Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = biomimetic magnetite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7065 KiB  
Article
Sustainable Synthesis of a Carbon-Supported Magnetite Nanocomposite Anode Material for Lithium-Ion Batteries
by Hui Zeng, Jiahui Li, Haoyu Yin, Ruixin Jia, Longbiao Yu, Hongliang Li and Binghui Xu
Batteries 2024, 10(10), 357; https://doi.org/10.3390/batteries10100357 - 11 Oct 2024
Cited by 1 | Viewed by 1791
Abstract
Transition metal oxide magnetite (Fe3O4) is recognized as a potential anode material for lithium-ion batteries owing to its high theoretical specific capacity, modest voltage output, and eco-friendly character. It is a challenging task to engineer high-performance composite materials by [...] Read more.
Transition metal oxide magnetite (Fe3O4) is recognized as a potential anode material for lithium-ion batteries owing to its high theoretical specific capacity, modest voltage output, and eco-friendly character. It is a challenging task to engineer high-performance composite materials by effectively dispersing Fe3O4 crystals with limited sizes in a well-designed supporting framework following sustainable approaches. In this work, the naturally abundant plant products sodium lignosulfonate (Lig) and sodium cellulose (CMC) were selected to coprecipitate with Fe3+ ions under mild hydrothermal conditions. The Fe-Lig/CMC intermediate sediment with an optimized microstructure can be directly converted to the Lig/CMC-derived carbon matrix-supported Fe3O4 nanocomposite sample (Fe3O4@LigC/CC). Compared with the controlled Fe3O4@LigC material, the Fe3O4@LigC/CC nanocomposite provides superior electrochemical performance in the anode, which has inspiring specific capacities of 820.6 mAh g−1 after 100 cycles under a current rate of 100 mA·g−1 and 750.5 mAh g−1 after 250 cycles, as well as more exciting rate capabilities. The biomimetic sample design and synthesis protocol closely follow the criteria of green chemistry and can be further developed in wider scenarios. Full article
Show Figures

Figure 1

16 pages, 3430 KiB  
Review
Tooth Diversity Underpins Future Biomimetic Replications
by Di Wang, Shuangxia Han and Ming Yang
Biomimetics 2023, 8(1), 42; https://doi.org/10.3390/biomimetics8010042 - 18 Jan 2023
Cited by 8 | Viewed by 3881
Abstract
Although the evolution of tooth structure seems highly conserved, remarkable diversity exists among species due to different living environments and survival requirements. Along with the conservation, this diversity of evolution allows for the optimized structures and functions of teeth under various service conditions, [...] Read more.
Although the evolution of tooth structure seems highly conserved, remarkable diversity exists among species due to different living environments and survival requirements. Along with the conservation, this diversity of evolution allows for the optimized structures and functions of teeth under various service conditions, providing valuable resources for the rational design of biomimetic materials. In this review, we survey the current knowledge about teeth from representative mammals and aquatic animals, including human teeth, herbivore and carnivore teeth, shark teeth, calcite teeth in sea urchins, magnetite teeth in chitons, and transparent teeth in dragonfish, to name a few. The highlight of tooth diversity in terms of compositions, structures, properties, and functions may stimulate further efforts in the synthesis of tooth-inspired materials with enhanced mechanical performance and broader property sets. The state-of-the-art syntheses of enamel mimetics and their properties are briefly covered. We envision that future development in this field will need to take the advantage of both conservation and diversity of teeth. Our own view on the opportunities and key challenges in this pathway is presented with a focus on the hierarchical and gradient structures, multifunctional design, and precise and scalable synthesis. Full article
Show Figures

Graphical abstract

14 pages, 10525 KiB  
Article
Fluorescent Magnetic Nanoparticles for Bioimaging through Biomimetic Surface Modification
by Andrey S. Drozdov, Kristina S. Komarova, Elizaveta N. Mochalova, Elena N. Komedchikova, Victoria O. Shipunova and Maxim P. Nikitin
Int. J. Mol. Sci. 2023, 24(1), 134; https://doi.org/10.3390/ijms24010134 - 21 Dec 2022
Cited by 14 | Viewed by 2982
Abstract
Nanostructured materials and systems find various applications in biomedical fields. Hybrid organo–inorganic nanomaterials are intensively studied in a wide range of areas, from visualization to drug delivery or tissue engineering. One of the recent trends in material science is biomimetic approaches toward the [...] Read more.
Nanostructured materials and systems find various applications in biomedical fields. Hybrid organo–inorganic nanomaterials are intensively studied in a wide range of areas, from visualization to drug delivery or tissue engineering. One of the recent trends in material science is biomimetic approaches toward the synthesis or modification of functional nanosystems. Here, we describe an approach toward multifunctional nanomaterials through the biomimetic polymerization of dopamine derivatives. Magnetite nanoparticles were modified with a combination of dopamine conjugates to give multifunctional magneto-fluorescent nanocomposites in one synthetic step. The obtained material showed excellent biocompatibility at concentrations up to 200 μg/mL and an in vivo biodistribution profile typical for nanosized formulations. The synthesized systems were conjugated with antibodies against HER2 to improve their selectivity toward HER2-positive cancer cells. The produced material can be used for dual magneto-optical in vivo studies or targeted drug delivery. The applied synthetic strategy can be used for the creation of various multifunctional hybrid nanomaterials in mild conditions. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles for Biomedical and Imaging Applications)
Show Figures

Figure 1

16 pages, 2120 KiB  
Article
A Novel Synthesis of a Magnetic Porous Imprinted Polymer by Polyol Method Coupled with Electrochemical Biomimetic Sensor for the Detection of Folate in Food Samples
by Sabir Khan, Ademar Wong, Michael Rychlik and María del Pilar Taboada Sotomayor
Chemosensors 2022, 10(11), 473; https://doi.org/10.3390/chemosensors10110473 - 11 Nov 2022
Cited by 20 | Viewed by 2643
Abstract
The present study reports the development and application of a novel, sensitive, and selective voltammetric sensor for the quantitation of folate or vitamin B9 in foodstuffs. The sensor was made from magnetic molecularly imprinted polymers (MMIPs), which were synthesized by the core–shell [...] Read more.
The present study reports the development and application of a novel, sensitive, and selective voltammetric sensor for the quantitation of folate or vitamin B9 in foodstuffs. The sensor was made from magnetic molecularly imprinted polymers (MMIPs), which were synthesized by the core–shell method using magnetite nanoparticles obtained by the polyol method. The MMIP-based sensor was used for the selective and specific detection of folate in different food samples. The MMIP material was constructed using magnetic water-dispersible nanomaterial, which was prepared by immersing iron (III) acetylacetonate in tri-ethylene-glycol (TEG) solvent. The magnetic water-dispersible nanomaterial was then subjected to polymerization using allyl alcohol as a functional monomer, ethylene-glycol-dimethacrylate (EGDMA) as a cross-linking agent, and 2,2-Azobisisobutyronitrile (AIBN) as a radical initiator. The proposed magnetic materials were characterized by Brunauer–Emmett–Teller (BET), field emission gun scanning electron microscopy (FEG-SEM), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analysis. The quantification of folate was performed by square wave voltammetry under optimized conditions using 15 mg of MMIPs and 85 mg of carbon paste. The modified electrode presented a linear dynamic range (LDR) of 2.0–12 µmol L−1 and a limit of detection (LOD) of 1.0 × 10−7 mol L−1 in 0.1 mol L−1 acetate buffer solution (pH 4.0). The proposed sensor was successfully applied for folate detection in different food samples, where recovery percentages ranging from 93 to 103% were obtained. Finally, the results obtained from the analysis of selectivity showed that the modified biomimetic sensor is highly efficient for folate determination in real food samples. Adsorption tests were used to evaluate and compare the efficiency of the MMIPs and magnetic non-molecularly imprinted polymer (MNIPs)—used as control material, through the application of HPLC as a standard method. Full article
(This article belongs to the Special Issue Molecularly Imprinted Plasmonic Sensor)
Show Figures

Figure 1

15 pages, 3863 KiB  
Article
Enhanced Magnetic Hyperthermia of Magnetoferritin through Synthesis at Elevated Temperature
by Jiacheng Yu, Changqian Cao, Fengjiao Fang and Yongxin Pan
Int. J. Mol. Sci. 2022, 23(7), 4012; https://doi.org/10.3390/ijms23074012 - 4 Apr 2022
Cited by 9 | Viewed by 2697
Abstract
Iron oxide nanoparticles have attracted a great deal of research interest in recent years for magnetic hyperthermia therapy owing to their biocompatibility and superior thermal conversion efficiency. Magnetoferritin is a type of biomimetic superparamagnetic iron oxide nanoparticle in a ferritin cage with good [...] Read more.
Iron oxide nanoparticles have attracted a great deal of research interest in recent years for magnetic hyperthermia therapy owing to their biocompatibility and superior thermal conversion efficiency. Magnetoferritin is a type of biomimetic superparamagnetic iron oxide nanoparticle in a ferritin cage with good monodispersity, biocompatibility, and natural hydrophilicity. However, the magnetic hyperthermic efficiency of this kind of nanoparticle is limited by the small size of the mineral core as well as its low synthesis temperature. Here, we synthesized a novel magnetoferritin particle by using a recombinant ferritin from the hyperthermophilic archaeon Pyrococcus furiosus as a template with high iron atom loading of 9517 under a designated temperature of 90 °C. Compared with the magnetoferritins synthesized at 45 and 65 °C, the one synthesized at 90 °C displays a larger average magnetite and/or maghemite core size of 10.3 nm. This yields an increased saturation magnetization of up to 49.6 emu g−1 and an enhanced specific absorption rate (SAR) of 805.3 W g−1 in an alternating magnetic field of 485.7 kHz and 49 kA m−1. The maximum intrinsic loss power (ILP) value is 1.36 nHm2 kg−1. These results provide new insights into the biomimetic synthesis of magnetoferritins with enhanced hyperthermic efficiency and demonstrate the potential application of magnetoferritin in the magnetic hyperthermia of tumors. Full article
(This article belongs to the Special Issue Thermophilic and Hyperthermophilic Microbes and Enzymes 2.0)
Show Figures

Figure 1

12 pages, 2502 KiB  
Article
Synergistic Photothermal-Chemotherapy Based on the Use of Biomimetic Magnetic Nanoparticles
by Ylenia Jabalera, Alberto Sola-Leyva, María P. Carrasco-Jiménez, Guillermo R. Iglesias and Concepcion Jimenez-Lopez
Pharmaceutics 2021, 13(5), 625; https://doi.org/10.3390/pharmaceutics13050625 - 28 Apr 2021
Cited by 19 | Viewed by 3156
Abstract
MamC-mediated biomimetic magnetic nanoparticles (BMNPs) have emerged as one of the most promising nanomaterials due to their magnetic features (superparamagnetic character and large magnetic moment per particle), their novel surface properties determined by MamC, their biocompatibility and their ability as magnetic hyperthermia agents. [...] Read more.
MamC-mediated biomimetic magnetic nanoparticles (BMNPs) have emerged as one of the most promising nanomaterials due to their magnetic features (superparamagnetic character and large magnetic moment per particle), their novel surface properties determined by MamC, their biocompatibility and their ability as magnetic hyperthermia agents. However, the current clinical application of magnetic hyperthermia is limited due to the fact that, in order to be able to reach an effective temperature at the target site, relatively high nanoparticle concentration, as well as high magnetic field strength and/or AC frequency are needed. In the present study, the potential of BMNPs to increase the temperature upon irradiation of a laser beam in the near infrared, at a wavelength at which tissues become partially transparent, is explored. Moreover, our results also demonstrate the synergy between photothermia and chemotherapy in terms of drug release and cytotoxicity, by using BMNPs functionalized with doxorubicin, and the effectiveness of this combination therapy against tumor cells in in vitro experiments. Therefore, the findings of the present study open the possibility of a novel, alternative approach to fight localized tumors. Full article
(This article belongs to the Special Issue Polymer Therapeutics: From Synthesis to Biomedical Applications)
Show Figures

Graphical abstract

19 pages, 4992 KiB  
Article
Magnetosomes and Magnetosome Mimics: Preparation, Cancer Cell Uptake and Functionalization for Future Cancer Therapies
by Zainab Taher, Christopher Legge, Natalie Winder, Pawel Lysyganicz, Andrea Rawlings, Helen Bryant, Munitta Muthana and Sarah Staniland
Pharmaceutics 2021, 13(3), 367; https://doi.org/10.3390/pharmaceutics13030367 - 10 Mar 2021
Cited by 12 | Viewed by 3485
Abstract
Magnetic magnetite nanoparticles (MNP) are heralded as model vehicles for nanomedicine, particularly cancer therapeutics. However, there are many methods of synthesizing different sized and coated MNP, which may affect their performance as nanomedicines. Magnetosomes are naturally occurring, lipid-coated MNP that exhibit exceptional hyperthermic [...] Read more.
Magnetic magnetite nanoparticles (MNP) are heralded as model vehicles for nanomedicine, particularly cancer therapeutics. However, there are many methods of synthesizing different sized and coated MNP, which may affect their performance as nanomedicines. Magnetosomes are naturally occurring, lipid-coated MNP that exhibit exceptional hyperthermic heating, but their properties, cancer cell uptake and toxicity have yet to be compared to other MNP. Magnetosomes can be mimicked by coating MNP in either amphiphilic oleic acid or silica. In this study, magnetosomes are directly compared to control MNP, biomimetic oleic acid and silica coated MNP of varying sizes. MNP are characterized and compared with respect to size, magnetism, and surface properties. Small (8 ± 1.6 nm) and larger (32 ± 9.9 nm) MNP are produced by two different methods and coated with either silica or oleic acid, increasing the size and the size dispersity of the MNP. The coated larger MNP are comparable in size (49 ± 12.5 nm and 61 ± 18.2 nm) to magnetosomes (46 ± 11.8 nm) making good magnetosome mimics. All MNP are assessed and compared for cancer cell uptake in MDA-MB-231 cells and importantly, all are readily taken up with minimal toxic effect. Silica coated MNP show the most uptake with greater than 60% cell uptake at the highest concentration, and magnetosomes showing the least with less than 40% at the highest concentration, while size does not have a significant effect on uptake. Finally, surface functionalization is demonstrated for magnetosomes and silica coated MNP using biotinylation and EDC-NHS, respectively, to conjugate fluorescent probes. The modified particles are visualized in MDA-MB-231 cells and demonstrate how both naturally biosynthesized magnetosomes and biomimetic silica coated MNP can be functionalized and readily up taken by cancer cells for realization as nanomedical vehicles. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

25 pages, 3321 KiB  
Article
Biomimetic Magnetite Nanoparticles as Targeted Drug Nanocarriers and Mediators of Hyperthermia in an Experimental Cancer Model
by Francesca Oltolina, Ana Peigneux, Donato Colangelo, Nausicaa Clemente, Annarita D’Urso, Guido Valente, Guillermo R. Iglesias, Concepcion Jiménez-Lopez and Maria Prat
Cancers 2020, 12(9), 2564; https://doi.org/10.3390/cancers12092564 - 9 Sep 2020
Cited by 51 | Viewed by 5102
Abstract
Biomimetic magnetic nanoparticles mediated by magnetosome proteins (BMNPs) are potential innovative tools for cancer therapy since, besides being multifunctional platforms, they can be manipulated by an external gradient magnetic field (GMF) and/or an alternating magnetic field (AMF), mediating targeting and hyperthermia, respectively. We [...] Read more.
Biomimetic magnetic nanoparticles mediated by magnetosome proteins (BMNPs) are potential innovative tools for cancer therapy since, besides being multifunctional platforms, they can be manipulated by an external gradient magnetic field (GMF) and/or an alternating magnetic field (AMF), mediating targeting and hyperthermia, respectively. We evaluated the cytocompatibility/cytotoxicity of BMNPs and Doxorubicin (DOXO)-BMNPs in the presence/absence of GMF in 4T1 and MCF-7 cells as well as their cellular uptake. We analyzed the biocompatibility and in vivo distribution of BMNPs as well as the effect of DOXO-BMNPs in BALB/c mice bearing 4T1 induced mammary carcinomas after applying GMF and AMF. Results: GMF enhanced the cell uptake of both BMNPs and DOXO-BMNPs and the cytotoxicity of DOXO-BMNPs. BMNPs were biocompatible when injected intravenously in BALB/c mice. The application of GMF on 4T1 tumors after each of the repeated (6×) iv administrations of DOXO-BMNPs enhanced tumor growth inhibition when compared to any other treatment, including that with soluble DOXO. Moreover, injection of DOXO-BMNPs in the tumor combined with application of an AMF resulted in a significant tumor weight reduction. These promising results show the suitability of BMNPs as magnetic nanocarriers for local targeted chemotherapy and as local agents for hyperthermia. Full article
(This article belongs to the Collection Cancer Nanomedicine)
Show Figures

Figure 1

18 pages, 3092 KiB  
Article
A New Approach for the Fabrication of Cytocompatible PLLA-Magnetite Nanoparticle Composite Scaffolds
by Esperanza Díaz, María Blanca Valle, Sylvie Ribeiro, Senentxu Lanceros‑Mendez and José Manuel Barandiarán
Int. J. Mol. Sci. 2019, 20(19), 4664; https://doi.org/10.3390/ijms20194664 - 20 Sep 2019
Cited by 14 | Viewed by 2704
Abstract
Magnetic biomimetic scaffolds of poly(L-lactide) (PLLA) and nanoparticles of magnetite (nFe3O4) are prepared in a wide ratio of compositions by lyophilization for bone regeneration. The magnetic properties, cytotoxicity, and the in vitro degradation of these porous materials are closely [...] Read more.
Magnetic biomimetic scaffolds of poly(L-lactide) (PLLA) and nanoparticles of magnetite (nFe3O4) are prepared in a wide ratio of compositions by lyophilization for bone regeneration. The magnetic properties, cytotoxicity, and the in vitro degradation of these porous materials are closely studied. The addition of magnetite at 50 °C was found to produce an interaction reaction between the ester groups of the PLLA and the metallic cations of the magnetite, causing the formation of complexes. This fact was confirmed by the analysis of the infrared spectroscopy and the gel permeation chromatography test results. They, respectively, showed a displacement of the absorption bands of the carbonyl group (C=O) of the PLLA and a scission of the polymer chains. The iron from the magnetite acted as a catalyser of the macromolecular scission reaction, which determines the final biomedical applications of the scaffolds—it does so because the reaction shortens the degradation process without appearing to influence its toxicity. None of the samples studied in the tests presented cytotoxicity, even at 70% magnetite concentrations. Full article
(This article belongs to the Special Issue Biomaterials for Soft and Hard Tissue Regeneration)
Show Figures

Graphical abstract

25 pages, 5346 KiB  
Article
Nanomagnetite-embedded PLGA Spheres for Multipurpose Medical Applications
by Valentina Grumezescu, Oana Gherasim, Irina Negut, Stefan Banita, Alina Maria Holban, Paula Florian, Madalina Icriverzi and Gabriel Socol
Materials 2019, 12(16), 2521; https://doi.org/10.3390/ma12162521 - 8 Aug 2019
Cited by 13 | Viewed by 4148
Abstract
We report on the synthesis and evaluation of biopolymeric spheres of poly(lactide-co-glycolide) containing different amounts of magnetite nanoparticles and Ibuprofen (PLGA-Fe3O4-IBUP), but also chitosan (PLGA-CS-Fe3O4-IBUP), to be considered as drug delivery systems. Besides morphological, structural, [...] Read more.
We report on the synthesis and evaluation of biopolymeric spheres of poly(lactide-co-glycolide) containing different amounts of magnetite nanoparticles and Ibuprofen (PLGA-Fe3O4-IBUP), but also chitosan (PLGA-CS-Fe3O4-IBUP), to be considered as drug delivery systems. Besides morphological, structural, and compositional characterizations, the PLGA-Fe3O4-IBUP composite microspheres were subjected to drug release studies, performed both under biomimetically-simulated dynamic conditions and under external radiofrequency magnetic fields. The experimental data resulted by performing the drug release studies evidenced that PLGA-Fe3O4-IBUP microspheres with the lowest contents of Fe3O4 nanoparticles are optimal candidates for triggered drug release under external stimulation related to hyperthermia effect. The as-selected microspheres and their chitosan-containing counterparts were biologically assessed on macrophage cultures, being evaluated as biocompatible and bioactive materials that are able to promote cellular adhesion and proliferation. The composite biopolymeric spheres resulted in inhibited microbial growth and biofilm formation, as assessed against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans microbial strains. Significantly improved antimicrobial effects were reported in the case of chitosan-containing biomaterials, regardless of the microorganisms’ type. The nanostructured composite biopolymeric spheres evidenced proper characteristics as prolonged and controlled drug release platforms for multipurpose biomedical applications. Full article
(This article belongs to the Special Issue Novel Materials for Antimicrobial Application)
Show Figures

Graphical abstract

16 pages, 3704 KiB  
Communication
Enhancement of Magnetic Hyperthermia by Mixing Synthetic Inorganic and Biomimetic Magnetic Nanoparticles
by Guillermo R. Iglesias, Ylenia Jabalera, Ana Peigneux, Blanca Luna Checa Fernández, Ángel V. Delgado and Concepcion Jimenez-Lopez
Pharmaceutics 2019, 11(6), 273; https://doi.org/10.3390/pharmaceutics11060273 - 11 Jun 2019
Cited by 33 | Viewed by 5194
Abstract
In this work we report on the synthesis and characterization of magnetic nanoparticles of two distinct origins, one inorganic (MNPs) and the other biomimetic (BMNPs), the latter based on a process of bacterial synthesis. Each of these two kinds of particles has its [...] Read more.
In this work we report on the synthesis and characterization of magnetic nanoparticles of two distinct origins, one inorganic (MNPs) and the other biomimetic (BMNPs), the latter based on a process of bacterial synthesis. Each of these two kinds of particles has its own advantages when used separately with biomedical purposes. Thus, BMNPs present an isoelectric point below neutrality (around pH 4.4), while MNPs show a zero-zeta potential at pH 7, and appear to be excellent agents for magnetic hyperthermia. This means that the biomimetic particles are better suited to be loaded with drug molecules positively charged at neutral pH (notably, doxorubicin, for instance) and releasing it at the acidic tumor environment. In turn, MNPs may provide their transport capabilities under a magnetic field. In this study it is proposed to use a mixture of both kinds of particles at two different concentrations, trying to get the best from each of them. We study which mixture performs better from different points of view, like stability and magnetic hyperthermia response, while keeping suitable drug transport capabilities. This composite system is proposed as a close to ideal drug vehicle with added enhanced hyperthermia response. Full article
Show Figures

Graphical abstract

16 pages, 5783 KiB  
Article
Biomimetic Mineralization of Magnetic Iron Oxide Nanoparticles Mediated by Bi-Functional Copolypeptides
by Liu Liu, Ximing Pu, Guangfu Yin, Xianchun Chen, Jie Yin and Yuhao Wu
Molecules 2019, 24(7), 1401; https://doi.org/10.3390/molecules24071401 - 10 Apr 2019
Cited by 12 | Viewed by 4059
Abstract
Magnetite (Fe3O4) nanoparticles are widely used in multiple biomedical applications due to their magnetic properties depending on the size, shape and organization of the crystals. However, the crystal growth and morphology of Fe3O4 nanoparticles remain difficult [...] Read more.
Magnetite (Fe3O4) nanoparticles are widely used in multiple biomedical applications due to their magnetic properties depending on the size, shape and organization of the crystals. However, the crystal growth and morphology of Fe3O4 nanoparticles remain difficult to control without using organic solvent or a high temperature. Inspired by the natural biomineralization process, a 14-mer bi-functional copolypeptide, leveraging the affinity of binding Fe3O4 together with targeting ovarian cancer cell A2780, was used as a template in the biomimetic mineralization of magnetite. Alongside this, a ginger extract was applied as an antioxidant and a size-conditioning agent of Fe3O4 crystals. As a result of the cooperative effects of the peptide and the ginger extract, the size and dispersibility of Fe3O4 were controlled based on the interaction of the amino acid and the ginger extract. Our study also demonstrated that the obtained particles with superparamagnetism could selectively be taken up by A2780 cells. In summary, the Fe3O4-QY-G nanoparticles may have potential applications in targeting tumor therapy or angiography. Full article
(This article belongs to the Special Issue Biogenic Nanomaterials: Versatility and Applications)
Show Figures

Graphical abstract

24 pages, 2848 KiB  
Article
Polyacrylamide Ferrogels with Magnetite or Strontium Hexaferrite: Next Step in the Development of Soft Biomimetic Matter for Biosensor Applications
by Alexander P. Safronov, Ekaterina A. Mikhnevich, Zahra Lotfollahi, Felix A. Blyakhman, Tatyana F. Sklyar, Aitor Larrañaga Varga, Anatoly I. Medvedev, Sergio Fernández Armas and Galina V. Kurlyandskaya
Sensors 2018, 18(1), 257; https://doi.org/10.3390/s18010257 - 16 Jan 2018
Cited by 50 | Viewed by 7413
Abstract
Magnetic biosensors are an important part of biomedical applications of magnetic materials. As the living tissue is basically a “soft matter.” this study addresses the development of ferrogels (FG) with micron sized magnetic particles of magnetite and strontium hexaferrite mimicking the living tissue. [...] Read more.
Magnetic biosensors are an important part of biomedical applications of magnetic materials. As the living tissue is basically a “soft matter.” this study addresses the development of ferrogels (FG) with micron sized magnetic particles of magnetite and strontium hexaferrite mimicking the living tissue. The basic composition of the FG comprised the polymeric network of polyacrylamide, synthesized by free radical polymerization of monomeric acrylamide (AAm) in water solution at three levels of concentration (1.1 M, 0.85 M and 0.58 M) to provide the FG with varying elasticity. To improve FG biocompatibility and to prevent the precipitation of the particles, polysaccharide thickeners—guar gum or xanthan gum were used. The content of magnetic particles in FG varied up to 5.2 wt % depending on the FG composition. The mechanical properties of FG and their deformation in a uniform magnetic field were comparatively analyzed. FG filled with strontium hexaferrite particles have larger Young’s modulus value than FG filled with magnetite particles, most likely due to the specific features of the adhesion of the network’s polymeric subchains on the surface of the particles. FG networks with xanthan are stronger and have higher modulus than the FG with guar. FG based on magnetite, contract in a magnetic field 0.42 T, whereas some FG based on strontium hexaferrite swell. Weak FG with the lowest concentration of AAm shows a much stronger response to a field, as the concentration of AAm governs the Young’s modulus of ferrogel. A small magnetic field magnetoimpedance sensor prototype with Co68.6Fe3.9Mo3.0Si12.0B12.5 rapidly quenched amorphous ribbon based element was designed aiming to develop a sensor working with a disposable stripe sensitive element. The proposed protocol allowed measurements of the concentration dependence of magnetic particles in gels using magnetoimpedance responses in the presence of magnetite and strontium hexaferrite ferrogels with xanthan. We have discussed the importance of magnetic history for the detection process and demonstrated the importance of remnant magnetization in the case of the gels with large magnetic particles. Full article
(This article belongs to the Special Issue Magnetic Materials Based Biosensors)
Show Figures

Figure 1

Back to TopTop