Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = biofouling detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1605 KB  
Article
Risk Management Challenges in Maritime Autonomous Surface Ships (MASSs): Training and Regulatory Readiness
by Hyeri Park, Jeongmin Kim, Min Jung, Suk-young Kang, Daegun Kim, Changwoo Kim and Unkyu Jang
Appl. Sci. 2025, 15(20), 10993; https://doi.org/10.3390/app152010993 - 13 Oct 2025
Viewed by 168
Abstract
Maritime Autonomous Surface Ships (MASSs) raise safety and regulatory challenges that extend beyond technical reliability. This study builds on a published system-theoretic process analysis (STPA) of degraded operations that identified 92 loss scenarios. These scenarios were reformulated into a two-round Delphi survey with [...] Read more.
Maritime Autonomous Surface Ships (MASSs) raise safety and regulatory challenges that extend beyond technical reliability. This study builds on a published system-theoretic process analysis (STPA) of degraded operations that identified 92 loss scenarios. These scenarios were reformulated into a two-round Delphi survey with 20 experts from academic, industry, seafaring, and regulatory backgrounds. Panelists rated each scenario on severity, likelihood, and detectability. To avoid rank reversal, common in the Risk Priority Number, an adjusted index was applied. Initial concordance was low (Kendall’s W = 0.07), reflecting diverse perspectives. After feedback, Round 2 reached substantial agreement (W = 0.693, χ2 = 3265.42, df = 91, p < 0.001) and produced a stable Top 10. High-priority items involved propulsion and machinery, communication links, sensing, integrated control, and human–machine interaction. These risks are further exacerbated by oceanographic conditions, such as strong currents, wave-induced motions, and biofouling, which can impair propulsion efficiency and sensor accuracy. This highlights the importance of environmental resilience in MASS safety. These clusters were translated into five action bundles that addressed fallback procedures, link assurance, sensor fusion, control chain verification, and alarm governance. The findings show that Remote Operator competence and oversight are central to MASS safety. At the same time, MASSs rely on artificial intelligence systems that can fail in degraded states, for example, through reduced explainability in decision making, vulnerabilities in sensor fusion, or adversarial conditions such as fog-obscured cameras. Recognizing these AI-specific challenges highlights the need for both human oversight and resilient algorithmic design. They support explicit inclusion of Remote Operators in the STCW convention, along with watchkeeping and fatigue rules for Remote Operation Centers. This study provides a consensus-based baseline for regulatory debate, while future work should extend these insights through quantitative system modeling. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
Show Figures

Figure 1

27 pages, 3285 KB  
Article
Integration of Fractal Metrics and Scanning Electron Microscopy for Advanced and Innovative Diagnosis of Biofouling in Drippers Applying Brackish Water
by Julio Cesar Vado Espinoza, Laio Ariel Leite de Paiva, Lucas Ramos da Costa, Gustavo Lopes Muniz, Jackson Silva Nóbrega, Stefeson Bezerra de Melo, Paulo Cesar Moura da Silva, Bruno Caio Chaves Fernandes, Luiz Fernando de Sousa Antunes, Antônio Gustavo de Luna Souto, Norlan Leonel Ramos Cruz, Eulene Francisco da Silva, Phâmella Kalliny Pereira Farias and Rafael Oliveira Batista
AgriEngineering 2025, 7(9), 297; https://doi.org/10.3390/agriengineering7090297 - 15 Sep 2025
Viewed by 532
Abstract
Traditional methods of analyzing biofouling in emitters fail to capture the complexity and heterogeneity of their components. Therefore, the objective of this work was to develop and validate an innovative approach that integrates fractal metrics and scanning electron microscopy (SEM) to accurately characterize, [...] Read more.
Traditional methods of analyzing biofouling in emitters fail to capture the complexity and heterogeneity of their components. Therefore, the objective of this work was to develop and validate an innovative approach that integrates fractal metrics and scanning electron microscopy (SEM) to accurately characterize, quantify, and diagnose biofouling in drippers used with brackish water. For this purpose, tests were conducted on benches that applied brackish water and fresh water through drippers with a flow exponent (x) of 0.46 (NJ), 0.45 (SL), and 0.48 (ST) over 160 h. Biofouling was mapped using advanced diagnostics using SEM and factual metrics, and the results were analyzed using multivariate statistics. The results obtained present important findings for the study, detection, mapping, and proposal of mitigation measures for biofouling in drippers, presenting factual metrics that may be new indicators of clogging. Biofouling is a phenomenon resulting from the interaction between the spatial evolution of the obstructing material, emitter geometry, and irrigation water quality. The combination of SEM and fractal metrics has proven to be an advanced and innovative diagnostic tool for detecting the presence and distribution of biofouling, enabling clogging monitoring and creating more realistic scenarios in hydrodynamic studies to improve or develop emitter designs. Full article
Show Figures

Figure 1

18 pages, 2150 KB  
Article
Balancing Feature Symmetry: IFEM-YOLOv13 for Robust Underwater Object Detection Under Degradation
by Zhen Feng and Fanghua Liu
Symmetry 2025, 17(9), 1531; https://doi.org/10.3390/sym17091531 - 13 Sep 2025
Viewed by 676
Abstract
This paper proposes IFEM-YOLOv13, a high-precision underwater target detection method designed to address challenges such as image degradation, low contrast, and small target obscurity caused by light attenuation, scattering, and biofouling. Its core innovation is an end-to-end degradation-aware system featuring: (1) an Intelligent [...] Read more.
This paper proposes IFEM-YOLOv13, a high-precision underwater target detection method designed to address challenges such as image degradation, low contrast, and small target obscurity caused by light attenuation, scattering, and biofouling. Its core innovation is an end-to-end degradation-aware system featuring: (1) an Intelligent Feature Enhancement Module (IFEM) that employs learnable sharpening and pixel-level filtering for adaptive optical compensation, incorporating principles of symmetry in its multi-branch enhancement to balance color and structural recovery; (2) a degradation-aware Focal Loss incorporating dynamic gradient remapping and class balancing to mitigate sample imbalance through symmetry-preserving optimization; and (3) a cross-layer feature association mechanism for multi-scale contextual modeling that respects the inherent scale symmetry of natural objects. Evaluated on the J-EDI dataset, IFEM-YOLOv13 achieves 98.6% mAP@0.5 and 82.1% mAP@0.5:0.95, outperforming the baseline YOLOv13 by 0.7% and 3.0%, respectively. With only 2.5 M parameters and operating at 217 FPS, it surpasses methods including Faster R-CNN, YOLO variants, and RE-DETR. These results demonstrate its robust real-time detection capability for diverse underwater targets such as plastic debris, biofouled objects, and artificial structures, while effectively handling the symmetry-breaking distortions introduced by the underwater environment. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

17 pages, 3270 KB  
Article
A Multimodal Vision-Based Fish Environment and Growth Monitoring in an Aquaculture Cage
by Fengshuang Ma, Xiangyong Liu and Zhiqiang Xu
J. Mar. Sci. Eng. 2025, 13(9), 1700; https://doi.org/10.3390/jmse13091700 - 3 Sep 2025
Viewed by 649
Abstract
Fish condition detection, including the identification of feeding desire, biological attachments, fence breaches, and dead fishes, has become an important research frontier in fishery aquaculture. However, perception in underwater conditions is less satisfactory and remains a tricky problem. Firstly, we have developed a [...] Read more.
Fish condition detection, including the identification of feeding desire, biological attachments, fence breaches, and dead fishes, has become an important research frontier in fishery aquaculture. However, perception in underwater conditions is less satisfactory and remains a tricky problem. Firstly, we have developed a multimodal dataset based on Neuromorphic vision (NeuroVI) and RGB images, encompassing challenging fishery aquaculture scenarios. Within the fishery aquaculture dataset, a spike neural network (SNN) method is designed to filter NeuroVI images, and the sift feature points are leveraged to select the optimal image. Next, we propose a dual-image cross-attention learning network that achieves scene segmentation in a fishery aquaculture cage. This network comprises double-channels feature extraction and guided attention learning modules. In detail, the feature matrix of NeuroVI images serves as the query matrix for RGB images, generating attention for calculating key and value matrices. Then, to alleviate the computational burden of the dual-channel network, we replace dot-product multiplication with element-wise multiplication, thereby reducing the computational load among different matrices. Finally, our experimental results from the fishery cage demonstrate that the proposed method achieves the state-of-the-art segmentation performance in the management process of fishery aquaculture. Full article
Show Figures

Figure 1

43 pages, 3473 KB  
Review
Biochips on the Move: Emerging Trends in Wearable and Implantable Lab-on-Chip Health Monitors
by Nikolay L. Kazanskiy, Pavel A. Khorin and Svetlana N. Khonina
Electronics 2025, 14(16), 3224; https://doi.org/10.3390/electronics14163224 - 14 Aug 2025
Viewed by 5172
Abstract
Wearable and implantable Lab-on-Chip (LoC) biosensors are revolutionizing healthcare by enabling continuous, real-time monitoring of physiological and biochemical parameters in non-clinical settings. These miniaturized platforms integrate sample handling, signal transduction, and data processing on a single chip, facilitating early disease detection, personalized treatment, [...] Read more.
Wearable and implantable Lab-on-Chip (LoC) biosensors are revolutionizing healthcare by enabling continuous, real-time monitoring of physiological and biochemical parameters in non-clinical settings. These miniaturized platforms integrate sample handling, signal transduction, and data processing on a single chip, facilitating early disease detection, personalized treatment, and preventive care. This review comprehensively explores recent advancements in LoC biosensing technologies, emphasizing their application in skin-mounted patches, smart textiles, and implantable devices. Key innovations in biocompatible materials, nanostructured transducers, and flexible substrates have enabled seamless integration with the human body, while fabrication techniques such as soft lithography, 3D printing, and MEMS have accelerated development. The incorporation of nanomaterials significantly enhances sensitivity and specificity, supporting multiplexed and multi-modal sensing. We examine critical application domains, including glucose monitoring, cardiovascular diagnostics, and neurophysiological assessment. Design considerations related to biocompatibility, power management, data connectivity, and long-term stability are also discussed. Despite promising outcomes, challenges such as biofouling, signal drift, regulatory hurdles, and public acceptance remain. Future directions focus on autonomous systems powered by AI, hybrid wearable–implantable platforms, and wireless energy harvesting. This review highlights the transformative potential of LoC biosensors in shaping the future of smart, patient-centered healthcare through continuous, minimally invasive monitoring. Full article
(This article belongs to the Special Issue Lab-on-Chip Biosensors)
Show Figures

Figure 1

24 pages, 4927 KB  
Review
Recent Developments in Microneedle Biosensors for Biomedical and Agricultural Applications
by Kazim Haider and Colin Dalton
Micromachines 2025, 16(8), 929; https://doi.org/10.3390/mi16080929 - 13 Aug 2025
Viewed by 2995
Abstract
Microneedles have emerged as a versatile technology for biosensing across biomedical domains and are increasingly being explored for other applications like agriculture. This review highlights recent advancements in the development of microneedle-based biosensors in novel areas. Biomedical applications include continuous glucose monitoring, multiplexed [...] Read more.
Microneedles have emerged as a versatile technology for biosensing across biomedical domains and are increasingly being explored for other applications like agriculture. This review highlights recent advancements in the development of microneedle-based biosensors in novel areas. Biomedical applications include continuous glucose monitoring, multiplexed biomarker detection beyond glucose, and numerous recent works presenting fully integrated systems comprising microneedle arrays alongside miniaturized wearable electronics. Agricultural applications largely focus on the detection of plant growth markers, hormones, and nutrient levels. Despite significant progress, challenges remain in overcoming biofouling and electrode degradation, optimizing electrode longevity for long-term (weeks to months) in situ monitoring, and creating scalable sensor fabrication processes. Additionally, there is a need for standardized mechanical and electrical testing protocols, and guidelines specifying critical performance metrics that should be reported to facilitate accurate literature comparisons. The review concludes by outlining key opportunities for future research to address these persisting challenges. Full article
(This article belongs to the Special Issue Current Trends in Microneedles: Design, Fabrication and Applications)
Show Figures

Figure 1

16 pages, 14336 KB  
Article
Three-Dimensional Binary Marker: A Novel Underwater Marker Applicable for Long-Term Deployment Scenarios
by Alaaeddine Chaarani, Patryk Cieslak, Joan Esteba, Ivan Eichhardt and Pere Ridao
J. Mar. Sci. Eng. 2025, 13(8), 1442; https://doi.org/10.3390/jmse13081442 - 28 Jul 2025
Viewed by 607
Abstract
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the [...] Read more.
Traditional 2D optical markers degrade quickly in underwater applications due to sediment accumulation and marine biofouling, becoming undetectable within weeks. This paper presents a Three-Dimensional Binary Marker, a novel passive fiducial marker designed for underwater Long-Term Deployment. The Three-Dimensional Binary Marker addresses the 2D-markers limitation through a 3D design that enhances resilience and maintains contrast for computer vision detection over extended periods. The proposed solution has been validated through simulation, water tank testing, and long-term sea trials for 5 months. In each stage, the marker was compared based on detection per visible frame and the detection distance. In conclusion, the design demonstrated superior performance compared to standard 2D markers. The proposed Three-Dimensional Binary Marker provides compatibility with widely used fiducial markers, such as ArUco and AprilTag, allowing quick adaptation for users. In terms of fabrication, the Three-Dimensional Binary Marker uses additive manufacturing, offering a low-cost and scalable solution for underwater localization tasks. The proposed marker improved the deployment time of fiducial markers from a couple of days to sixty days and with a range up to seven meters, providing robustness and reliability. As the marker survivability and detection range depend on its size, it is still a valuable innovation for Autonomous Underwater Vehicles, as well as for inspection, maintenance, and monitoring tasks in marine robotics and offshore infrastructure applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 6428 KB  
Article
Influence of Key Physicochemical Factors on the Temporal Dynamics of Invasive and Native Ascidian Settlement
by Dimitrios Tsotsios, Maria V. Alvanou, Dimitrios K. Papadopoulos, Vlasoula Bekiari, Konstantinos Feidantsis, Ioannis A. Giantsis and John A. Theodorou
Water 2025, 17(8), 1122; https://doi.org/10.3390/w17081122 - 9 Apr 2025
Viewed by 642
Abstract
In an effort to monitor ascidian recruitment in mussel aquaculture facilities, a series of settlement plates (20 × 20 cm) were placed in a mussel farm located in the Amvrakikos Gulf (Ionian Sea). The plates were vertically deployed on floating facilities in the [...] Read more.
In an effort to monitor ascidian recruitment in mussel aquaculture facilities, a series of settlement plates (20 × 20 cm) were placed in a mussel farm located in the Amvrakikos Gulf (Ionian Sea). The plates were vertically deployed on floating facilities in the water column at regular intervals (depths of 0.2 m, 1.5 m, and 3 m) to monitor the settlement and proliferation of ascidians. Furthermore, measurements of seawater physicochemical parameters such as temperature, salinity, dissolved oxygen, and chlorophyll-a concentration were conducted together with the record of ascidian species in each sampling from January 2021 to November 2021. The correlation of these parameters with ascidian species provides information on their effect on the periodicity of ascidians’ recruitment. The results demonstrated a significant correlation between ascidian presence and water temperature. The potential influence of other important environmental parameters such as chlorophyll-a was not revealed, likely due to the limited number of values and samples included in the analyses. While increased chlorophyll levels, reflecting increased primary productivity or nutrient availability, are associated with increased growth and reproduction of all ascidian species, the effect of temperature was more potent and species-specific. Ciona robusta, Styela plicata, Microcosmus squamiger, and Phallusia mammillata were mainly detected at temperatures below 25 °C, whereas Clavelina oblonga was prevalent at temperatures above 25 °C. The absence of most ascidians at temperatures above 25 °C was possibly attributed to decreased settlement success and to the increased competition from C. oblonga at higher temperatures. The deployment of settlement plates in correlation with seawater physiochemical parameters can provide valuable data on ascidian settlement dynamics and support the development of targeted management practices for biofouling control. Full article
(This article belongs to the Special Issue Marine Biodiversity and Its Relationship with Climate/Environment)
Show Figures

Figure 1

13 pages, 1977 KB  
Article
Stamp-Imprinted Polymer EIS Biosensor for Amyloid-Beta Detection: A Novel Approach Towards Alzheimer’s Screening
by Chloé E. D. Davidson and Ravi Prakash
Biosensors 2025, 15(4), 228; https://doi.org/10.3390/bios15040228 - 3 Apr 2025
Cited by 2 | Viewed by 1151
Abstract
Surface-imprinted polymers (SIPs) represent an exciting and cost-effective alternative to antibodies for electrochemical impedance spectroscopy (EIS)-based biosensing. They can be produced using simple printing techniques and have shown high efficacy in detecting large biomolecules and microorganisms. Stamp imprinting, a novel SIP method, creates [...] Read more.
Surface-imprinted polymers (SIPs) represent an exciting and cost-effective alternative to antibodies for electrochemical impedance spectroscopy (EIS)-based biosensing. They can be produced using simple printing techniques and have shown high efficacy in detecting large biomolecules and microorganisms. Stamp imprinting, a novel SIP method, creates the target analyte’s imprint using a soft lithography mask of the analyte matrix, thereby reducing material complexities and eliminating the need for cross-linking, which makes the process more scalable than the conventional SIPs. In this work, we demonstrate a stamp-imprinted EIS biosensor using a biocompatible polymer, polycaprolactone (PCL), for quantifying amyloid beta-42 (Aβ-42), a small peptide involved in the pathophysiology of Alzheimer’s disease. The evaluated SIP-EIS biosensors showed a detection limit close to 10 fg/mL, and a detection range covering the physiologically relevant concentration range of the analyte in blood serum (from 10 fg/mL to 10 μg/mL). The device sensitivity, which is found to be comparable to antibody-based EIS devices, demonstrates the potential of SIP-EIS biosensors as an exciting alternative to conventional antibody-based diagnostic approaches. We also evaluate the viability of analyzing these proteins in complex media, notably in the presence of serum albumin proteins, which cause biofouling and non-specific interactions. The combination of high sensitivity, selectivity, and ease of fabrication makes SIP-EIS biosensors particularly suited for portable and point-of-care applications. Full article
(This article belongs to the Special Issue Recent Developments in Micro/Nano Sensors for Biomedical Applications)
Show Figures

Figure 1

58 pages, 3504 KB  
Review
Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 2: Countermeasures and Applications
by Yasushi Maeda
Membranes 2025, 15(3), 94; https://doi.org/10.3390/membranes15030094 - 17 Mar 2025
Cited by 2 | Viewed by 2657
Abstract
Fouling, particularly from organic fouling and biofouling, poses a significant challenge in the RO/NF treatment of marginal waters, especially wastewater. Part 1 of this review detailed LMWOC fouling mechanisms. Part 2 focuses on countermeasures and applications. Effective fouling prevention relies on pretreatment, early [...] Read more.
Fouling, particularly from organic fouling and biofouling, poses a significant challenge in the RO/NF treatment of marginal waters, especially wastewater. Part 1 of this review detailed LMWOC fouling mechanisms. Part 2 focuses on countermeasures and applications. Effective fouling prevention relies on pretreatment, early detection, cleaning, optimized operation, and in situ membrane modification. Accurate fouling prediction is crucial. Preliminary tests using flat-sheet membranes or small-diameter modules are recommended. Currently, no specific fouling index exists for LMWOC fouling. Hydrophobic membranes, such as polyamide, are proposed as alternatives to the standard silt density index (SDI) filter. Once LMWOC fouling potential is assessed, suitable pretreatment methods can be implemented. These include adsorbents, specialized water filters, oxidative decomposition, and antifoulants. In situations where pretreatment is impractical, alternative strategies like high pH operation might be considered. Membrane cleaning becomes necessary upon fouling; however, standard cleaning often fails to fully restore the original flow. Specialized CIP chemicals, including organic solvent-based and oxidative agents, are required. Conversely, LMWOC fouling typically leads to a stabilized flow rate reduction rather than a continuous decline. Aggressive cleaning may be avoided if the resulting operating pressure increase is acceptable. When a significant flow rate drop occurs and LMWOC fouling is suspected, analysis of the fouled membrane is necessary for identification. Standard FT-IR often fails to detect LMWOCs. Solvent extraction followed by GC-MS is required. Pyrolysis GC-MS, which eliminates the extraction step, shows promise. The review concludes by examining how LMWOCs can be strategically utilized to enhance membrane rejection and restore deteriorated membranes. Full article
(This article belongs to the Special Issue Membrane Fouling Control: Mechanism, Properties, and Applications)
Show Figures

Figure 1

19 pages, 2617 KB  
Article
An Antimicrobial and Antifibrotic Coating for Implantable Biosensors
by Sofia Wareham-Mathiassen, Pawan Jolly, Nandhinee Radha Shanmugam, Badrinath Jagannath, Pranav Prabhala, Yunhao Zhai, Alican Ozkan, Arash Naziripour, Rohini Singh, Henrik Bengtsson, Thomas Bjarnsholt and Donald E. Ingber
Biosensors 2025, 15(3), 171; https://doi.org/10.3390/bios15030171 - 6 Mar 2025
Cited by 4 | Viewed by 2740
Abstract
Biofouling and foreign body responses have deleterious effects on the functionality and longevity of implantable biosensors, seriously impeding their implementation for long-term monitoring. Here, we describe a nanocomposite coating composed of a cross-linked lattice of bovine serum albumin and pentaamine-functionalized reduced graphene that [...] Read more.
Biofouling and foreign body responses have deleterious effects on the functionality and longevity of implantable biosensors, seriously impeding their implementation for long-term monitoring. Here, we describe a nanocomposite coating composed of a cross-linked lattice of bovine serum albumin and pentaamine-functionalized reduced graphene that is covalently coupled to antibody ligands for analyte detection as well as antibiotic drugs (gentamicin or ceftriaxone), which actively combats biofouling while retaining high electroconductivity and excellent electrochemical immunosensor behavior. Sensors overlaid with this coating inhibit the proliferation of Pseudomonas aeruginosa bacteria and adhesion of primary human fibroblasts while not having any significant effects on fibroblast viability or on the immune function of primary human monocytes. Under these conditions, the sensor maintains its electrochemical stability for at least 3 weeks after exposure to soluble proteins that interfere with the activity of uncoated sensors. Proof-of-concept for the coating’s applicability is demonstrated by integrating the antimicrobial coating within an immunosensor and demonstrating the detection of cytokines in both culture medium and complex human plasma. This new coating technology holds the potential to substantially increase the lifespan of implanted biosensors and widen their application areas, potentially enabling continuous monitoring of analytes in complex biofluids for weeks in vivo. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Graphical abstract

31 pages, 5088 KB  
Review
Advances in Wearable Biosensors for Wound Healing and Infection Monitoring
by Dang-Khoa Vo and Kieu The Loan Trinh
Biosensors 2025, 15(3), 139; https://doi.org/10.3390/bios15030139 - 23 Feb 2025
Cited by 6 | Viewed by 9252
Abstract
Wound healing is a complicated biological process that is important for restoring tissue integrity and function after injury. Infection, usually due to bacterial colonization, significantly complicates this process by hindering the course of healing and enhancing the chances of systemic complications. Recent advances [...] Read more.
Wound healing is a complicated biological process that is important for restoring tissue integrity and function after injury. Infection, usually due to bacterial colonization, significantly complicates this process by hindering the course of healing and enhancing the chances of systemic complications. Recent advances in wearable biosensors have transformed wound care by making real-time monitoring of biomarkers such as pH, temperature, moisture, and infection-related metabolites like trimethylamine and uric acid. This review focuses on recent advances in biosensor technologies designed for wound management. Novel sensor architectures, such as flexible and stretchable electronics, colorimetric patches, and electrochemical platforms, enable the non-invasive detection of changes associated with wounds with high specificity and sensitivity. These are increasingly combined with AI and analytics based on smartphones that can enable timely and personalized interventions. Examples are the PETAL patch sensor that applies multiple sensing mechanisms for wide-ranging views on wound status and closed-loop systems that connect biosensors to therapeutic devices to automate infection control. Additionally, self-powered biosensors that tap into body heat or energy from the biofluids themselves avoid any external batteries and are thus more effective in field use or with limited resources. Internet of Things connectivity allows further support for remote sharing and monitoring of data, thus supporting telemedicine applications. Although wearable biosensors have developed relatively rapidly and their prospects continue to expand, regular clinical application is stalled by significant challenges such as regulatory, cost, patient compliance, and technical problems related to sensor accuracy, biofouling, and power, among others, that need to be addressed by innovative solutions. The goal of this review is to synthesize current trends, challenges, and future directions in wound healing and infection monitoring, with emphasis on the potential for wearable biosensors to improve patient outcomes and reduce healthcare burdens. These innovations are leading the way toward next-generation wound care by bridging advanced materials science, biotechnology, and digital health. Full article
Show Figures

Graphical abstract

14 pages, 1496 KB  
Article
B-FLOWS: Biofouling Focused Learning and Observation for Wide-Area Surveillance in Tidal Stream Turbines
by Haroon Rashid, Houssem Habbouche, Yassine Amirat, Abdeslam Mamoune, Hosna Titah-Benbouzid and Mohamed Benbouzid
J. Mar. Sci. Eng. 2024, 12(10), 1828; https://doi.org/10.3390/jmse12101828 - 13 Oct 2024
Cited by 5 | Viewed by 2166
Abstract
Biofouling, the accumulation of marine organisms on submerged surfaces, presents significant operational challenges across various marine industries. Traditional detection methods are labor intensive and costly, necessitating the development of automated systems for efficient monitoring. The study presented in this paper focuses on detecting [...] Read more.
Biofouling, the accumulation of marine organisms on submerged surfaces, presents significant operational challenges across various marine industries. Traditional detection methods are labor intensive and costly, necessitating the development of automated systems for efficient monitoring. The study presented in this paper focuses on detecting biofouling on tidal stream turbine blades using camera-based monitoring. The process begins with dividing the video into a series of images, which are then annotated to identify and select the bounding boxes containing objects to be detected. These annotated images are used to train YOLO version 8 to detect biofouled and clean blades in the images. The proposed approach is evaluated using metrics that demonstrate the superiority of this YOLO version compared to previous ones. To address the issue of misdetection, a data augmentation approach is proposed and tested across different YOLO versions, showing its effectiveness in improving detection quality and robustness. Full article
Show Figures

Figure 1

11 pages, 2036 KB  
Article
Application of Online Flow Cytometry for Early Biofouling Detection in Reverse Osmosis Membrane Systems
by Laura Pulido Beltran, Johannes S. Vrouwenvelder and Nadia Farhat
Membranes 2024, 14(9), 185; https://doi.org/10.3390/membranes14090185 - 27 Aug 2024
Cited by 1 | Viewed by 1922
Abstract
Biofouling poses a significant challenge to reverse osmosis (RO) membrane systems, necessitating timely detection for effective control. This study evaluated the efficacy of flow cytometry (FCM) for early biofilm detection in comparison to conventional system performance indicators. Feed channel pressure drop and total [...] Read more.
Biofouling poses a significant challenge to reverse osmosis (RO) membrane systems, necessitating timely detection for effective control. This study evaluated the efficacy of flow cytometry (FCM) for early biofilm detection in comparison to conventional system performance indicators. Feed channel pressure drop and total cell concentration in the Membrane Fouling Simulator (MFS) flowcell cross-flow outlet water were monitored over time as early biofouling indicators. The results demonstrated the potential of increased bacterial cell concentration in cross-flow outlet water as a reliable indicator of biofouling development on the membrane. Water outlet monitoring enabled faster biofouling detection compared to feed channel pressure drop. Membrane autopsy confirmed biofilm presence prior to the pressure drop increase, highlighting the advantage of early detection in implementing corrective measures. Timely intervention reduces operational costs and energy consumption in membrane-based processes. Full article
Show Figures

Figure 1

13 pages, 1783 KB  
Article
Development and Succession of Non-Indigenous and Cryptogenic Species over Two Different Substrates in the Port of Alicante (Western Mediterranean)
by Alejandro Carmona-Rodríguez, Carlos Antón, Miguel-Ángel Climent, Pedro Garcés, Vicente Montiel, Elisa Arroyo-Martínez and Alfonso A. Ramos-Esplá
J. Mar. Sci. Eng. 2024, 12(7), 1188; https://doi.org/10.3390/jmse12071188 - 15 Jul 2024
Cited by 1 | Viewed by 1696
Abstract
Artificial structures act as points of entry for non-indigenous species (NIS) in port areas and may support higher abundance and richness of them. The studies about NIS are increasing, but studies focusing on the variations in temporal recruitment and ecological mechanisms are still [...] Read more.
Artificial structures act as points of entry for non-indigenous species (NIS) in port areas and may support higher abundance and richness of them. The studies about NIS are increasing, but studies focusing on the variations in temporal recruitment and ecological mechanisms are still scarce. Thus, the aim of this work was to determine the colonization and development of non-indigenous sessile fouling species over two types of substrates (electrolytic carbonated and steel) during 12 months of immersion in the Alicante harbor. The biofouling communities of both substrates were analyzed in terms of abundance and species richness by status (native, cryptogenic, and NIS), and NIS assemblages of both substrates were studied by means of multivariate analyses. In total, 53 different species were identified, 38 in steel (six NIS and six cryptogenic) and 50 in the carbonated substrate (six NIS and 10 cryptogenic). Most NIS were more abundant and diverse after 9 months of immersion and had a preference for carbonated substrates. Furthermore, most of them were positively correlated in both substrates (mainly in steel) and it is noted that the number of NIS in the port of Alicante is increasing as new records have been detected. Full article
(This article belongs to the Special Issue Marine Ecology Conservation: Analysis for Habitat and Species Studies)
Show Figures

Figure 1

Back to TopTop