EGCG-cThea possessed in vitro inhibition effects on α-glucosidase with IC50 of 70.3 and 161.7 μM, respectively. Full article
Show Figures

Graphical abstract

19 pages, 3188 KiB  
Article
Production of Fucoxanthin from Phaeodactylum tricornutum Using High Performance Countercurrent Chromatography Retaining Its FOXO3 Nuclear Translocation-Inducing Effect
by Daniela Bárcenas-Pérez, Antonín Střížek, Pavel Hrouzek, Jiří Kopecký, Marta Barradas, Arantzazu Sierra-Ramirez, Pablo J. Fernandez-Marcos and José Cheel
Mar. Drugs 2021, 19(9), 517; https://doi.org/10.3390/md19090517 - 11 Sep 2021
Cited by 10 | Viewed by 4594
Abstract
Phaeodactylum tricornutum is a rich source of fucoxanthin, a carotenoid with several health benefits. In the present study, high performance countercurrent chromatography (HPCCC) was used to isolate fucoxanthin from an extract of P. tricornutum. A multiple sequential injection HPCCC method was developed [...] Read more.
Phaeodactylum tricornutum is a rich source of fucoxanthin, a carotenoid with several health benefits. In the present study, high performance countercurrent chromatography (HPCCC) was used to isolate fucoxanthin from an extract of P. tricornutum. A multiple sequential injection HPCCC method was developed combining two elution modes (reverse phase and extrusion). The lower phase of a biphasic solvent system (n-heptane, ethyl acetate, ethanol and water, ratio 5/5/6/3, v/v/v/v) was used as the mobile phase, while the upper phase was the stationary phase. Ten consecutive sample injections (240 mg of extract each) were performed leading to the separation of 38 mg fucoxanthin with purity of 97% and a recovery of 98%. The process throughput was 0.189 g/h, while the efficiency per gram of fucoxanthin was 0.003 g/h. Environmental risk and general process evaluation factors were used for assessment of the developed separation method and compared with existing fucoxanthin liquid-liquid isolation methods. The isolated fucoxanthin retained its well-described ability to induce nuclear translocation of transcription factor FOXO3. Overall, the developed isolation method may represent a useful model to produce biologically active fucoxanthin from diatom biomass. Full article
Show Figures

Graphical abstract

21 pages, 2135 KiB  
Article
Statistical Inference for Ergodic Algorithmic Model (EAM), Applied to Hydrophobic Hydration Processes
by Emilia Fisicaro, Carlotta Compari and Antonio Braibanti
Entropy 2021, 23(6), 700; https://doi.org/10.3390/e23060700 - 1 Jun 2021
Cited by 2 | Viewed by 3226
Abstract
The thermodynamic properties of hydrophobic hydration processes can be represented in probability space by a Dual-Structure Partition Function {DS-PF} = {M-PF} · {T-PF}, which is the product of a Motive Partition Function {M-PF} multiplied by [...] Read more.
The thermodynamic properties of hydrophobic hydration processes can be represented in probability space by a Dual-Structure Partition Function {DS-PF} = {M-PF} · {T-PF}, which is the product of a Motive Partition Function {M-PF} multiplied by a Thermal Partition Function {T-PF}. By development of {DS-PF}, parabolic binding potential functions α) RlnKdual = (−Δdual/T) ={f(1/T)*g(T)} and β) RTlnKdual = (−Δdual) = {f(T)*g(lnT)} have been calculated. The resulting binding functions are “convoluted” functions dependent on the reciprocal interactions between the primary function f(1/T) or f(T) with the secondary function g(T) or g(lnT), respectively. The binding potential functions carry the essential thermodynamic information elements of each system. The analysis of the binding potential functions experimentally determined at different temperatures by means of the Thermal Equivalent Dilution (TED) principle has made possible the evaluation, for each compound, of the pseudo-stoichiometric coefficient ±ξw, from the curvature of the binding potential functions. The positive value indicates convex binding functions (Class A), whereas the negative value indicates concave binding function (Class B). All the information elements concern sets of compounds that are very different from one set to another, in molecular dimension, in chemical function, and in aggregation state. Notwithstanding the differences between, surprising equal unitary values of niche (cavity) formation in Class A <Δhfor>A = −22.7 ± 0.7 kJ·mol−1·ξw−1 sets with standard deviation σ = ±3.1% and <Δsfor>A = −445 ± 3J·K−1·mol−1·ξw−1J·K−1·mol−1·ξw−1 with standard deviation σ = ±0.7%. Other surprising similarities have been found, demonstrating that all the data analyzed belong to the same normal statistical population. The Ergodic Algorithmic Model (EAM) has been applied to the analysis of important classes of reactions, such as thermal and chemical denaturation, denaturation of proteins, iceberg formation or reduction, hydrophobic bonding, and null thermal free energy. The statistical analysis of errors has shown that EAM has a general validity, well beyond the limits of our experiments. Specifically, the properties of hydrophobic hydration processes as biphasic systems generating convoluted binding potential functions, with water as the implicit solvent, hold for all biochemical and biological solutions, on the ground that they also are necessarily diluted solutions, statistically validated. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

26 pages, 5856 KiB  
Article
Design of a New Gemini Lipoaminoacid with Immobilized Lipases Based on an Eco-Friendly Biosynthetic Process
by Patrícia M. Carvalho, Rita C. Guedes, Maria R. Bronze, Célia M. C. Faustino and Maria H. L. Ribeiro
Catalysts 2021, 11(2), 164; https://doi.org/10.3390/catal11020164 - 25 Jan 2021
Cited by 2 | Viewed by 2531
Abstract
Lipoaminoacids (LAA) are an important group of biosurfactants, formed by a polar hydrophilic part (amino acid) and a hydrophobic tail (lipid). The gemini LAA structures allow the formation of a supramolecular complex with bioactive molecules, like DNA, which provides them with good transfection [...] Read more.
Lipoaminoacids (LAA) are an important group of biosurfactants, formed by a polar hydrophilic part (amino acid) and a hydrophobic tail (lipid). The gemini LAA structures allow the formation of a supramolecular complex with bioactive molecules, like DNA, which provides them with good transfection efficiency. Since lipases are naturally involved in lipid and protein metabolism, they are an alternative to the chemical production of LAA, offering an eco-friendly biosynthetic process option. This work aimed to design the production of novel cystine derived gemini through a bioconversion system using immobilized lipases. Three lipases were used: porcine pancreatic lipase (PPL); lipase from Thermomyces lanuginosus (TLL); and lipase from Rizhomucor miehei (RML). PPL was immobilized in sol-gel lenses. L-cystine dihydrochloride and dodecylamine were used as substrates for the bioreaction. The production of LAA was evaluated by thin layer chromatography (TLC), and colorimetric reaction with eosin. The identification and quantification was carried out by High Performance Liquid Chromatographer-Mass Spectrometry (HPLC-MS/MS). The optimization of media design included co-solvent (methanol, dimethylsulfoxide), biphasic (n-hexane and 2-propanol) or solvent-free media, in order to improve the biocatalytic reaction rates and yields. Moreover, a new medium was tested where dodecylamine was melted and added to the cystine and to the biocatalyst, building a system of mainly undissolved substrates, leading to 5 mg/mL of LAA. Most of the volume turned into foam, which indicated the production of the biosurfactant. For the first time, the gemini derived cystine lipoaminoacid was produced, identified, and quantified in both co-solvent and solvent-free media, with the lipases PPL, RML, and TLL. Full article
(This article belongs to the Special Issue Design and Application of Advanced Biocatalysts)
Show Figures

Graphical abstract

12 pages, 1767 KiB  
Article
A Simultaneous Conversion and Extraction of Furfural from Pentose in Dilute Acid Hydrolysate of Quercus mongolica Using an Aqueous Biphasic System
by Jong-Hwa Kim, Seong-Min Cho, June-Ho Choi, Hanseob Jeong, Soo Min Lee, Bonwook Koo and In-Gyu Choi
Appl. Sci. 2021, 11(1), 163; https://doi.org/10.3390/app11010163 - 26 Dec 2020
Cited by 12 | Viewed by 3622
Abstract
This study optimizes furfural production from pentose released in the liquid hydrolysate of hardwood using an aqueous biphasic system. Dilute acid pretreatment with 4% sulfuric acid was conducted to extract pentose from liquid Quercus mongolica hydrolysate. To produce furfural from xylose, a xylose [...] Read more.
This study optimizes furfural production from pentose released in the liquid hydrolysate of hardwood using an aqueous biphasic system. Dilute acid pretreatment with 4% sulfuric acid was conducted to extract pentose from liquid Quercus mongolica hydrolysate. To produce furfural from xylose, a xylose standard solution with the same acid concentration of the liquid hydrolysate and extracting solvent (tetrahydrofuran) were applied to the aqueous biphasic system. A response surface methodology was adopted to optimize furfural production in the aqueous biphasic system. A maximum furfural yield of 72.39% was achieved at optimal conditions as per the RSM; a reaction temperature of 170 °C, reaction time of 120 min, and a xylose concentration of 10 g/L. Tetrahydrofuran, toluene, and dimethyl sulfoxide were evaluated to understand the effects of the solvent on furfural production. Tetrahydrofuran generated the highest furfural yield, while DMSO gave the lowest yield. A furfural yield of 68.20% from pentose was achieved in the liquid hydrolysate of Quercus mongolica under optimal conditions using tetrahydrofuran as the extracting solvent. The aqueous and tetrahydrofuran fractions were separated from the aqueous biphasic solvent by salting out using sodium chloride, and 94.63% of the furfural produced was drawn out through two extractions using tetrahydrofuran. Full article
(This article belongs to the Special Issue Biorefinery: Current Status, Challenges, and New Strategies)
Show Figures

Figure 1

11 pages, 1958 KiB  
Article
Elucidating the Structure-Function Relationship of Solvent and Cross-Linker on Affinity-Based Release from Cyclodextrin Hydrogels
by Sean T. Zuckerman, Edgardo Rivera-Delgado, Rebecca M. Haley, Julius N. Korley and Horst A. von Recum
Gels 2020, 6(1), 9; https://doi.org/10.3390/gels6010009 - 22 Mar 2020
Cited by 8 | Viewed by 3477
Abstract
Minocycline (MNC) is a tetracycline antibiotic capable of associating with cyclodextrin (CD), and it is a frontline drug for many instances of implant infection. Due to its broad-spectrum activity and long half-life, MNC represents an ideal drug for localized delivery; however, classic polymer [...] Read more.
Minocycline (MNC) is a tetracycline antibiotic capable of associating with cyclodextrin (CD), and it is a frontline drug for many instances of implant infection. Due to its broad-spectrum activity and long half-life, MNC represents an ideal drug for localized delivery; however, classic polymer formulations, particularly hydrogels, result in biphasic release less suitable for sustained anti-microbial action. A polymer delivery system capable of sustained, steady drug delivery rates poses an attractive target to maximize the antimicrobial activity of MNC. Here, we formed insoluble hydrogels of polymerized CD (pCD) with a range of crosslinking densities, and then assessed loading, release, and antimicrobial activity of MNC. MNC loads between 5–12 wt % and releases from pCD hydrogels for >14 days. pCD loaded with MNC shows extended antimicrobial activity against S. aureus for >40 days and E. coli for >70 days. We evaluated a range of water/ethanol blends to test our hypothesis that solvent polarity will impact drug-CD association as a function of hydrogel swelling and crosslinking. Increased polymer crosslinking and decreased solvent polarity both reduced MNC loading, but solvent polarity showed a dramatic reduction independent of hydrogel swelling. Due to its high solubility and excellent delivery profile, MNC represents a unique drug to probe the structure-function relationship between drug, affinity group, and polymer crosslinking ratio. Full article
(This article belongs to the Special Issue Hydrogels for Drug Delivery 2020)
Show Figures

Graphical abstract

19 pages, 2342 KiB  
Article
Tissue-Specific Sample Dilution: An Important Parameter to Optimise Prior to Untargeted LC-MS Metabolomics
by Zhanxuan E. Wu, Marlena C. Kruger, Garth J.S. Cooper, Sally D. Poppitt and Karl Fraser
Metabolites 2019, 9(7), 124; https://doi.org/10.3390/metabo9070124 - 27 Jun 2019
Cited by 20 | Viewed by 5233
Abstract
When developing a sample preparation protocol for LC–MS untargeted metabolomics of a new sample matrix unfamiliar to the laboratory, selection of a suitable injection concentration is rarely described. Here we developed a simple workflow to address this issue prior to untargeted LC–MS metabolomics [...] Read more.
When developing a sample preparation protocol for LC–MS untargeted metabolomics of a new sample matrix unfamiliar to the laboratory, selection of a suitable injection concentration is rarely described. Here we developed a simple workflow to address this issue prior to untargeted LC–MS metabolomics using pig adipose tissue and liver tissue. Bi-phasic extraction was performed to enable simultaneous optimisation of parameters for analysis of both lipids and polar extracts. A series of diluted pooled samples were analysed by LC–MS and used to evaluate signal linearity. Suitable injected concentrations were determined based on both the number of reproducible features and linear features. With our laboratory settings, the optimum concentrations of tissue mass to reconstitution solvent of liver and adipose tissue lipid fractions were found to be 125 mg/mL and 7.81 mg/mL respectively, producing 2811 (ESI+) and 4326 (ESI−) linear features from liver, 698 (ESI+) and 498 (ESI−) linear features from adipose tissue. For analysis of the polar fraction of both tissues, 250 mg/mL was suitable, producing 403 (ESI+) and 235 (ESI−) linear features from liver, 114 (ESI+) and 108 (ESI−) linear features from adipose tissue. Incorrect reconstitution volumes resulted in either severe overloading or poor linearity in our lipid data, while too dilute polar fractions resulted in a low number of reproducible features (<50) compared to hundreds of reproducible features from the optimum concentration used. Our study highlights on multiple matrices and multiple extract and chromatography types, the critical importance of determining a suitable injected concentration prior to untargeted LC–MS metabolomics, with the described workflow applicable to any matrix and LC–MS system. Full article
Show Figures

Figure 1

16 pages, 2106 KiB  
Article
Separation and Purification of Aflatoxins by Centrifugal Partition Chromatography
by Gábor Endre, Zsófia Hegedüs, Adiyadolgor Turbat, Biljana Škrbić, Csaba Vágvölgyi and András Szekeres
Toxins 2019, 11(6), 309; https://doi.org/10.3390/toxins11060309 - 30 May 2019
Cited by 15 | Viewed by 5104
Abstract
Aflatoxins are mycotoxins that are produced by several species of filamentous fungi. In the European Union, the concentration limits for this group of mycotoxins in food and feed products are very low (on the order of parts per billion). Thus, relatively high amounts [...] Read more.
Aflatoxins are mycotoxins that are produced by several species of filamentous fungi. In the European Union, the concentration limits for this group of mycotoxins in food and feed products are very low (on the order of parts per billion). Thus, relatively high amounts of these substances in their pure forms are required as reference standards. Chromatographic techniques based on solid stationary phases are generally used to purify these molecules; however, liquid–liquid chromatographic separations may be a promising alternative. Therefore, this study proposes a liquid–liquid chromatographic method for the separation of four aflatoxins and impurities. To optimise the method, numerous biphasic solvent systems (chloroform-, acetone- and acetic acid-based systems) were tested and evaluated in terms of their effectiveness at partitioning aflatoxins; the toluene/acetic acid/water (30:24:50, v/v/v/%) system was found to be the most efficient for application in centrifugal partition chromatographic instrument. Using liquid–liquid instrumental separation, the four aflatoxins, namely B1 (400 mg), B2 (34 mg), G1 (817 mg) and G2 (100 mg), were successfully isolated with 96.3%–98.2% purity from 4.5 L of Aspergillus parasiticus fermented material in a 250 mL centrifugal partition chromatography column. The identities and purities of the purified components were confirmed, and the performance parameters of each separation step and the whole procedure was determined. The developed method could be effectively used to purify aflatoxins for analytical applications. Full article
(This article belongs to the Collection Aflatoxins)
Show Figures

Figure 1

Back to TopTop