Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = bioorthogonal reactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2707 KiB  
Article
Understanding Bio-Orthogonal Strain-Driven Sydnone Cycloadditions: Data-Assisted Profiles and the Search for Linear Relationships
by Juan García de la Concepción, Pedro Cintas and Rafael Fernando Martínez
Molecules 2025, 30(13), 2770; https://doi.org/10.3390/molecules30132770 - 27 Jun 2025
Viewed by 358
Abstract
In the realm of click-type reactions and their application to bioorthogonal chemistry in living organisms, metal-free [3+2] cycloadditions involving mesoionic rings and strained cycloalkynes have gained increasing attention and potentiality in recent years. While there has been a significant accretion of experimental data, [...] Read more.
In the realm of click-type reactions and their application to bioorthogonal chemistry in living organisms, metal-free [3+2] cycloadditions involving mesoionic rings and strained cycloalkynes have gained increasing attention and potentiality in recent years. While there has been a significant accretion of experimental data, biological assays, and assessments of reaction mechanisms, some pieces of the tale are still missing. For instance, which structural and/or stereoelectronic effects are actually interlocked and which remain unplugged. With the advent of data-driven methods, including machine learning simulations, quantitative estimations of relevant observables and their correlations will explore better the chemical space of these transformations. Here we unveil a series of linear relationships, such as Hammett-type correlations, as well as deviations of linearity, using the case study of phenylsydnone (and its 4-aryl-substituted derivatives) with a highly reactive bicyclo[6.1.0]nonyne carbinol. Through accurate estimation of activation barriers and prediction of rate constants, our findings further increase the significance of integrating strain release and electronic effects in organic reactivity. Moreover, such results could pave the way to use mesoionics cycloadditions as probes for measuring the extent of delocalization-assisted strain release, which can be applied to related reactions involving dipoles and strained rings. Full article
Show Figures

Figure 1

23 pages, 2579 KiB  
Review
From Micro to Marvel: Unleashing the Full Potential of Click Chemistry with Micromachine Integration
by Zihan Chen, Zimo Ren, Carmine Coluccini and Paolo Coghi
Micromachines 2025, 16(6), 712; https://doi.org/10.3390/mi16060712 - 15 Jun 2025
Viewed by 2849
Abstract
Micromachines, small-scale engineered devices prepared to carry out exact tasks at the micro level, have garnered great interest across different fields such as drug delivery, chemical synthesis, and biomedical applications. In emerging applications, micromachines have indicated great potential in advancing click chemistry, a [...] Read more.
Micromachines, small-scale engineered devices prepared to carry out exact tasks at the micro level, have garnered great interest across different fields such as drug delivery, chemical synthesis, and biomedical applications. In emerging applications, micromachines have indicated great potential in advancing click chemistry, a highly selective and efficient chemical technique widely applied in materials science, bioconjugation, and pharmaceutical development. Click chemistry, distinguished by its rapid reaction rates, high efficiency, and bioorthogonality, serves as a robust method for molecular assembly and functionalization. Incorporating micromachines into click chemistry processes paves the way for precise, automated, and scalable chemical synthesis. These tiny devices can effectively transport reactants, boost reaction efficiency through localized mixing, and enable highly exact site-specific modifications. Moreover, micromachines driven by external forces such as magnetic fields, ultrasound, or chemical fuels provide exceptional control over reaction conditions, significantly enhancing the selectivity and efficiency of click reactions. In this review, we explore the interaction between micromachines and click chemistry, showcasing recent advancements, potential uses, and future prospects in this cross-disciplinary domain. By leveraging micromachine-supported click chemistry, scientists can surpass conventional reaction constraints, opening doors to groundbreaking innovations in materials science, drug discovery, and beyond. Full article
Show Figures

Figure 1

13 pages, 4184 KiB  
Article
Unfolding Protein-Based Hapten Coupling via Thiol–Maleimide Click Chemistry: Enhanced Immunogenicity in Anti-Nicotine Vaccines Based on a Novel Conjugation Method and MPL/QS-21 Adjuvants
by Ying Xu, Huiting Li, Xiongyan Meng, Jing Yang, Yannan Xue, Changcai Teng, Wenxin Lv, Zhen Wang, Xiaodan Li, Tiantian Sun, Shuai Meng and Chengli Zong
Polymers 2024, 16(7), 931; https://doi.org/10.3390/polym16070931 - 28 Mar 2024
Cited by 2 | Viewed by 2080
Abstract
Vaccines typically work by eliciting an immune response against larger antigens like polysaccharides or proteins. Small molecules like nicotine, on their own, usually cannot elicit a strong immune response. To overcome this, anti-nicotine vaccines often conjugate nicotine molecules to a carrier protein by [...] Read more.
Vaccines typically work by eliciting an immune response against larger antigens like polysaccharides or proteins. Small molecules like nicotine, on their own, usually cannot elicit a strong immune response. To overcome this, anti-nicotine vaccines often conjugate nicotine molecules to a carrier protein by carbodiimide crosslinking chemistry to make them polymeric and more immunogenic. The reaction is sensitive to conditions such as pH, temperature, and the concentration of reactants. Scaling up the reaction from laboratory to industrial scales while maintaining consistency and yield can be challenging. Despite various approaches, no licensed anti-nicotine vaccine has been approved so far due to the susboptimal antibody titers. Here, we report a novel approach to conjugate maleimide-modified nicotine hapten with a disulfide bond-reduced carrier protein in an organic solvent. It has two advantages compared with other approaches: (1) The protein was unfolded to make the peptide conformation more flexible and expose more conjugation sites; (2) thiol–maleimide “click” chemistry was utilized to conjugate the disulfide bond-reduced protein and maleimide-modified nicotine due to its availability, fast kinetics, and bio-orthogonality. Various nicotine conjugate vaccines were prepared via this strategy, and their immunology effects were investigated by using MPL and QS-21 as adjuvants. The in vivo study in mice showed that the nicotine–BSA conjugate vaccines induced high anti-nicotine IgG antibody titers, compared with vaccines prepared by using traditional condensation methods, indicating the success of the current strategy for further anti-nicotine or other small-molecule vaccine studies. The enhancement was more significant by using MPL and QS-21 than that of traditional aluminum adjuvants. Full article
(This article belongs to the Special Issue Advanced Pharmaceutical Polymers)
Show Figures

Figure 1

15 pages, 5560 KiB  
Review
Bioorthogonal “Click” Cycloadditions: A Toolkit for Modulating Polymers and Nanostructures in Living Systems
by Irene Lepori, Yavuz Oz, Jungkyun Im, Nandan Ghosh, Mohuya Paul, Ulrich S. Schubert and Stefano Fedeli
Reactions 2024, 5(1), 231-245; https://doi.org/10.3390/reactions5010010 - 4 Mar 2024
Cited by 5 | Viewed by 3177
Abstract
“Click” cycloadditions offer effective pathways for the modifications of supramolecular structures, polymers, and nanomaterials. These reactions include bioorthogonal mechanisms that do not interfere with the biological processes, providing a type of chemistry to operate directly in living environments, such as cells and animals. [...] Read more.
“Click” cycloadditions offer effective pathways for the modifications of supramolecular structures, polymers, and nanomaterials. These reactions include bioorthogonal mechanisms that do not interfere with the biological processes, providing a type of chemistry to operate directly in living environments, such as cells and animals. As a result, the “click” cycloadditions represent highly and selective tools for tailoring the properties of nanomedicine scaffolds, expanding the efficacy of multiple therapeutic strategies. We focused this minireview on the bioorthogonal cycloadditions, presenting an insight into the strategies to modify nanostructured biomedical scaffolds inside living systems. We organized the contributions according to the three main mechanisms of “click” cycloadditions: strain-promoted sydnone-alkyne, tetrazine ligation, and strain-promoted [3+2] azido-alkyne. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Figure 1

12 pages, 2106 KiB  
Article
Copper-Catalyzed Azide–Alkyne Cycloaddition-Oriented Multifunctional Bio-Orthogonal Linker BPPA: Design, Synthesis and Evaluation
by Shuo Wang, Xu He, Junchen Li and Enxue Shi
Molecules 2023, 28(24), 8083; https://doi.org/10.3390/molecules28248083 - 14 Dec 2023
Viewed by 1544
Abstract
The multifunctional linker molecules are crucial for the bio-orthogonal reaction for proteomic target profiling. Herein, we wish to present a novel type of biotin-based tetra-functional bio-orthogonal linkers 3a–3h named BPPA which, possessing a unique photolabile phenacyl ester motif, were readily prepared in 85–90% [...] Read more.
The multifunctional linker molecules are crucial for the bio-orthogonal reaction for proteomic target profiling. Herein, we wish to present a novel type of biotin-based tetra-functional bio-orthogonal linkers 3a–3h named BPPA which, possessing a unique photolabile phenacyl ester motif, were readily prepared in 85–90% yields by a simple and green one-step protocol from commercially available and inexpensive reagents of biotin acids and 4’-ethynyl/azido 2-bromoacetophenones. The typical click reaction of BPPA linkers 3a and 3e via copper-catalyzed azide–alkyne cycloaddition (CuAAC) took place easily, resulting in the corresponding BPPA-triazole adducts 4a and 4b in nearly quantitative yields. A further cleavability evaluation of 4a and 4b demonstrated that the expected C-O bond detachment could be accomplished efficiently and rapidly by UV irradiation or by ammonia hydrolysis, respectively, resulting in the residual (hydroxyl)acetylphenyl triazole fragment supposed to be attached to proteins during biological manipulations. The BPPA linkers, with dual clickable options of either the terminal azide or alkyne clickable group, exhibit high potentials for various CuAAC-oriented bio-orthogonal reactions. Full article
Show Figures

Figure 1

52 pages, 23202 KiB  
Review
Non-Canonical Amino Acids in Analyses of Protease Structure and Function
by Peter Goettig, Nikolaj G. Koch and Nediljko Budisa
Int. J. Mol. Sci. 2023, 24(18), 14035; https://doi.org/10.3390/ijms241814035 - 13 Sep 2023
Cited by 20 | Viewed by 6753
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal [...] Read more.
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage. Full article
(This article belongs to the Special Issue Biocatalysis: Mechanisms of Proteolytic Enzymes 2.0)
Show Figures

Figure 1

10 pages, 1876 KiB  
Review
A Short Review of Research Progress on the Synthesis Approaches of Aza-Dibenzocyclooctyne Derivatives
by Yinming He, Li Liu and Liang Cheng
Molecules 2023, 28(9), 3715; https://doi.org/10.3390/molecules28093715 - 25 Apr 2023
Cited by 4 | Viewed by 3508
Abstract
Cyclooctyne molecules have found wide applications in the strain-promoted azide–alkyne cycloaddition (SPAAC) reactions, which avoid the biotoxicity caused by the use of Cu(I) catalysts. Among the various cyclooctyne systems, dibenzocyclooctyne (DBCO) series have displayed the highest reaction activity. However, the synthesis processes of [...] Read more.
Cyclooctyne molecules have found wide applications in the strain-promoted azide–alkyne cycloaddition (SPAAC) reactions, which avoid the biotoxicity caused by the use of Cu(I) catalysts. Among the various cyclooctyne systems, dibenzocyclooctyne (DBCO) series have displayed the highest reaction activity. However, the synthesis processes of such structures are time-consuming, which to some extent limit their large-scale development and application. This review has summarized current synthesis routes of two DBCO molecules, aza-dibenzocyclooctyne (DIBAC) and biarylazacyclooctynone (BARAC). Full article
(This article belongs to the Special Issue Bio-Orthogonal Chemistry in Bioimaging)
Show Figures

Figure 1

16 pages, 3395 KiB  
Article
One-Pot Synthesis of Double-Network PEG/Collagen Hydrogel for Enhanced Adipogenic Differentiation and Retrieval of Adipose-Derived Stem Cells
by Hwajung Lee, Hye Jin Hong, Sujeong Ahn, Dohyun Kim, Shin Hyuk Kang, Kanghee Cho and Won-Gun Koh
Polymers 2023, 15(7), 1777; https://doi.org/10.3390/polym15071777 - 3 Apr 2023
Cited by 8 | Viewed by 3989
Abstract
Hydrogels are widely used in stem cell therapy due to their extensive tunability and resemblance to the extracellular matrix (ECM), which has a three-dimensional (3D) structure. These features enable various applications that enhance stem cell maintenance and function. However, fast and simple hydrogel [...] Read more.
Hydrogels are widely used in stem cell therapy due to their extensive tunability and resemblance to the extracellular matrix (ECM), which has a three-dimensional (3D) structure. These features enable various applications that enhance stem cell maintenance and function. However, fast and simple hydrogel fabrication methods are desirable for stem cells for efficient encapsulation and to reduce adverse effects on the cells. In this study, we present a one-pot double-crosslinked hydrogel consisting of polyethylene glycol (PEG) and collagen, which can be prepared without the multi-step sequential synthesis of each network, by using bio-orthogonal chemistry. To enhance the adipogenic differentiation efficiency of adipose-derived stem cells (ADSCs), we added degradable components within the hydrogel to regulate matrix stiffness through cell-mediated degradation. Bio-orthogonal reactions used for hydrogel gelation allow rapid gel formation for efficient cell encapsulation without toxic by-products. Furthermore, the hybrid network of synthetic (PEG) and natural (collagen) components demonstrated adequate mechanical strength and higher cell adhesiveness. Therefore, ADSCs grown within this hybrid hydrogel proliferated and functioned better than those grown in the single-crosslinked hydrogel. The degradable elements further improved adipogenesis in ADSCs with dynamic changes in modulus during culture and enabled the retrieval of differentiated cells for potential future applications. Full article
(This article belongs to the Special Issue Advances in Bio-Based Polymeric Materials II)
Show Figures

Graphical abstract

30 pages, 4474 KiB  
Article
Thiol-Ene Photo-Click Hydrogels with Tunable Mechanical Properties Resulting from the Exposure of Different -Ene Moieties through a Green Chemistry
by Rossella Laurano, Monica Boffito, Claudio Cassino, Ludovica Midei, Roberta Pappalardo, Valeria Chiono and Gianluca Ciardelli
Materials 2023, 16(5), 2024; https://doi.org/10.3390/ma16052024 - 28 Feb 2023
Cited by 9 | Viewed by 4314
Abstract
Temperature and light responsiveness are widely exploited stimuli to tune the physico-chemical properties of double network hydrogels. In this work, new amphiphilic poly(ether urethane)s bearing photo-sensitive moieties (i.e., thiol, acrylate and norbornene functionalities) were engineered by exploiting the versatility of poly(urethane) chemistry and [...] Read more.
Temperature and light responsiveness are widely exploited stimuli to tune the physico-chemical properties of double network hydrogels. In this work, new amphiphilic poly(ether urethane)s bearing photo-sensitive moieties (i.e., thiol, acrylate and norbornene functionalities) were engineered by exploiting the versatility of poly(urethane) chemistry and carbodiimide-mediated green functionalization procedures. Polymers were synthesized according to optimized protocols maximizing photo-sensitive group grafting while preserving their functionality (approx. 1.0 × 1019, 2.6 × 1019 and 8.1 × 1017 thiol, acrylate and norbornene groups/gpolymer), and exploited to prepare thermo- and Vis-light-responsive thiol-ene photo-click hydrogels (18% w/v, 1:1 thiol:ene molar ratio). Green light-induced photo-curing allowed the achievement of a much more developed gel state with improved resistance to deformation (ca. 60% increase in critical deformation, γL). Triethanolamine addition as co-initiator to thiol-acrylate hydrogels improved the photo-click reaction (i.e., achievement of a better-developed gel state). Differently, L-tyrosine addition to thiol-norbornene solutions slightly hindered cross-linking, resulting in less developed gels with worse mechanical performances (~62% γL decrease). In their optimized composition, thiol-norbornene formulations resulted in prevalent elastic behavior at lower frequency compared to thiol-acrylate gels due to the formation of purely bio-orthogonal instead of heterogeneous gel networks. Our findings highlight that exploiting the same thiol-ene photo-click chemistry, a fine tuning of the gel properties is possible by reacting specific functional groups. Full article
(This article belongs to the Special Issue Polymeric Scaffold Materials for Tissue Engineering)
Show Figures

Figure 1

18 pages, 6001 KiB  
Article
“Click-to-Clear”: A Strategy to Minimize Radioactivity from the Blood Pool Utilizing Staudinger Ligation
by Nisarg Soni, Swarbhanu Sarkar, Abhinav Bhise, Yeong Su Ha, Wonchoul Park, A-Ram Yu, Virendra Kumar, Jeong Eun Lim, Young-Ran Yoon and Jeongsoo Yoo
Pharmaceutics 2023, 15(3), 719; https://doi.org/10.3390/pharmaceutics15030719 - 21 Feb 2023
Cited by 5 | Viewed by 3183
Abstract
The availability of several bioorthogonal reactions that can proceed selectively and efficiently under physiologically relevant conditions has garnered the interest of biochemists and organic chemists alike. Bioorthogonal cleavage reactions represent the latest innovation in click chemistry. Here, we employed the Staudinger ligation reaction [...] Read more.
The availability of several bioorthogonal reactions that can proceed selectively and efficiently under physiologically relevant conditions has garnered the interest of biochemists and organic chemists alike. Bioorthogonal cleavage reactions represent the latest innovation in click chemistry. Here, we employed the Staudinger ligation reaction to release radioactivity from immunoconjugates, improving target-to-background ratios. In this proof-of-concept study, model systems, including the anti-HER2 antibody trastuzumab, radioisotope I-131, and a newly synthesized bifunctional phosphine, were used. Staudinger ligation occurred when biocompatible N-glycosyl azides reacted with this radiolabeled immunoconjugate, leading to cleavage of the radioactive label from the molecule. We demonstrated this click cleavage in vitro and in vivo. Biodistribution studies in tumor models showed that radioactivity was eliminated from the bloodstream, thereby improving tumor-to-blood ratios. SPECT imaging revealed that tumors could be visualized with enhanced clarity. Our simple approach represents a novel application of bioorthogonal click chemistry in the development of antibody-based theranostics. Full article
Show Figures

Graphical abstract

12 pages, 1377 KiB  
Review
Recent Advances in Hydrogels via Diels–Alder Crosslinking: Design and Applications
by Sofia M. Morozova
Gels 2023, 9(2), 102; https://doi.org/10.3390/gels9020102 - 24 Jan 2023
Cited by 41 | Viewed by 5006
Abstract
The Diels–Alder (DA) reaction is a promising tool for obtaining covalently crosslinked hydrogels due to its reaction bioorthogonality, the absence of by-products, and the application of mild conditions without a catalyst. The resulting hydrogels are in demand for use in various fields of [...] Read more.
The Diels–Alder (DA) reaction is a promising tool for obtaining covalently crosslinked hydrogels due to its reaction bioorthogonality, the absence of by-products, and the application of mild conditions without a catalyst. The resulting hydrogels are in demand for use in various fields of materials science and biomedicine. While the dynamic nature of the cycloaddition of diene and dienophile has previously been used extensively for the fabrication of self-healing materials, it has only recently spread to the expansion of the functional properties of polymer gels for bioapplications. This review describes strategies and recent examples of obtaining hydrogels based on the DA reaction, demonstrating that the emerging functional properties go beyond self-healing. The types of classifications of hydrogels are listed, depending on the type of reaction and the nature of the components. Examples of obtaining hydrogels based on the normal and inverse electron-demand DA reaction, as well as the application of hydrogels for cell culture, drug delivery, injectable gels, and wound dressings, are considered. In conclusion, possible developmental directions are discussed, including the use of diene–dienophile pairs with a low temperature for the reversal of DA reaction, the modification of nanoparticles by diene and/or dienophile fragments, and new applications such as ink for 3D printing, sensing hydrogels, etc. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Gels)
Show Figures

Figure 1

19 pages, 4773 KiB  
Article
Antibody-Based In Vivo Imaging of Central Nervous System Targets—Evaluation of a Pretargeting Approach Utilizing a TCO-Conjugated Brain Shuttle Antibody and Radiolabeled Tetrazines
by Christoph Bredack, Martin R. Edelmann, Edilio Borroni, Luca C. Gobbi and Michael Honer
Pharmaceuticals 2022, 15(12), 1445; https://doi.org/10.3390/ph15121445 - 22 Nov 2022
Cited by 10 | Viewed by 3324
Abstract
Bioorthogonal pretargeted imaging using the inverse-electron-demand Diels–Alder (IEDDA) reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO) represents an attractive strategy for molecular imaging via antibodies. The advantages of using a pretargeted imaging approach are on the one hand the possibility to [...] Read more.
Bioorthogonal pretargeted imaging using the inverse-electron-demand Diels–Alder (IEDDA) reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO) represents an attractive strategy for molecular imaging via antibodies. The advantages of using a pretargeted imaging approach are on the one hand the possibility to achieve a high signal-to-noise ratio and imaging contrast; on the other hand, the method allows the uncoupling of the biological half-life of antibodies from the physical half-life of short-lived radionuclides. A brain-penetrating antibody (mAb) specific for β-amyloid (Aβ) plaques was functionalized with TCO moieties for pretargeted labeling of Aβ plaques in vitro, ex vivo, and in vivo by a tritium-labeled Tz. The overall aim was to explore the applicability of mAbs for brain imaging, using a preclinical model system. In vitro clicked mAb–TCO–Tz was able to pass the blood–brain barrier of transgenic PS2APP mice and specifically visualize Aβ plaques ex vivo. Further experiments showed that click reactivity of the mAb–TCO construct in vivo persisted up to 3 days after injection by labeling Aβ plaques ex vivo after incubation of brain sections with the Tz in vitro. An attempted in vivo click reaction between injected mAb–TCO and Tz did not lead to significant labeling of Aβ plaques, most probably due to unfavorable in vivo properties of the used Tz and a long half-life of the mAb–TCO in the blood stream. This study clearly demonstrates that pretargeted imaging of CNS targets via antibody-based click chemistry is a viable approach. Further experiments are warranted to optimize the balance between stability and reactivity of all reactants, particularly the Tz. Full article
Show Figures

Graphical abstract

16 pages, 4985 KiB  
Article
Fast Absorbent and Highly Bioorthogonal Hydrogels Developed by IEDDA Click Reaction for Drug Delivery Application
by Soo-Bin Joo, Muhammad Gulfam, Sung-Han Jo, Yi-Jun Jo, Trung Thang Vu, Sang-Hyug Park, Yeong-Soon Gal and Kwon Taek Lim
Materials 2022, 15(20), 7128; https://doi.org/10.3390/ma15207128 - 13 Oct 2022
Cited by 8 | Viewed by 3448
Abstract
In this work, we engineered highly biocompatible and fast absorbent injectable hydrogels derived from norbornene (Nb)-functionalized hyaluronic acid (HA-Nb) and a water-soluble cross-linker possessing tetrazine (Tz) functional groups on both ends of polyethylene glycol (PEG-DTz). The by-product (nitrogen gas) of the inverse electron [...] Read more.
In this work, we engineered highly biocompatible and fast absorbent injectable hydrogels derived from norbornene (Nb)-functionalized hyaluronic acid (HA-Nb) and a water-soluble cross-linker possessing tetrazine (Tz) functional groups on both ends of polyethylene glycol (PEG-DTz). The by-product (nitrogen gas) of the inverse electron demand Diels–Alder (IEDDA) cross-linking reaction carved porosity in the resulting hydrogels. By varying the molar ratio of HA-Nb and PEG-DTz (Nb:Tz = 10:10, 10:5, 10:2.5), we were able to formulate hydrogels with tunable porosity, gelation time, mechanical strength, and swelling ratios. The hydrogels formed quickly (gelation time < 100 s), offering a possibility to use them as an injectable drug delivery system. The experimental data showed rapid swelling and a high swelling ratio thanks to the existence of PEG chains and highly porous architectures of the hydrogels. The hydrogels were able to encapsulate a high amount of curcumin (~99%) and released the encapsulated curcumin in a temporal pattern. The PEG-DTz cross-linker, HA-Nb, and the resulting hydrogels showed no cytotoxicity in HEK-293 cells. These fast absorbent hydrogels with excellent biocompatibility fabricated from HA-Nb and the IEDDA click-able cross-linker could be promising drug carriers for injectable drug delivery applications. Full article
(This article belongs to the Special Issue Preparation, Properties and Applications of Functional Polymers)
Show Figures

Figure 1

14 pages, 1702 KiB  
Article
Mesenchymal Stem Cell-Mediated Deep Tumor Delivery of Gold Nanorod for Photothermal Therapy
by Wan Su Yun, Man Kyu Shim, Seungho Lim, Sukyung Song, Jinseong Kim, Suah Yang, Hee Sook Hwang, Mi Ra Kim, Hong Yeol Yoon, Dong-Kwon Lim, In-Cheol Sun and Kwangmeyung Kim
Nanomaterials 2022, 12(19), 3410; https://doi.org/10.3390/nano12193410 - 28 Sep 2022
Cited by 8 | Viewed by 3089
Abstract
Gold nanoparticles (AuNPs) with various sizes and morphologies have been extensively investigated for effective photothermal therapy (PTT) against multiple cancer types. However, a highly dynamic and complex tumor microenvironment (TME) considerably reduces the efficacy of PTT by limiting deep tumor penetration of AuNPs. [...] Read more.
Gold nanoparticles (AuNPs) with various sizes and morphologies have been extensively investigated for effective photothermal therapy (PTT) against multiple cancer types. However, a highly dynamic and complex tumor microenvironment (TME) considerably reduces the efficacy of PTT by limiting deep tumor penetration of AuNPs. Herein, we propose a mesenchymal stem cell (MSC)-mediated deep tumor delivery of gold nanorod (AuNR) for a potent PTT. First, MSCs are treated with tetraacylated N-azidomannosamine (Ac4ManNAz) to introduce modifiable azide (N3) groups on the cell surface via metabolic glycoengineering. Then, AuNRs modified with bio-orthogonal click molecules of bicyclo[6.1.0]nonyne (AuNR@BCN) are chemically conjugated to the N3 groups on the MSC surface by copper-free click chemistry reaction, resulting in AuNR@MSCs. In cultured MSCs, the appropriate condition to incorporate the AuNR into the MSCs is optimized; in addition, the photothermal efficiency of AuNR-MSCs under light irradiation are assessed, showing efficient heat generation in vitro. In colon tumor-bearing mice, intravenously injected AuNR@MSCs efficiently accumulate within the tumor tissues by allowing deep tissue penetration owing to the tumor homing effect by natural tumor tropism of AuNR@MSCs. Upon localized light irradiation, the AuNR@MSCs significantly inhibit colon tumor growth by the enhanced photothermal effect compared to conventional AuNRs. Collectively, this study shows a promising approach of MSCs-mediated deep tumor delivery of AuNR for effective PTT. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles)
Show Figures

Figure 1

15 pages, 3948 KiB  
Article
Pretargeted Imaging beyond the Blood–Brain Barrier—Utopia or Feasible?
by Sara Lopes van den Broek, Vladimir Shalgunov, Rocío García Vázquez, Natalie Beschorner, Natasha S. R. Bidesi, Maiken Nedergaard, Gitte M. Knudsen, Dag Sehlin, Stina Syvänen and Matthias M. Herth
Pharmaceuticals 2022, 15(10), 1191; https://doi.org/10.3390/ph15101191 - 27 Sep 2022
Cited by 13 | Viewed by 3145
Abstract
Pretargeting is a promising nuclear imaging technique that allows for the usage of antibodies (Abs) with enhanced imaging contrast and reduced patient radiation burden. It is based on bioorthogonal chemistry with the tetrazine ligation—a reaction between trans-cyclooctenes (TCOs) and tetrazines (Tzs)—currently being [...] Read more.
Pretargeting is a promising nuclear imaging technique that allows for the usage of antibodies (Abs) with enhanced imaging contrast and reduced patient radiation burden. It is based on bioorthogonal chemistry with the tetrazine ligation—a reaction between trans-cyclooctenes (TCOs) and tetrazines (Tzs)—currently being the most popular reaction due to its high selectivity and reactivity. As Abs can be designed to bind specifically to currently ‘undruggable’ targets such as protein isoforms or oligomers, which play a crucial role in neurodegenerative diseases, pretargeted imaging beyond the BBB is highly sought after, but has not been achieved yet. A challenge in this respect is that large molecules such as Abs show poor brain uptake. Uptake can be increased by receptor mediated transcytosis; however, it is largely unknown if the achieved brain concentrations are sufficient for pretargeted imaging. In this study, we investigated whether the required concentrations are feasible to reach. As a model Ab, we used the bispecific anti-amyloid beta (Aβ) anti-transferrin receptor (TfR) Ab 3D6scFv8D3 and conjugated it to a different amount of TCOs per Ab and tested different concentrations in vitro. With this model in hand, we estimated the minimum required TCO concentration to achieve a suitable contrast between the high and low binding regions. The estimation was carried out using pretargeted autoradiography on brain sections of an Alzheimer’s disease mouse model. Biodistribution studies in wild-type (WT) mice were used to correlate how different TCO/Ab ratios alter the brain uptake. Pretargeted autoradiography showed that increasing the number of TCOs as well as increasing the TCO-Ab concentration increased the imaging contrast. A minimum brain concentration of TCOs for pretargeting purposes was determined to be 10.7 pmol/g in vitro. Biodistribution studies in WT mice showed a brain uptake of 1.1% ID/g using TCO-3D6scFv8D3 with 6.8 TCO/Ab. According to our estimations using the optimal parameters, pretargeted imaging beyond the BBB is not a utopia. Necessary brain TCO concentrations can be reached and are in the same order of magnitude as required to achieve sufficient contrast. This work gives a first estimate that pretargeted imaging is indeed possible with antibodies. This could allow the imaging of currently ‘undruggable’ targets and therefore be crucial to monitor (e.g., therapies for intractable neurodegenerative diseases). Full article
(This article belongs to the Special Issue Click Reactions in Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop