Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = biomimetic hybrid scaffold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1268 KiB  
Review
Natural Polymer-Based Hydrogel Platforms for Organoid and Microphysiological Systems: Mechanistic Insights and Translational Perspectives
by Yeonoh Cho, Jungmok You and Jong Hun Lee
Polymers 2025, 17(15), 2109; https://doi.org/10.3390/polym17152109 - 31 Jul 2025
Viewed by 354
Abstract
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of [...] Read more.
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of providing a three-dimensional, biomimetic scaffold that supports cell viability, spatial organization, and dynamic signaling. Natural polymer-based hydrogels, derived from materials such as collagen, gelatin, hyaluronic acid, and alginate, offer favorable properties including biocompatibility, degradability, and an extracellular matrix-like architecture. This review presents recent advances in the design and application of such hydrogels, focusing on crosslinking strategies (physical, chemical, and hybrid), the viscoelastic characteristics, and stimuli-responsive behaviors. The influence of these materials on cellular processes, such as stemness maintenance, differentiation, and morphogenesis, is critically examined. Furthermore, the applications of organoid culture and dynamic MPS platforms are discussed, highlighting their roles in morphogen delivery, barrier formation, and vascularization. Current challenges and future perspectives toward achieving standardized, scalable, and translational hydrogel systems are also addressed. Full article
Show Figures

Figure 1

17 pages, 1714 KiB  
Review
Tissue-Engineered Tracheal Reconstruction
by Se Hyun Yeou and Yoo Seob Shin
Biomimetics 2025, 10(7), 457; https://doi.org/10.3390/biomimetics10070457 - 11 Jul 2025
Viewed by 542
Abstract
Tracheal reconstruction remains a formidable clinical challenge, particularly for long-segment defects that are not amenable to standard surgical resection or primary anastomosis. Tissue engineering has emerged as a promising strategy for restoring the tracheal structure and function through the integration of biomaterials, stem [...] Read more.
Tracheal reconstruction remains a formidable clinical challenge, particularly for long-segment defects that are not amenable to standard surgical resection or primary anastomosis. Tissue engineering has emerged as a promising strategy for restoring the tracheal structure and function through the integration of biomaterials, stem cells, and bioactive molecules. This review provides a comprehensive overview of recent advances in tissue-engineered tracheal grafts, particularly in scaffold design, cellular sources, fabrication technologies, and early clinical experience. Innovations in biomaterial science, three-dimensional printing, and scaffold-free fabrication approaches have broadened the prospects for patient-specific airway reconstruction. However, persistent challenges, including incomplete epithelial regeneration and mechanical instability, have hindered its clinical translation. Future efforts should focus on the design of modular biomimetic scaffolds, the enhancement of immunomodulatory strategies, and preclinical validation using robust large animal models. Sustained interdisciplinary collaboration among surgical, engineering, and biological fields is crucial for advancing tissue-engineered tracheal grafts for routine clinical applications. Within this context, biomimetic approaches, including three-dimensional bioprinting, hybrid materials, and scaffold-free constructs, are gaining prominence as strategies to replicate the trachea’s native architecture and improve graft integration. Full article
(This article belongs to the Special Issue Biomimetic Application on Applied Bioengineering)
Show Figures

Figure 1

36 pages, 2739 KiB  
Review
Advanced Bioactive Polymers and Materials for Nerve Repair: Strategies and Mechanistic Insights
by Nidhi Puranik, Shraddha Tiwari, Meenakshi Kumari, Shiv Kumar Yadav, Thakur Dhakal and Minseok Song
J. Funct. Biomater. 2025, 16(7), 255; https://doi.org/10.3390/jfb16070255 - 9 Jul 2025
Viewed by 1076
Abstract
Bioactive materials have recently shown potential in nerve repair and regeneration by promoting the growth of new cells, tissue repair, and restoring nerve function. These natural, synthetic, and hybrid materials offer a biomimetic structure, enhance cell attachment, and release bioactive molecules that promote [...] Read more.
Bioactive materials have recently shown potential in nerve repair and regeneration by promoting the growth of new cells, tissue repair, and restoring nerve function. These natural, synthetic, and hybrid materials offer a biomimetic structure, enhance cell attachment, and release bioactive molecules that promote the axonal extension of severed nerves. Scaffold-based preclinical studies have shown promising results on enhancing nerve repair; however, they are limited by the immune response and fabrication, scalability, and cost. Nevertheless, advances in manufacturing, including 3D bioprinting, and other strategies, such as gene editing by CRISPR, will overcome these shortcomings. The opportunity for the development of individualized approaches and specific treatment plans for each patient will also increase the effectiveness of bioactive materials for the treatment of nerve injuries. Combining bioactive materials with the neural interface can develop new reliable therapeutic solutions, particularly for neuroprosthetics. Finally, it is essential to stress a multidisciplinary focus, and future studies are needed to enhance the potential of bioactive materials for patients with nerve injuries and the field of regenerative medicine. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 51289 KiB  
Article
Characterization and Modelling of Biomimetic Bone Through Additive Manufacturing
by Niranjan Srinivasan, Mohsen Barmouz and Bahman Azarhoushang
J. Manuf. Mater. Process. 2025, 9(3), 87; https://doi.org/10.3390/jmmp9030087 - 10 Mar 2025
Viewed by 741
Abstract
The long-term success of bone implant scaffolds depends on numerous factors, such as their porosity, mechanical properties, and biocompatibility. These properties depend on the type of material, such as metals and their alloys or ceramics, and the procedure used to create the scaffolds. [...] Read more.
The long-term success of bone implant scaffolds depends on numerous factors, such as their porosity, mechanical properties, and biocompatibility. These properties depend on the type of material, such as metals and their alloys or ceramics, and the procedure used to create the scaffolds. This study aims to find the biomimetic properties of aluminum 6061 (Al 6061) alloy through Digital Light Processing (DLP) and sintering. Hollow cylindrical Al 6061 samples are printed through the DLP process at 90, 110, and 130 Wt.% aluminum powder concentrations inside a photocurable resin. The ideal temperature at which the material is sintered is 550 °C for 130 and 110 Wt.% and 530 °C for 90 Wt.%. The overall pore size ranges in the Al 6061 of these three concentrations from 30 μm to 700 μm. The compression test revealed the materials’ Ultimate Tensile Strengths (UTSs) to be 1.72, 2.2, and 1.78 MPa for the 90, 110, and 130 Wt.% materials, respectively. A simulation of the Al 6061 material as linear isotropic resulted in the UTS being 2.2 MPa. This novel hybrid of the additive manufacturing method and sintering created a scaffold model with anisotropic properties closer to trabecular bone, which could be used to observe fracture progression and could be tested for implant capabilities. Full article
(This article belongs to the Special Issue Emerging Methods in Digital Manufacturing)
Show Figures

Figure 1

29 pages, 9207 KiB  
Article
Arginine-Biofunctionalized Ternary Hydrogel Scaffolds of Carboxymethyl Cellulose–Chitosan–Polyvinyl Alcohol to Deliver Cell Therapy for Wound Healing
by Alexandra A. P. Mansur, Sandhra M. Carvalho, Ramayana M. de M. Brito, Nádia S. V. Capanema, Isabela de B. Duval, Marcelo E. Cardozo, José B. R. Rihs, Gabriela G. M. Lemos, Letícia C. D. Lima, Marina P. dos Reys, Ana P. H. Rodrigues, Luiz C. A. Oliveira, Marcos Augusto de Sá, Geovanni D. Cassali, Lilian L. Bueno, Ricardo T. Fujiwara, Zelia I. P. Lobato and Herman S. Mansur
Gels 2024, 10(11), 679; https://doi.org/10.3390/gels10110679 - 23 Oct 2024
Cited by 2 | Viewed by 2032
Abstract
Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements [...] Read more.
Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements are still unmet. Hence, in this study, a novel type of biocompatible ternary polymer hybrid hydrogel scaffold was designed and produced through an entirely eco-friendly aqueous process composed of carboxymethyl cellulose, chitosan, and polyvinyl alcohol and chemically cross-linked by citric acid, forming three-dimensional (3D) matrices, which were biofunctionalized with L-arginine (L-Arg) to enhance cellular adhesion. They were applied as bilayer skin biomimetic substitutes based on human-derived cell cultures of fibroblasts and keratinocytes were seeded and grown into their 3D porous structures, producing cell-based bio-responsive hybrid hydrogel scaffolds to assist the wound healing process. The results demonstrated that hydrophilic hybrid cross-linked networks were formed via esterification reactions with the 3D porous microarchitecture promoted by foam templating and freeze-drying. These hybrids presented chemical stability, physicochemical properties, high moisture adsorption capacity, surface properties, and a highly interconnected 3D porous structure well suited for use as a skin substitute in wound healing. Additionally, the surface biofunctionalization of these 3D hydrogel scaffolds with L-arginine through amide bonds had significantly enhanced cellular attachment and proliferation of fibroblast and keratinocyte cultures. Hence, the in vivo results using Hairless mouse models (an immunocompromised strain) confirmed that these responsive bio-hybrid hydrogel scaffolds possess hemocompatibility, bioadhesion, biocompatibility, adhesiveness, biodegradability, and non-inflammatory behavior and are capable of assisting the skin wound healing process. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (3rd Edition))
Show Figures

Graphical abstract

16 pages, 3658 KiB  
Article
Investigating the Promising P28 Peptide-Loaded Chitosan/Ceramic Bone Scaffolds for Bone Regeneration
by Keran Zhou, Bianca Simonassi-Paiva, Gustavo Fehrenbach, Guangming Yan, Alexandre Portela, Robert Pogue, Zhi Cao, Margaret Brennan Fournet and Declan M. Devine
Molecules 2024, 29(17), 4208; https://doi.org/10.3390/molecules29174208 - 5 Sep 2024
Cited by 1 | Viewed by 1665
Abstract
Bone has the ability to heal itself; however, bone defects fail to heal once the damage exceeds a critical size. Bone regeneration remains a significant clinical challenge, with autograft considered the ideal bone graft material due to its sufficient porosity, osteogenic cells, and [...] Read more.
Bone has the ability to heal itself; however, bone defects fail to heal once the damage exceeds a critical size. Bone regeneration remains a significant clinical challenge, with autograft considered the ideal bone graft material due to its sufficient porosity, osteogenic cells, and biological growth factors. However, limitations to bone grafting, such as limited bone stock and high resorption rates, have led to a great deal of research into developing bone graft substitutes. The P28 peptide is a small molecule bioactive biomimetic alternative to mimic the bone morphogenetic protein 2 (BMP-2). In this study, we investigated the potential of P28-loaded hybrid scaffolds to mimic the natural bone structure for enhancing the bone regeneration process. We hypothesized that the peptide-loaded scaffolds and nude scaffolds both have the potential to promote bone healing, and the bone healing process is accelerated by the release of the peptide. To verify our hypothesis, C2C12 cells were evaluated for the presence of calcium deposits by histological stain at 7 and 14 days in cultures with hybrid scaffolds. Total RNA was isolated from C2C12 cells cultured with hybrid scaffolds for 7 and 14 days to assess osteoblast differentiation. The project findings demonstrated that the hybrid scaffold could enhance osteoblast differentiation and significantly improve the therapeutic effects of the scaffold in bone regeneration. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 27532 KiB  
Article
3D-Printed Bioactive Scaffold Loaded with GW9508 Promotes Critical-Size Bone Defect Repair by Regulating Intracellular Metabolism
by Fangli Huang, Xiao Liu, Xihong Fu, Yan Chen, Dong Jiang, Tingxuan Wang, Rongcheng Hu, Xuenong Zou, Hao Hu and Chun Liu
Bioengineering 2023, 10(5), 535; https://doi.org/10.3390/bioengineering10050535 - 27 Apr 2023
Cited by 9 | Viewed by 2816
Abstract
The process of bone regeneration is complicated, and it is still a major clinical challenge to regenerate critical-size bone defects caused by severe trauma, infection, and tumor resection. Intracellular metabolism has been found to play an important role in the cell fate decision [...] Read more.
The process of bone regeneration is complicated, and it is still a major clinical challenge to regenerate critical-size bone defects caused by severe trauma, infection, and tumor resection. Intracellular metabolism has been found to play an important role in the cell fate decision of skeletal progenitor cells. GW9508, a potent agonist of the free fatty acid receptors GPR40 and GPR120, appears to have a dual effect of inhibiting osteoclastogenesis and promoting osteogenesis by regulating intracellular metabolism. Hence, in this study, GW9508 was loaded on a scaffold based on biomimetic construction principles to facilitate the bone regeneration process. Through 3D printing and ion crosslinking, hybrid inorganic-organic implantation scaffolds were obtained after integrating 3D-printed β-TCP/CaSiO3 scaffolds with a Col/Alg/HA hydrogel. The 3D-printed β-TCP/CaSiO3 scaffolds had an interconnected porous structure that simulated the porous structure and mineral microenvironment of bone, and the hydrogel network shared similar physicochemical properties with the extracellular matrix. The final osteogenic complex was obtained after GW9508 was loaded into the hybrid inorganic-organic scaffold. To investigate the biological effects of the obtained osteogenic complex, in vitro studies and a rat cranial critical-size bone defect model were utilized. Metabolomics analysis was conducted to explore the preliminary mechanism. The results showed that 50 μM GW9508 facilitated osteogenic differentiation by upregulating osteogenic genes, including Alp, Runx2, Osterix, and Spp1 in vitro. The GW9508-loaded osteogenic complex enhanced osteogenic protein secretion and facilitated new bone formation in vivo. Finally, the results from metabolomics analysis suggested that GW9508 promoted stem cell differentiation and bone formation through multiple intracellular metabolism pathways, including purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, and taurine and hypotaurine metabolism. This study provides a new approach to address the challenge of critical-size bone defects. Full article
(This article belongs to the Special Issue Novel 3D Printing Methods and Applications in Biomedicine)
Show Figures

Figure 1

15 pages, 4918 KiB  
Article
Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs
by Mihaela Olaru, Natalia Simionescu, Florica Doroftei and Geta David
Polymers 2023, 15(7), 1635; https://doi.org/10.3390/polym15071635 - 24 Mar 2023
Cited by 3 | Viewed by 2226
Abstract
The high incidence of osteochondral defects has increased the interest in the development of improved repairing alternatives, with tissue engineering being considered a promising approach. The hierarchical, complex structure of osteochondral tissue requires the design of a biomimetic multilayered scaffold. Here, a multilayered [...] Read more.
The high incidence of osteochondral defects has increased the interest in the development of improved repairing alternatives, with tissue engineering being considered a promising approach. The hierarchical, complex structure of osteochondral tissue requires the design of a biomimetic multilayered scaffold. Here, a multilayered and multiphasic 3D macroporous structure was achieved at subzero temperature by the Michael addition reaction of amino functionalities of collagen with acryloyl groups of a bifunctionalized poly(ε-caprolactone). This green approach has been successfully applied to crosslink layers of different composition, both for their efficient sequential formation and connection. Polyethylenimine functionalized nano-hydroxyapatite (nHApLPEI) was added to the bottom layer. The resulting hybrid cryogels were characterized by morphology, equilibrium swelling ratios, compressive strength analysis, and MTS assay. They presented good stability, integrity, and biocompatibility. The results revealed that the properties of the prepared constructs may be tuned by varying the composition, number, and thickness of the layers. The Young modulus values were between 3.5 ± 0.02 and 10.5 ± 0.6 kPa for the component layers, while for the multilayered structures they were more than 7.3 ± 0.2 kPa. The equilibrium swelling ratio varied between 4.6 and 14.2, with a value of ~10.5 for the trilayered structure, correlated with the mean pore sizes (74–230 µm). Full article
Show Figures

Figure 1

16 pages, 3192 KiB  
Article
Inorganic/Biopolymers Hybrid Hydrogels Dual Cross-Linked for Bone Tissue Regeneration
by Alexandra I. Cernencu, Andreea I. Dinu, Sorina Dinescu, Roxana Trușcă, Mircea Istodorescu, Adriana Lungu, Izabela C. Stancu and Horia Iovu
Gels 2022, 8(12), 762; https://doi.org/10.3390/gels8120762 - 23 Nov 2022
Cited by 5 | Viewed by 2883
Abstract
In tissue engineering, the potential of re-growing new tissue has been considered, however, developments towards such clinical and commercial outcomes have been modest. One of the most important elements here is the selection of a biomaterial that serves as a “scaffold” for the [...] Read more.
In tissue engineering, the potential of re-growing new tissue has been considered, however, developments towards such clinical and commercial outcomes have been modest. One of the most important elements here is the selection of a biomaterial that serves as a “scaffold” for the regeneration process. Herein, we designed hydrogels composed of two biocompatible natural polymers, namely gelatin with photopolymerizable functionalities and a pectin derivative amenable to direct protein conjugation. Aiming to design biomimetic hydrogels for bone regeneration, this study proposes double-reinforcement by way of inorganic/biopolymer hybrid filling composed of Si-based compounds and cellulose nanofibers. To attain networks with high flexibility and elastic modulus, a double-crosslinking strategy was envisioned—photochemical and enzyme-mediated conjugation reactions. The dual cross-linked procedure will generate intra- and intermolecular interactions between the protein and polysaccharide and might be a resourceful strategy to develop innovative scaffolding materials. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Hydrogels (2nd Edition))
Show Figures

Figure 1

22 pages, 8551 KiB  
Article
Hydrophilic Antimicrobial Coatings for Medical Leathers from Silica-Dendritic Polymer-Silver Nanoparticle Composite Xerogels
by Michael Arkas, Georgia Kythreoti, Evangelos P. Favvas, Konstantinos Giannakopoulos, Nafsika Mouti, Marina Arvanitopoulou, Ariadne Athanasiou, Marilina Douloudi, Eleni Nikoli, Michail Vardavoulias, Marios Dimitriou, Ioannis Karakasiliotis, Victoria Ballén and Sara Maria Soto González
Textiles 2022, 2(3), 464-485; https://doi.org/10.3390/textiles2030026 - 26 Aug 2022
Cited by 12 | Viewed by 4158
Abstract
Hybrid organic-inorganic (dendritic polymer-silica) xerogels containing silver nanoparticles (Ag Nps) were developed as antibacterial leather coatings. The preparation method is environmentally friendly and is based on two biomimetic reactions. Silica gelation and spontaneous Ag Nps formation were both mediated by hyperbranched poly (ethylene [...] Read more.
Hybrid organic-inorganic (dendritic polymer-silica) xerogels containing silver nanoparticles (Ag Nps) were developed as antibacterial leather coatings. The preparation method is environmentally friendly and is based on two biomimetic reactions. Silica gelation and spontaneous Ag Nps formation were both mediated by hyperbranched poly (ethylene imine) (PEI) scaffolds of variable Mw (2000–750,000). The formation of precursor hydrogels was monitored by dynamic light scattering (DLS). The chemical composition of the xerogels was assessed by infrared spectroscopy (IR) and energy-dispersive X-ray spectroscopy (EDS), while the uniformity of the coatings was established by scanning electron microscopy (SEM). The release properties of coated leather samples and their overall behavior in water in comparison to untreated analogs were investigated by Ultraviolet-Visible (UV-Vis) spectroscopy. Antibacterial activity was tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, and antibiofilm properties against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Acinetobacter baumannii, and Enterococcus faecalis, while the SARS-CoV-2 clinical isolate was employed for the first estimation of their antiviral potential. Toxicity was evaluated using the Jurkat E6.1 cell line. Finally, water-contact angle measurements were implemented to determine the enhancement of the leather surface hydrophilicity caused by these composite layers. The final advanced products are intended for use in medical applications. Full article
(This article belongs to the Special Issue Advances of Medical Textiles)
Show Figures

Graphical abstract

15 pages, 7623 KiB  
Article
Treatment of Critical Size Femoral Bone Defects with Biomimetic Hybrid Scaffolds of 3D Plotted Calcium Phosphate Cement and Mineralized Collagen Matrix
by Anna Carla Culla, Corina Vater, Xinggui Tian, Julia Bolte, Tilman Ahlfeld, Henriette Bretschneider, Alexander Pape, Stuart B. Goodman, Michael Gelinsky and Stefan Zwingenberger
Int. J. Mol. Sci. 2022, 23(6), 3400; https://doi.org/10.3390/ijms23063400 - 21 Mar 2022
Cited by 7 | Viewed by 4641
Abstract
To treat critical-size bone defects, composite materials and tissue-engineered bone grafts play important roles in bone repair materials. The purpose of this study was to investigate the bone regenerative potential of hybrid scaffolds consisting of macroporous calcium phosphate cement (CPC) and microporous mineralized [...] Read more.
To treat critical-size bone defects, composite materials and tissue-engineered bone grafts play important roles in bone repair materials. The purpose of this study was to investigate the bone regenerative potential of hybrid scaffolds consisting of macroporous calcium phosphate cement (CPC) and microporous mineralized collagen matrix (MCM). Hybrid scaffolds were synthetized by 3D plotting CPC and then filling with MCM (MCM-CPC group) and implanted into a 5 mm critical size femoral defect in rats. Defects left empty (control group) as well as defects treated with scaffolds made of CPC only (CPC group) and MCM only (MCM group) served as controls. Eight weeks after surgery, micro-computed tomography scans and histological analysis were performed to analyze the newly formed bone, the degree of defect healing and the activity of osteoclasts. Mechanical stability was tested by 3-point-bending of the explanted femora. Compared with the other groups, more newly formed bone was found within MCM-CPC scaffolds. The new bone tissue had a clamp-like structure which was fully connected to the hybrid scaffolds and thereby enhanced the biomechanical strength. Together, the biomimetic hybrid MCM-CPC scaffolds enhanced bone defect healing by improved osseointegration and their differentiated degradation provides spatial effects in the process of critical-bone defect healing. Full article
Show Figures

Figure 1

30 pages, 3051 KiB  
Review
Bioprinting Scaffolds for Vascular Tissues and Tissue Vascularization
by Peter Viktor Hauser, Hsiao-Min Chang, Masaki Nishikawa, Hiroshi Kimura, Norimoto Yanagawa and Morgan Hamon
Bioengineering 2021, 8(11), 178; https://doi.org/10.3390/bioengineering8110178 - 6 Nov 2021
Cited by 34 | Viewed by 7997
Abstract
In recent years, tissue engineering has achieved significant advancements towards the repair of damaged tissues. Until this day, the vascularization of engineered tissues remains a challenge to the development of large-scale artificial tissue. Recent breakthroughs in biomaterials and three-dimensional (3D) printing have made [...] Read more.
In recent years, tissue engineering has achieved significant advancements towards the repair of damaged tissues. Until this day, the vascularization of engineered tissues remains a challenge to the development of large-scale artificial tissue. Recent breakthroughs in biomaterials and three-dimensional (3D) printing have made it possible to manipulate two or more biomaterials with complementary mechanical and/or biological properties to create hybrid scaffolds that imitate natural tissues. Hydrogels have become essential biomaterials due to their tissue-like physical properties and their ability to include living cells and/or biological molecules. Furthermore, 3D printing, such as dispensing-based bioprinting, has progressed to the point where it can now be utilized to construct hybrid scaffolds with intricate structures. Current bioprinting approaches are still challenged by the need for the necessary biomimetic nano-resolution in combination with bioactive spatiotemporal signals. Moreover, the intricacies of multi-material bioprinting and hydrogel synthesis also pose a challenge to the construction of hybrid scaffolds. This manuscript presents a brief review of scaffold bioprinting to create vascularized tissues, covering the key features of vascular systems, scaffold-based bioprinting methods, and the materials and cell sources used. We will also present examples and discuss current limitations and potential future directions of the technology. Full article
Show Figures

Figure 1

13 pages, 20305 KiB  
Article
Biomimetic Scaffolds Obtained by Electrospinning of Collagen-Based Materials: Strategies to Hinder the Protein Denaturation
by Giorgia Montalbano, Clarissa Tomasina, Sonia Fiorilli, Sandra Camarero-Espinosa, Chiara Vitale-Brovarone and Lorenzo Moroni
Materials 2021, 14(16), 4360; https://doi.org/10.3390/ma14164360 - 4 Aug 2021
Cited by 14 | Viewed by 3181
Abstract
The use of biomaterials and scaffolds to boost bone regeneration is increasingly gaining interest as a complementary method to the standard surgical and pharmacological treatments in case of severe injuries and pathological conditions. In this frame, the selection of biomaterials and the accurate [...] Read more.
The use of biomaterials and scaffolds to boost bone regeneration is increasingly gaining interest as a complementary method to the standard surgical and pharmacological treatments in case of severe injuries and pathological conditions. In this frame, the selection of biomaterials and the accurate assessment of the manufacturing procedures are considered key factors in the design of constructs able to resemble the features of the native tissue and effectively induce specific cell responses. Accordingly, composite scaffolds based on type-I-collagen can mimic the composition of bone extracellular matrix (ECM), while electrospinning technologies can be exploited to produce nanofibrous matrices to resemble its architectural organization. However, the combination of collagen and electrospinning reported several complications due to the frequent denaturation of the protein and the variability of results according to collagen origin, concentration, and solvent. In this context, the strategies optimized in this study enabled the preparation of collagen-based electrospun scaffolds characterized by about 100 nm fibers, preserving the physico-chemical properties of the protein thanks to the use of an acetic acid-based solvent. Moreover, nanoparticles of mesoporous bioactive glasses were combined with the optimized collagen formulation, proving the successful design of composite scaffolds resembling the morphological features of bone ECM at the nanoscale. Full article
(This article belongs to the Special Issue Fiber Spinning: Materials & Techniques)
Show Figures

Graphical abstract

15 pages, 4601 KiB  
Article
A Collagen-Mimetic Organic-Inorganic Hydrogel for Cartilage Engineering
by Laurine Valot, Marie Maumus, Luc Brunel, Jean Martinez, Muriel Amblard, Danièle Noël, Ahmad Mehdi and Gilles Subra
Gels 2021, 7(2), 73; https://doi.org/10.3390/gels7020073 - 15 Jun 2021
Cited by 18 | Viewed by 3997
Abstract
Promising strategies for cartilage regeneration rely on the encapsulation of mesenchymal stromal cells (MSCs) in a hydrogel followed by an injection into the injured joint. Preclinical and clinical data using MSCs embedded in a collagen gel have demonstrated improvements in patients with focal [...] Read more.
Promising strategies for cartilage regeneration rely on the encapsulation of mesenchymal stromal cells (MSCs) in a hydrogel followed by an injection into the injured joint. Preclinical and clinical data using MSCs embedded in a collagen gel have demonstrated improvements in patients with focal lesions and osteoarthritis. However, an improvement is often observed in the short or medium term due to the loss of the chondrocyte capacity to produce the correct extracellular matrix and to respond to mechanical stimulation. Developing novel biomimetic materials with better chondroconductive and mechanical properties is still a challenge for cartilage engineering. Herein, we have designed a biomimetic chemical hydrogel based on silylated collagen-mimetic synthetic peptides having the ability to encapsulate MSCs using a biorthogonal sol-gel cross-linking reaction. By tuning the hydrogel composition using both mono- and bi-functional peptides, we succeeded in improving its mechanical properties, yielding a more elastic scaffold and achieving the survival of embedded MSCs for 21 days as well as the up-regulation of chondrocyte markers. This biomimetic long-standing hybrid hydrogel is of interest as a synthetic and modular scaffold for cartilage tissue engineering. Full article
(This article belongs to the Special Issue Collagen-Based Hydrogels: Volume II)
Show Figures

Figure 1

13 pages, 4589 KiB  
Article
Total Meniscus Reconstruction Using a Polymeric Hybrid-Scaffold: Combined with 3D-Printed Biomimetic Framework and Micro-Particle
by Hun-Jin Jeong, Se-Won Lee, Myoung Wha Hong, Young Yul Kim, Kyoung Duck Seo, Young-Sam Cho and Seung-Jae Lee
Polymers 2021, 13(12), 1910; https://doi.org/10.3390/polym13121910 - 8 Jun 2021
Cited by 9 | Viewed by 3726
Abstract
The meniscus has poor intrinsic regenerative capability, and its injury inevitably leads to articular cartilage degeneration. Although there are commercialized off-the-shelf alternatives to achieve total meniscus regeneration, each has its own shortcomings such as individualized size matching issues and inappropriate mechanical properties. We [...] Read more.
The meniscus has poor intrinsic regenerative capability, and its injury inevitably leads to articular cartilage degeneration. Although there are commercialized off-the-shelf alternatives to achieve total meniscus regeneration, each has its own shortcomings such as individualized size matching issues and inappropriate mechanical properties. We manufactured a polycaprolactone-based patient-specific designed framework via a Computed Tomography scan images and 3D-printing technique. Then, we completed the hybrid-scaffold by combining the 3D-printed framework and mixture micro-size composite which consists of polycaprolactone and sodium chloride to create a cell-friendly microenvironment. Based on this hybrid-scaffold with an autograft cell source (fibrochondrocyte), we assessed mechanical and histological results using the rabbit total meniscectomy model. At postoperative 12-week, hybrid-scaffold achieved neo-meniscus tissue formation, and its shape was maintained without rupture or break away from the knee joint. Histological and immunohistochemical analysis results showed obvious ingrowth of the fibroblast-like cells and chondrocyte cells as well as mature lacunae that were embedded in the extracellular matrix. Hybrid-scaffolding resulted in superior shape matching as compared to original meniscus tissue. Histological analysis showed evidence of extensive neo-meniscus cell ingrowth. Additionally, the hybrid-scaffold did not induce osteoarthritis on the femoral condyle surface. The 3D-printed hybrid-scaffold may provide a promising approach that can be applied to those who received total meniscal resection, using patient-specific design and autogenous cell source. Full article
(This article belongs to the Special Issue Polymeric Materials as Scaffolds for Tissue Engineering)
Show Figures

Graphical abstract

Back to TopTop