Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = biopredictive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2299 KiB  
Article
Three Neglected STARD Criteria Reduce the Uncertainty of the Liver Fibrosis Biomarker FibroTest-T2D in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
by Thierry Poynard, Olivier Deckmyn, Raluca Pais, Judith Aron-Wisnewsky, Valentina Peta, Pierre Bedossa, Frederic Charlotte, Maharajah Ponnaiah, Jean-Michel Siksik, Laurent Genser, Karine Clement, Gilles Leanour and Dominique Valla
Diagnostics 2025, 15(10), 1253; https://doi.org/10.3390/diagnostics15101253 - 15 May 2025
Viewed by 536
Abstract
Background/Objectives: Bariatric surgery (BS), drugs approved for type-2-diabetes (T2D), obesity, and liver fibrosis (resmetirom) announce the widespread use of fibrosis tests in patients with metabolic liver disease (MASLD). An unmet need is to reduce the uncertainty of biomarkers for the diagnosis of the [...] Read more.
Background/Objectives: Bariatric surgery (BS), drugs approved for type-2-diabetes (T2D), obesity, and liver fibrosis (resmetirom) announce the widespread use of fibrosis tests in patients with metabolic liver disease (MASLD). An unmet need is to reduce the uncertainty of biomarkers for the diagnosis of the early stage of clinically significant fibrosis (eF). This can be achieved if three essential but neglected STARD methods (3M) are used, which have a more sensitive histological score than the standard comparator (five-tiers), the weighted area under the characteristic curve (wAUROC) instead of the binary AUROC, and biopsy length. We applied 3M to FibroTest-T2D to demonstrate this reduction of uncertainty and constructed proxies predicting eF in large populations. Methods: For uncertainty, seven subsets were analyzed, four included biopsies (n = 1903), and to assess eF incidence, three MASLD-populations (n = 299,098). FibroTest-T2D classification rates after BS and in outpatients-T2D (n = 402) were compared with and without 3M. In MASLD, trajectories of proxies and incidence against confounding factors used hazard ratios. Results: After BS (110 biopsies), reversal of eF was observed in 16/29 patients (84%) using seven-tier scores vs. 3/20 patients (47%) using five-tier scores (p = 0.005). When the biopsy length was above the median, FibroTest-T2D wAUROC was 0.90 (SD = 0.01), and the wAUROC was 0.88 (SD = 0.1) when the length was below the median (p < 0.001). For the first time, obesity was associated with eF before T2D (p < 0.001), and perimenopausal age with apoA1 and haptoglobin increases (p < 0.0001). Conclusions: Validations of circulating biomarkers need to assess their uncertainty. FibroTest-T2D predicts fibrosis regression after BS. Applying 3M and adjustments could avoid misinterpretations in MASLD surveillance. Full article
Show Figures

Figure 1

14 pages, 1704 KiB  
Article
Integrating In Vitro Dissolution and Physiologically Based Pharmacokinetic Modeling for Generic Drug Development: Evaluation of Amorphous Solid Dispersion Formulations for Tacrolimus
by Evangelos Karakitsios, Maria-Faidra-Galini Angelerou, Iasonas Kapralos, Georgia Tsakiridou, Lida Kalantzi and Aristides Dokoumetzidis
Pharmaceutics 2025, 17(2), 227; https://doi.org/10.3390/pharmaceutics17020227 - 10 Feb 2025
Viewed by 1354
Abstract
Objectives: Tacrolimus, a Biopharmaceutics Classification System (BCS) class II drug, is widely used for transplant patients to prevent graft rejection. To enhance its bioavailability, amorphous solid dispersion (ASD) formulations were developed and evaluated. The release properties of several ASD-based tacrolimus formulations were [...] Read more.
Objectives: Tacrolimus, a Biopharmaceutics Classification System (BCS) class II drug, is widely used for transplant patients to prevent graft rejection. To enhance its bioavailability, amorphous solid dispersion (ASD) formulations were developed and evaluated. The release properties of several ASD-based tacrolimus formulations were studied using an in-house USP IV dissolution method. Methods: The pharmacokinetics of a promising test product were compared with the commercially available Advagraf® in a pilot clinical bioequivalence study with 12 healthy subjects. A previously published PBPK model for tacrolimus was validated using in vivo data and then applied to predict the human pharmacokinetics of several ASD-based tacrolimus formulations. Results: This study compares the pharmacokinetic (PK) parameters—AUC, Cmax, and Tmax—of Advagraf® and a test formulation using two methodologies: one incorporating the dissolution profile directly into the PBPK model and the other utilizing the DLM approach. The results show that both methods provided accurate predictions for Cmax and Tmax, with the dissolution profile approach underestimating AUC slightly, while the DLM method predicted AUC adequately. Sensitivity analysis refining the DLM scalars in the Ileum and Colon led to optimized predictions of PK parameters. Furthermore, this study explores the use of PBPK modeling to predict in vivo behavior for additional tacrolimus formulations, highlighting the influence of formulation composition, such as the inclusion of Eudragit-S100, on dissolution profiles and bioavailability. Conclusions: This study evaluates formulations with different compositions and manufacturing characteristics; key factors that could influence their performance in the body were identified. These insights—spanning qualitative, quantitative, and manufacturing aspects—can greatly simplify the development of generic drugs, offering strong evidence of the critical role that physiologically based pharmacokinetic (PBPK) modeling can play in the early phases of generic drug development, especially in designing and assessing biopredictive dissolution methods. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

18 pages, 18268 KiB  
Article
A Rational Approach to Predicting Immediate Release Formulation Behavior in Multiple Gastric Motility Patterns: A Combination of a Biorelevant Apparatus, Design of Experiments, and Machine Learning
by Marcela Staniszewska, Michał Romański, Sebastian Polak, Grzegorz Garbacz, Justyna Dobosz, Daria Myslitska, Svitlana Romanova, Jadwiga Paszkowska and Dorota Danielak
Pharmaceutics 2023, 15(8), 2056; https://doi.org/10.3390/pharmaceutics15082056 - 31 Jul 2023
Cited by 8 | Viewed by 2441
Abstract
Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of [...] Read more.
Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of experiments (DoE) and machine learning (ML) to overcome this obstacle. The workflow involves the testing of soft gelatin capsules in a set of fasted-state biorelevant dissolution experiments created with DoE. The dissolution results are used by an ML algorithm to build the classification model of the capsule’s opening in response to intragastric stress (IS) within the physiological space of timing and magnitude. Next, a random forest algorithm is used to model the further drug dissolution. The predictive power of the two ML models is verified with independent dissolution tests, and they outperform a polynomial-based DoE model. Moreover, the developed tool reasonably simulates over 50 dissolution profiles under varying IS conditions. Hence, we prove that our method can be utilized for the simulation of dissolution profiles related to the multiplicity of individual gastric motility patterns. In perspective, the developed workflow can improve virtual bioequivalence trials and the patient-centric development of immediate-release oral dosage forms. Full article
(This article belongs to the Special Issue Recent Advances in Oral Biopharmaceutics)
Show Figures

Figure 1

14 pages, 5871 KiB  
Article
Development of Biopredictive Dissolution Method for Extended-Release Desvenlafaxine Tablets
by Gustavo Vaiano Carapeto, Marcelo Dutra Duque, Michele Georges Issa and Humberto Gomes Ferraz
Pharmaceutics 2023, 15(5), 1544; https://doi.org/10.3390/pharmaceutics15051544 - 19 May 2023
Cited by 8 | Viewed by 3190
Abstract
This study aimed to develop a biopredictive dissolution method for desvenlafaxine ER tablets using design of experiments (DoE) and physiologically based biopharmaceutics modeling (PBBM) to address the challenge of developing generic drug products by reducing the risk of product failure in pivotal bioequivalence [...] Read more.
This study aimed to develop a biopredictive dissolution method for desvenlafaxine ER tablets using design of experiments (DoE) and physiologically based biopharmaceutics modeling (PBBM) to address the challenge of developing generic drug products by reducing the risk of product failure in pivotal bioequivalence studies. For this purpose, a PBBM was developed in GastroPlus® and combined with a Taguchi L9 design, to evaluate the impact of different drug products (Reference, Generic #1 and Generic #2) and dissolution test conditions on desvenlafaxine release. The influence of the superficial area/volume ratio (SA/V) of the tablets was observed, mainly for Generic #1, which presented higher SA/V than the others, and a high amount of drug dissolved under similar test conditions. The dissolution test conditions of 900 mL of 0.9% NaCl and paddle at 50 rpm with sinker showed to be biopredictive, as it was possible to demonstrate virtual bioequivalence for all products, despite their release-pattern differences, including Generic #3 as an external validation. This approach led to a rational development of a biopredictive dissolution method for desvenlafaxine ER tablets, providing knowledge that may help the process of drug product and dissolution method development. Full article
(This article belongs to the Special Issue Dissolution and Disintegration of Oral Solid Dosage Forms)
Show Figures

Figure 1

20 pages, 2023 KiB  
Article
Development and Application of a Dissolution-Transfer-Partitioning System (DTPS) for Biopharmaceutical Drug Characterization
by Christian Jede, Laura J. Henze, Kirstin Meiners, Malte Bogdahn, Marcel Wedel and Valeria van Axel
Pharmaceutics 2023, 15(4), 1069; https://doi.org/10.3390/pharmaceutics15041069 - 26 Mar 2023
Cited by 4 | Viewed by 2724
Abstract
A variety of in vitro dissolution and gastrointestinal transfer models have been developed aiming to predict drug supersaturation and precipitation. Further, biphasic, one-vessel in vitro systems are increasingly applied to simulate drug absorption in vitro. However, to date, there is a lack of [...] Read more.
A variety of in vitro dissolution and gastrointestinal transfer models have been developed aiming to predict drug supersaturation and precipitation. Further, biphasic, one-vessel in vitro systems are increasingly applied to simulate drug absorption in vitro. However, to date, there is a lack of combining the two approaches. Therefore, the first aim of this study was to develop a dissolution-transfer-partitioning system (DTPS) and, secondly, to assess its biopredictive power. In the DTPS, simulated gastric and intestinal dissolution vessels are connected via a peristaltic pump. An organic layer is added on top of the intestinal phase, serving as an absorptive compartment. The predictive power of the novel DTPS was assessed to a classical USP II transfer model using a BCS class II weak base with poor aqueous solubility, MSC-A. The classical USP II transfer model overestimated simulated intestinal drug precipitation, especially at higher doses. By applying the DTPS, a clearly improved estimation of drug supersaturation and precipitation and an accurate prediction of the in vivo dose linearity of MSC-A were observed. The DTPS provides a useful tool taking both dissolution and absorption into account. This advanced in vitro tool offers the advantage of streamlining the development process of challenging compounds. Full article
(This article belongs to the Special Issue Recent Advances in Oral Biopharmaceutics)
Show Figures

Figure 1

22 pages, 19031 KiB  
Review
Exosomes: Small Vesicles with Important Roles in the Development, Metastasis and Treatment of Breast Cancer
by Ling’ao Meng, Kedong Song, Shenglong Li and Yue Kang
Membranes 2022, 12(8), 775; https://doi.org/10.3390/membranes12080775 - 12 Aug 2022
Cited by 8 | Viewed by 5410
Abstract
Breast cancer (BC) has now overtaken lung cancer as the most common cancer, while no biopredictive marker isolated from biological fluids has yet emerged clinically. After traditional chemotherapy, with the huge side effects brought by drugs, patients also suffer from the double affliction [...] Read more.
Breast cancer (BC) has now overtaken lung cancer as the most common cancer, while no biopredictive marker isolated from biological fluids has yet emerged clinically. After traditional chemotherapy, with the huge side effects brought by drugs, patients also suffer from the double affliction of drugs to the body while fighting cancer, and they often quickly develop drug resistance after the drug, leading to a poor prognosis. And the treatment of some breast cancer subtypes, such as triple negative breast cancer (TNBC), is even more difficult. Exosomes (Exos), which are naturally occurring extracellular vesicles (EVs) with nanoscale acellular structures ranging in diameter from 40 to 160 nm, can be isolated from various biological fluids and have been widely studied because they are derived from the cell membrane, have extremely small diameter, and are widely involved in various biological activities of the body. It can be used directly or modified to make derivatives or to make some analogs for the treatment of breast cancer. This review will focus on the involvement of exosomes in breast cancer initiation, progression, invasion as well as metastasis and the therapeutic role of exosomes in breast cancer. Full article
(This article belongs to the Special Issue Progress in Extracellular Vesicle (EV) Analysis)
Show Figures

Figure 1

16 pages, 5851 KiB  
Article
Quality Control Dissolution Data Is Biopredictive for a Modified Release Ropinirole Formulation: Virtual Experiment with the Use of Re-Developed and Verified PBPK Model
by Olha Shuklinova, Przemysław Dorożyński, Piotr Kulinowski and Sebastian Polak
Pharmaceutics 2022, 14(7), 1514; https://doi.org/10.3390/pharmaceutics14071514 - 21 Jul 2022
Cited by 6 | Viewed by 2524
Abstract
Physiologically based pharmacokinetic and absorption modeling are being used by industry and regulatory bodies to address various scientifically challenging questions. While there is high confidence in the prediction of exposure for the BCS class I drugs administered as immediate-release formulations, in the case [...] Read more.
Physiologically based pharmacokinetic and absorption modeling are being used by industry and regulatory bodies to address various scientifically challenging questions. While there is high confidence in the prediction of exposure for the BCS class I drugs administered as immediate-release formulations, in the case of prolonged-release formulations, special attention should be given to the input dissolution data. Our goal was to develop and verify a PBPK model for a BCS class I compound, ropinirole, and check the biopredictiveness of the dissolution data for the prolonged-release formulation administered by Parkinson’s patients. The model was built based on quality control dissolution data reported in the certificates of analysis and verified with the use of data derived from five clinical trial reports. The simulated pharmacokinetic parameters being within a two-fold range of the observed values confirmed acceptable model performance, in vivo relevance of the in vitro dissolution profiles, and indirectly indicated ropinirole stable release from the formulation in the patients’ gastro-intestinal tract. Ropinirole PBPK model will be used for exploring potential clinical scenarios while developing a new formulation. Full article
(This article belongs to the Special Issue In Silico Pharmacology for Evidence-Based and Precision Medicine)
Show Figures

Figure 1

18 pages, 3440 KiB  
Article
Methodological Considerations in Development of UV Imaging for Characterization of Intra-Tumoral Injectables Using cAMP as a Model Substance
by Frederik Bock, Johan Peter Bøtker, Susan Weng Larsen, Xujin Lu and Jesper Østergaard
Int. J. Mol. Sci. 2022, 23(7), 3599; https://doi.org/10.3390/ijms23073599 - 25 Mar 2022
Cited by 3 | Viewed by 2551
Abstract
A UV imaging release-testing setup comprising an agarose gel as a model for tumorous tissue was developed. The setup was optimized with respect to agarose concentration (0.5% (w/v)), injection procedure, and temperature control. A repeatable injection protocol was established [...] Read more.
A UV imaging release-testing setup comprising an agarose gel as a model for tumorous tissue was developed. The setup was optimized with respect to agarose concentration (0.5% (w/v)), injection procedure, and temperature control. A repeatable injection protocol was established allowing injection into cavities with well-defined geometries. The effective resolution of the SDi2 UV imaging system is 30–80 µm. The linear range of the imaging system is less than that of typical spectrophotometers. Consequently, non-linear cAMP calibration curves were applied for quantification at 280 nm. The degree of deviation from Beer’s law was affected by the background absorbance of the gel matrix. MATLAB scripts provided hitherto missing flexibility with respect to definition and utilization of quantification zones, contour lines facilitating visualization, and automated, continuous data analysis. Various release patterns were observed for an aqueous solution and in situ forming Pluronic F127 hydrogel and PLGA implants containing cAMP as a model for STING ligands. The UV imaging and MATLAB data analysis setup constituted a significant technical development in terms of visualizing behavior for injectable formulations intended for intra-tumoral delivery, and, thereby, a step toward establishment of a bio-predictive in vitro release-testing method. Full article
(This article belongs to the Special Issue Challenges, Opportunities, and Innovation in Local Drug Delivery)
Show Figures

Graphical abstract

37 pages, 8745 KiB  
Article
Clinical Interest of Serum Alpha-2 Macroglobulin, Apolipoprotein A1, and Haptoglobin in Patients with Non-Alcoholic Fatty Liver Disease, with and without Type 2 Diabetes, before or during COVID-19
by Olivier Deckmyn, Thierry Poynard, Pierre Bedossa, Valérie Paradis, Valentina Peta, Raluca Pais, Vlad Ratziu, Dominique Thabut, Angelique Brzustowski, Jean-François Gautier, Patrice Cacoub and Dominique Valla
Biomedicines 2022, 10(3), 699; https://doi.org/10.3390/biomedicines10030699 - 17 Mar 2022
Cited by 14 | Viewed by 4700
Abstract
In patients with non-alcoholic fatty liver disease (NAFLD) with or without type 2 diabetes mellitus (T2DM), alpha-2 macroglobulin (A2M), apolipoprotein A1 (ApoA1), and haptoglobin are associated with the risk of liver fibrosis, inflammation (NASH), and COVID-19. We assessed if these associations were worsened [...] Read more.
In patients with non-alcoholic fatty liver disease (NAFLD) with or without type 2 diabetes mellitus (T2DM), alpha-2 macroglobulin (A2M), apolipoprotein A1 (ApoA1), and haptoglobin are associated with the risk of liver fibrosis, inflammation (NASH), and COVID-19. We assessed if these associations were worsened by T2DM after adjustment by age, sex, obesity, and COVID-19. Three datasets were used: the “Control Population”, which enabled standardization of protein serum levels according to age and sex (N = 27,382); the “NAFLD-Biopsy” cohort for associations with liver features (N = 926); and the USA “NAFLD-Serum” cohort for protein kinetics before and during COVID-19 (N = 421,021). The impact of T2DM was assessed by comparing regression curves adjusted by age, sex, and obesity for the liver features in “NAFLD-Biopsy”, and before and during COVID-19 pandemic peaks in “NAFLD-Serum”. Patients with NAFLD without T2DM, compared with the values of controls, had increased A2M, decreased ApoA1, and increased haptoglobin serum levels. In patients with both NAFLD and T2DM, these significant mean differences were magnified, and even more during the COVID-19 pandemic in comparison with the year 2019 (all p < 0.001), with a maximum ApoA1 decrease of 0.21 g/L in women, and a maximum haptoglobin increase of 0.17 g/L in men. In conclusion, T2DM is associated with abnormal levels of A2M, ApoA1, and haptoglobin independently of NAFLD, age, sex, obesity, and COVID-19. Full article
(This article belongs to the Special Issue Pathological Mechanisms in Diabetes)
Show Figures

Figure 1

29 pages, 12048 KiB  
Review
In Vitro Methodologies for Evaluating Colon-Targeted Pharmaceutical Products and Industry Perspectives for Their Applications
by Mauricio A. García, Felipe Varum, Jozef Al-Gousous, Michael Hofmann, Susanne Page and Peter Langguth
Pharmaceutics 2022, 14(2), 291; https://doi.org/10.3390/pharmaceutics14020291 - 26 Jan 2022
Cited by 27 | Viewed by 8359
Abstract
Several locally acting colon-targeted products to treat colonic diseases have been recently developed and marketed, taking advantage of gastrointestinal physiology to target delivery. Main mechanisms involve pH-dependent, time-controlled and/or enzymatic-triggered release. With site of action located before systemic circulation and troublesome colonic sampling, [...] Read more.
Several locally acting colon-targeted products to treat colonic diseases have been recently developed and marketed, taking advantage of gastrointestinal physiology to target delivery. Main mechanisms involve pH-dependent, time-controlled and/or enzymatic-triggered release. With site of action located before systemic circulation and troublesome colonic sampling, there is room for the introduction of meaningful in vitro methods for development, quality control (QC) and regulatory applications of these formulations. A one-size-fits-all method seems unrealistic, as the selection of experimental conditions should resemble the physiological features exploited to trigger the release. This article reviews the state of the art for bio-predictive dissolution testing of colon-targeted products. Compendial methods overlook physiological aspects, such as buffer molarity and fluid composition. These are critical for pH-dependent products and time-controlled systems containing ionizable drugs. Moreover, meaningful methods for enzymatic-triggered products including either bacteria or enzymes are completely ignored by pharmacopeias. Bio-predictive testing may accelerate the development of successful products, although this may require complex methodologies. However, for high-throughput routine testing (e.g., QC), simplified methods can be used where balance is struck between simplicity, robustness and transferability on one side and bio-predictivity on the other. Ultimately, bio-predictive methods can occupy a special niche in terms of supplementing plasma concentration data for regulatory approval. Full article
Show Figures

Figure 1

18 pages, 1741 KiB  
Article
Optimization and Evaluation of the In Vitro Permeation Parameters of Topical Products with Non-Steroidal Anti-Inflammatory Drugs through Strat-M® Membrane
by Bartłomiej Milanowski, Hanna Wosicka-Frąckowiak, Eliza Główka, Małgorzata Sosnowska, Stanisław Woźny, Filip Stachowiak, Angelika Suchenek and Dariusz Wilkowski
Pharmaceutics 2021, 13(8), 1305; https://doi.org/10.3390/pharmaceutics13081305 - 20 Aug 2021
Cited by 25 | Viewed by 5791
Abstract
Pharmaceutical products containing non-steroidal anti-inflammatory drugs (NSAIDs) are among the most prescribed topical formulations used for analgesic and antirheumatic properties. These drugs must overcome the skin barrier to cause a therapeutic effect. Human skin has been widely used as a model to study [...] Read more.
Pharmaceutical products containing non-steroidal anti-inflammatory drugs (NSAIDs) are among the most prescribed topical formulations used for analgesic and antirheumatic properties. These drugs must overcome the skin barrier to cause a therapeutic effect. Human skin has been widely used as a model to study in vitro drug diffusion and permeation, however, it suffers from many limitations. Therefore, to perform in vitro permeation test (IVPT), we used a Strat-M® membrane with diffusion characteristics well-correlated to human skin. This study’s objective was to optimize the IVPT conditions using Plackett–Burman experimental design for bio-predictive evaluation of the in vitro permeation rates of five non-steroidal anti-inflammatory drugs (diclofenac, etofenamate, ibuprofen, ketoprofen, naproxen) across Strat-M® membrane from commercial topical formulations. The Plackett–Burman factorial design was used to screen the effect of seven factors in eight runs with one additional center point. This tool allowed us to set the sensitive and discriminative IVPT final conditions that can appropriately characterize the NSAIDs formulations. The permeation rate of etofenamate (ETF) across the Strat-M® membrane was 1.7–14.8 times faster than other NSAIDs from selected semisolids but 1.6 times slower than the ETF spray formulation. Full article
Show Figures

Figure 1

19 pages, 2193 KiB  
Article
Development and Bio-Predictive Evaluation of Biopharmaceutical Properties of Sustained-Release Tablets with a Novel GPR40 Agonist for a First-in-Human Clinical Trial
by Ewelina Juszczyk, Kamil Kisło, Paweł Żero, Ewa Tratkiewicz, Maciej Wieczorek, Jadwiga Paszkowska, Grzegorz Banach, Marcela Wiater, Dagmara Hoc, Grzegorz Garbacz, Jaroslaw Sczodrok and Dorota Danielak
Pharmaceutics 2021, 13(6), 804; https://doi.org/10.3390/pharmaceutics13060804 - 28 May 2021
Cited by 6 | Viewed by 3822
Abstract
Sustained-release (SR) formulations may appear advantageous in first-in-human (FIH) study of innovative medicines. The newly developed SR matrix tablets require prolonged maintenance of API concentration in plasma and should be reliably assessed for the risk of uncontrolled release of the drug. In the [...] Read more.
Sustained-release (SR) formulations may appear advantageous in first-in-human (FIH) study of innovative medicines. The newly developed SR matrix tablets require prolonged maintenance of API concentration in plasma and should be reliably assessed for the risk of uncontrolled release of the drug. In the present study, we describe the development of a robust SR matrix tablet with a novel G-protein-coupled receptor 40 (GPR40) agonist for first-in-human studies and introduce a general workflow for the successful development of SR formulations for innovative APIs. The hydrophilic matrix tablets containing the labeled API dose of 5, 30, or 120 mg were evaluated with several methods: standard USP II dissolution, bio-predictive dissolution tests, and the texture and matrix formation analysis. The standard dissolution tests allowed preselection of the prototypes with the targeted dissolution rate, while the subsequent studies in physiologically relevant conditions revealed unwanted and potentially harmful effects, such as dose dumping under an increased mechanical agitation. The developed formulations were exceptionally robust toward the mechanical and physicochemical conditions of the bio-predictive tests and assured a comparable drug delivery rate regardless of the prandial state and dose labeled. In conclusion, the introduced development strategy, when implemented into the development cycle of SR formulations with innovative APIs, may allow not only to reduce the risk of formulation-related failure of phase I clinical trial but also effectively and timely provide safe and reliable medicines for patients in the trial and their further therapy. Full article
Show Figures

Graphical abstract

19 pages, 5980 KiB  
Article
One and Two-Step In Vitro-In Vivo Correlations Based on USP IV Dynamic Dissolution Applied to Four Sodium Montelukast Products
by Mercedes Prieto-Escolar, Juan J. Torrado, Covadonga Álvarez, Alejandro Ruiz-Picazo, Marta Simón-Vázquez, Carlos Govantes, Jesús Frias, Alfredo García-Arieta, Isabel Gonzalez-Alvarez and Marival Bermejo
Pharmaceutics 2021, 13(5), 690; https://doi.org/10.3390/pharmaceutics13050690 - 11 May 2021
Cited by 9 | Viewed by 4550
Abstract
Montelukast is a weak acid drug characterized by its low solubility in the range of pH 1.2 to 4.5, which may lead to dissolution-limited absorption. The aim of this paper is to develop an in vivo predictive dissolution method for montelukast and to [...] Read more.
Montelukast is a weak acid drug characterized by its low solubility in the range of pH 1.2 to 4.5, which may lead to dissolution-limited absorption. The aim of this paper is to develop an in vivo predictive dissolution method for montelukast and to check its performance by establishing a level-A in vitro-in vivo correlation (IVIVC). During the development of a generic film-coated tablet formulation, two clinical trials were done with three different experimental formulations to achieve a similar formulation to the reference one. A dissolution test procedure with a flow-through cell (USP IV) was used to predict the in vivo absorption behavior. The method proposed is based on a flow rate of 5 mL/min and changes of pH mediums from 1.2 to 4.5 and then to 6.8 with standard pharmacopoeia buffers. In order to improve the dissolution of montelukast, sodium dodecyl sulfate was added to the 4.5 and 6.8 pH mediums. Dissolution profiles in from the new method were used to develop a level-A IVIVC. One-step level-A IVIVC was developed from dissolution profiles and fractions absorbed obtained by the Loo–Riegelman method. Time scaling with Levy’s plot was necessary to achieve a linear IVIVC. One-step differential equation-based IVIVC was also developed with a time-scaling function. The developed method showed similar results to a previously proposed biopredictive method for montelukast, and the added value showed the ability to discriminate among different release rates in vitro, matching the in vivo clinical bioequivalence results. Full article
Show Figures

Graphical abstract

11 pages, 776 KiB  
Article
Hepatitis C Clearance by Direct-Acting Antivirals Impacts Glucose and Lipid Homeostasis
by Christiana Graf, Tania Welzel, Dimitra Bogdanou, Johannes Vermehren, Anita Beckel, Jörg Bojunga, Mireen Friedrich-Rust, Julia Dietz, Alica Kubesch, Antonia Mondorf, Sarah Fischer, Thomas Lutz, Philipp Stoffers, Eva Herrmann, Thierry Poynard, Stefan Zeuzem, Georg Dultz and Ulrike Mihm
J. Clin. Med. 2020, 9(9), 2702; https://doi.org/10.3390/jcm9092702 - 21 Aug 2020
Cited by 31 | Viewed by 3154
Abstract
Background: Chronic hepatitis C virus (HCV) infections are causally linked with metabolic comorbidities such as insulin resistance, hepatic steatosis, and dyslipidemia. However, the clinical impact of HCV eradication achieved by direct-acting antivirals (DAAs) on glucose and lipid homeostasis is still controversial. The study [...] Read more.
Background: Chronic hepatitis C virus (HCV) infections are causally linked with metabolic comorbidities such as insulin resistance, hepatic steatosis, and dyslipidemia. However, the clinical impact of HCV eradication achieved by direct-acting antivirals (DAAs) on glucose and lipid homeostasis is still controversial. The study aimed to prospectively investigate whether antiviral therapy of HCV with DAAs alters glucose and lipid parameters. Methods: 50 patients with chronic HCV who were treated with DAAs were screened, and 49 were enrolled in the study. Biochemical and virological data, as well as noninvasive liver fibrosis parameters, were prospectively collected at baseline, at the end of treatment (EOT) and 12 and 24 weeks post-treatment. Results: 45 of 46 patients achieved sustained virologic response (SVR). The prevalence of insulin resistance (HOMA-IR) after HCV clearance was significantly lower, compared to baseline (5.3 ± 6.1 to 2.5 ± 1.9, p < 0.001), which is primarily attributable to a significant decrease of fasting insulin levels (18.9 ± 17.3 to 11.7 ± 8.7; p = 0.002). In contrast to that, HCV eradication resulted in a significant increase in cholesterol levels (total cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein (HDL-C) levels) and Controlled Attenuated Score (CAP), although BMI did not significantly change over time (p = 0.95). Moreover, HOMA-IR correlated significantly with noninvasive liver fibrosis measurements at baseline und during follow-up (TE: r = 0.45; p = 0.003, pSWE: r = 0.35; p = 0.02, APRI: r = 0.44; p = 0.003, FIB-4: r = 0.41; p < 0.001). Conclusion: Viral eradication following DAA therapy may have beneficial effects on glucose homeostasis, whereas lipid profile seems to be worsened. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

17 pages, 2701 KiB  
Article
In Vitro Evaluation of Enteric-Coated HPMC Capsules—Effect of Formulation Factors on Product Performance
by Maoqi Fu, Johannes Andreas Blechar, Andreas Sauer, Jozef Al-Gousous and Peter Langguth
Pharmaceutics 2020, 12(8), 696; https://doi.org/10.3390/pharmaceutics12080696 - 23 Jul 2020
Cited by 20 | Viewed by 7861
Abstract
A comparative study on different enteric-coated hard capsules was performed. The influence of different formulation factors like choice of enteric polymer, triethyl citrate (TEC) concentration (plasticizer), talc concentrations (anti-tacking agent), and different coating process parameters on the sealing performance of the capsule and [...] Read more.
A comparative study on different enteric-coated hard capsules was performed. The influence of different formulation factors like choice of enteric polymer, triethyl citrate (TEC) concentration (plasticizer), talc concentrations (anti-tacking agent), and different coating process parameters on the sealing performance of the capsule and the disintegration time were investigated. Furthermore, the influence of different disintegration test methods (with disc vs. without disc and 50 mM U.S. Pharmacopoeia (USP) buffer pH 6.8 vs. biopredictive 15 mM phosphate buffer pH 6.5) was evaluated. All formulations showed sufficient but not equivalent acid resistance when tested. Polymer type was the main factor influencing the capsule sealing and disintegration time. In addition, TEC and talc could affect the performance of the formulation. Regarding the choice of the disintegration test method, the presence of a disc had for the most part only limited influence on the results. The choice of disintegration buffer was found to be important in identifying differences between the formulations. Full article
(This article belongs to the Special Issue Coating Design: From Nanoparticle to Solid Dosage)
Show Figures

Figure 1

Back to TopTop