Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = biodiversity collapse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5785 KiB  
Article
Phylogenetic Reassessment of Murinae Inferred from the Mitogenome of the Monotypic Genus Dacnomys Endemic to Southeast Asia: New Insights into Genetic Diversity Erosion
by Zhongsong Wang, Di Zhao, Wenyu Song and Wenge Dong
Biology 2025, 14(8), 948; https://doi.org/10.3390/biology14080948 - 28 Jul 2025
Viewed by 335
Abstract
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits [...] Read more.
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits diagnostic morphological adaptations—hypertrophied upper molars and cryptic pelage—that underpin niche differentiation in undisturbed tropical/subtropical forests. Despite its evolutionary distinctiveness, the conservation prioritization given to Dacnomys is hindered due to a deficiency of data and unresolved phylogenetic relationships. Here, we integrated morphological analyses with the first complete mitogenome (16,289 bp in size; no structural rearrangements) of D. millardi to validate its phylogenetic placement within the subfamily Murinae and provide novel insights into genetic diversity erosion. Bayesian and maximum likelihood phylogenies robustly supported Dacnomys as sister to Leopoldamys (PP = 1.0; BS = 100%), with an early Pliocene divergence (~4.8 Mya, 95% HPD: 3.65–5.47 Mya). Additionally, based on its basal phylogenetic position within Murinae, we propose reclassifying Micromys from Rattini to the tribe Micromyini. Codon usage bias analyses revealed pervasive purifying selection (Ka/Ks < 1), constraining mitogenome evolution. Genetic diversity analyses showed low genetic variation (CYTB: π = 0.0135 ± 0.0023; COX1: π = 0.0101 ± 0.0025) in fragmented populations. We propose three new insights into this genetic diversity erosion. (1) Evolutionary constraints: genome-wide evolutionary conservation and shallow evolutionary history (~4.8 Mya) limited mutation accumulation. (2) Anthropogenic pressures: deforestation-driven fragmentation of habitats (>20,000 km2/year loss since 2000) has reduced effective population size, exacerbating genetic drift. (3) Ecological specialization: long-term adaptation to stable niches favored genomic optimization over adaptive flexibility. These findings necessitate suitable conservation action by enforcing protection of core habitats to prevent deforestation-driven population collapses and advocating IUCN reclassification of D. millardi from Data Deficient to Near Threatened. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

21 pages, 8914 KiB  
Article
Impacts of Extreme Flood and Drought Events on Dish-Shaped Lake Habitats in Poyang Lake Under Altered Hydrological Regimes
by Yifan Xu, Tengfei Hu, Lian-Gang Chen, Hao Lu, Li-Ming Chen, Zhenyu Luan, Qiu Jin and Yong Shi
Remote Sens. 2025, 17(11), 1936; https://doi.org/10.3390/rs17111936 - 3 Jun 2025
Viewed by 459
Abstract
In recent years, the altered hydrological regimes and frequent extreme hydrological events in its watershed have significantly affected the stability and biodiversity of the dish-shaped lakes (DSLs) ecosystem in Poyang Lake. This study uses long-term water level records from the Xingzi hydrological station, [...] Read more.
In recent years, the altered hydrological regimes and frequent extreme hydrological events in its watershed have significantly affected the stability and biodiversity of the dish-shaped lakes (DSLs) ecosystem in Poyang Lake. This study uses long-term water level records from the Xingzi hydrological station, multi-source remote sensing imagery, and field surveys to assess how altered hydrological regimes and frequent extreme hydrological events influence the coupled hydro-ecological evolution of DSLs under different gate-controlled conditions. The results reveal the following: (1) After 2003, average monthly water levels declined by 0.84 m, shifting prolonged inundation depths from the 10.0 to 14.0 m range into the 5.5 to 9.5 m range. Extreme hydrological events disrupted the hydrological regimes, triggering a clear “collapse–recovery” succession in submerged plants and major shifts in shoal wetland vegetation. (2) Gate-controlled DSLs (GC DSLs) mitigated many of these impacts by reducing the autumnal drawdown in the water area change rate to 0.324 km2/d, curbing the upward expansion of emergent and hygrophytic vegetation during high-water-level years, and stabilizing habitats during low-water-level years, although different management strategies and substrate characteristics may still lead to divergent habitat trajectories. (3) The habitat heterogeneity exhibited by the DSLs’ vegetation communities along the elevation gradient had differential effects on migratory birds, and GC DSLs can offer migratory birds relatively stable resting habitats and food resources during extreme hydrological events. The study recommends that DSL management should adopt a hierarchical dynamic regulation strategy to balance natural hydrological fluctuations with human interventions, thereby strengthening the resilience of DSL wetland habitats to extreme hydrological events. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

22 pages, 6810 KiB  
Article
Vegetation Net Primary Productivity Dynamics over the Past Three Decades and Elevation–Climate Synergistic Driving Mechanism in Southwest China’s Mountains
by Yang Li, Shaokun Zhou, Yongping Hou, Yuekai Hu, Chunpeng Chen, Yuanyuan Liu, Lin Yuan, Haobing Cao, Bintian Qian, Ying Liu, Chuhui Yang, Cheng Wu and Yuhong Song
Forests 2025, 16(6), 919; https://doi.org/10.3390/f16060919 - 30 May 2025
Viewed by 536
Abstract
Mountain forests in biodiversity hotspots show complex responses to climate and topographic gradients. However, the effect of synergistic controls of elevation and climate on Net Primary Productivity (NPP) dynamics remain insufficiently quantified in complex mountains. Southwest China’s mountains are Asia’s most biodiverse temperate [...] Read more.
Mountain forests in biodiversity hotspots show complex responses to climate and topographic gradients. However, the effect of synergistic controls of elevation and climate on Net Primary Productivity (NPP) dynamics remain insufficiently quantified in complex mountains. Southwest China’s mountains are Asia’s most biodiverse temperate region with pronounced vertical ecosystem stratification, representing a critical continental carbon sink. This study investigated the spatiotemporal dynamics and driving mechanisms of NPP in Southwest China’s typical mountain ecosystems over the past three decades using a high-resolution modeling framework integrated with relative importance analysis, a Geodetector, and an elevation-dependent model. The results showed that (1) NPP revealed a significant increasing trend, rising from 634 ± 325 to 748 ± 348 g C m−2 yr−1 (mean rate 4 g C m−2 yr−1) from 1990 to 2018. Spatially, the most rapid increases occurred in eastern regions. (2) Rising CO2 and climate warming (dominate 17% regions) drove interannual NPP growth, with elevation thresholds dictating driver dominance. The CO2 governed low elevation, while temperature controlled higher elevation (>4800 m). (3) The elevation-dependent model revealed a more complex and nonlinear relationship between NPP and elevation, identifying three distinct phases: the saturation phase (<500 m) with negligible decay of NPP; the transition phase (500–3500 m) with linear decline (NPP loss of 29 g C m⁻2 yr⁻1 per 100 m); and the collapse phase (>3500 m) with continuously attenuated NPP losses (NPP average loss of 10.5 g C m⁻2 yr⁻1 per 100 m) reflecting high-elevation vegetation adaptation to extreme conditions. (4) Land cover dominated NPP spatial heterogeneity and was amplified by interactions with elevation and temperature, highlighting a vegetation–climate–topography coupling mechanism that critically shapes productivity patterns. Biodiversity-rich widespread mixed forests underpinned the region’s high productivity. Mountain protection should focus on protecting existing evergreen forests from fragmentation, while forestation should prioritize the establishment of biodiversity-rich mixed forest. These findings established a comprehensive framework for spatiotemporal analysis of driving mechanisms and enhanced the understanding of NPP dynamics in complex mountain ecosystems, informing sustainable management priorities in mountain regions. Full article
(This article belongs to the Topic Responses of Trees and Forests to Climate Change)
Show Figures

Figure 1

32 pages, 6159 KiB  
Article
Geotechnical Aspects of N(H)bSs for Enhancing Sub-Alpine Mountain Climate Resilience
by Tamara Bračko, Primož Jelušič and Bojan Žlender
Land 2025, 14(3), 512; https://doi.org/10.3390/land14030512 - 28 Feb 2025
Viewed by 542
Abstract
Mountain resilience is the ability of mountain regions to endure, adapt to, and recover from environmental, climatic, and anthropogenic stressors. Due to their steep topography, extreme weather conditions, and unique biodiversity, these areas are particularly vulnerable to climate change, natural hazards, and human [...] Read more.
Mountain resilience is the ability of mountain regions to endure, adapt to, and recover from environmental, climatic, and anthropogenic stressors. Due to their steep topography, extreme weather conditions, and unique biodiversity, these areas are particularly vulnerable to climate change, natural hazards, and human activities. This paper examines how nature-based solutions (NbSs) can strengthen slope stability and geotechnical resilience, with a specific focus on Slovenia’s sub-Alpine regions as a case study representative of the Alps and similar mountain landscapes worldwide. The proposed Climate-Adaptive Resilience Evaluation (CARE) concept integrates geomechanical analysis with geotechnical planning, addressing the impacts of climate change through a systematic causal chain that connects climate hazards, their effects, and resulting consequences. Key factors such as water infiltration, soil permeability, and groundwater dynamics are identified as critical elements in designing timely and effective NbSs. In scenarios where natural solutions alone may be insufficient, hybrid solutions (HbSs) that combine nature-based and conventional engineering methods are highlighted as essential for managing unstable slopes and restoring collapsed geostructures. The paper provides practical examples, including slope stability analyses and reforestation initiatives, to illustrate how to use the CARE concept and how NbSs can mitigate geotechnical risks and promote sustainability. By aligning these approaches with regulatory frameworks and climate adaptation objectives, it underscores the potential for integrating NbSs and HbSs into comprehensive, long-term geotechnical strategies for enhancing mountain resilience. Full article
(This article belongs to the Special Issue Impact of Climate Change on Land and Water Systems)
Show Figures

Figure 1

15 pages, 2033 KiB  
Article
The Identification of Patterns in the Relation Between Biodiversity and Mutualistic Ecosystem Function Based on Network Resilience
by Changchun Lv, Ye Zhang, Yulin Lei, Ziwei Yuan and Dongli Duan
Entropy 2025, 27(3), 231; https://doi.org/10.3390/e27030231 - 24 Feb 2025
Viewed by 745
Abstract
Identifying the relation between biodiversity and mutualistic ecosystem function has been a longstanding concern. In this study, we present an interpretive model to evaluate the impact of each species on mutualistic ecosystem functions. By analyzing network resilience, we derive the average abundance and [...] Read more.
Identifying the relation between biodiversity and mutualistic ecosystem function has been a longstanding concern. In this study, we present an interpretive model to evaluate the impact of each species on mutualistic ecosystem functions. By analyzing network resilience, we derive the average abundance and tipping point of the ecosystem to represent ecosystem functions. Based on the order of species collapse, each species is classified according to the F-core. The model quantitatively evaluates the influence of species on mutualistic ecosystem functions in scenarios where species are removed from ecosystems. We propose a criterion for identifying redundant species: a species is considered redundant if its removal negatively impacts average abundance without affecting the tipping point. To validate the model, we introduce twenty-four mutualistic ecosystems. Our numerical simulations and analytical analyses reveal two distinct patterns: one indicating the presence of redundancy and the other suggesting that each species is essential. Additionally, in mutualistic ecosystems characterized by redundancy, specialist species are more likely to be identified as redundant. Full article
(This article belongs to the Special Issue Robustness and Resilience of Complex Networks)
Show Figures

Figure 1

36 pages, 2822 KiB  
Review
The Sixth Mass Extinction and Amphibian Species Sustainability Through Reproduction and Advanced Biotechnologies, Biobanking of Germplasm and Somatic Cells, and Conservation Breeding Programs (RBCs)
by Robert K. Browne, Qinghua Luo, Pei Wang, Nabil Mansour, Svetlana A. Kaurova, Edith N. Gakhova, Natalia V. Shishova, Victor K. Uteshev, Ludmila I. Kramarova, Govindappa Venu, Mikhail F. Bagaturov, Somaye Vaissi, Pouria Heshmatzad, Peter Janzen, Aleona Swegen, Julie Strand and Dale McGinnity
Animals 2024, 14(23), 3395; https://doi.org/10.3390/ani14233395 - 25 Nov 2024
Cited by 3 | Viewed by 2547
Abstract
Primary themes in intergenerational justice are a healthy environment, the perpetuation of Earth’s biodiversity, and the sustainable management of the biosphere. However, the current rate of species declines globally, ecosystem collapses driven by accelerating and catastrophic global heating, and a plethora of other [...] Read more.
Primary themes in intergenerational justice are a healthy environment, the perpetuation of Earth’s biodiversity, and the sustainable management of the biosphere. However, the current rate of species declines globally, ecosystem collapses driven by accelerating and catastrophic global heating, and a plethora of other threats preclude the ability of habitat protection alone to prevent a cascade of amphibian and other species mass extinctions. Reproduction and advanced biotechnologies, biobanking of germplasm and somatic cells, and conservation breeding programs (RBCs) offer a transformative change in biodiversity management. This change can economically and reliably perpetuate species irrespective of environmental targets and extend to satisfy humanity’s future needs as the biosphere expands into space. Currently applied RBCs include the hormonal stimulation of reproduction, the collection and refrigerated storage of sperm and oocytes, sperm cryopreservation, in vitro fertilization, and biobanking of germplasm and somatic cells. The benefits of advanced biotechnologies in development, such as assisted evolution and cloning for species adaptation or restoration, have yet to be fully realized. We broaden our discussion to include genetic management, political and cultural engagement, and future applications, including the extension of the biosphere through humanity’s interplanetary and interstellar colonization. The development and application of RBCs raise intriguing ethical, theological, and philosophical issues. We address these themes with amphibian models to introduce the Multidisciplinary Digital Publishing Institute Special Issue, The Sixth Mass Extinction and Species Sustainability through Reproduction Biotechnologies, Biobanking, and Conservation Breeding Programs. Full article
Show Figures

Figure 1

24 pages, 12550 KiB  
Article
Modeling the Impact of Global Warming on Ecosystem Dynamics: A Compartmental Approach to Sustainability
by Sinue A. Tovar-Ortiz, Pablo T. Rodriguez-Gonzalez and Rigoberto Tovar-Gómez
World 2024, 5(4), 1077-1100; https://doi.org/10.3390/world5040054 - 4 Nov 2024
Cited by 3 | Viewed by 2604
Abstract
Environmental degradation driven by human activities has heightened the need for sustainable development strategies that balance economic growth with ecological preservation. This study uses a compartmental model approach to examine the effects of global warming on ecosystem dynamics, focusing on how rising temperatures [...] Read more.
Environmental degradation driven by human activities has heightened the need for sustainable development strategies that balance economic growth with ecological preservation. This study uses a compartmental model approach to examine the effects of global warming on ecosystem dynamics, focusing on how rising temperatures alter interactions across trophic levels. Three case studies of varying complexity, including a human ecosystem incorporating social and economic factors, were analyzed by integrating feedback loops between greenhouse gas emissions, temperature anomalies, and ecosystem responses. The results quantitatively demonstrate that even minor disruptions in one part of an ecosystem can cause significant instability across trophic levels, potentially driving the system to collapse in a short period. These findings from all case studies highlight the cascading impacts of global warming, underscoring the intricate relationship between climate change and ecosystem stability. Furthermore, this study offers qualitative insights into the potential consequences of climate change on biodiversity and resource availability in real ecosystems, highlighting the vulnerability of such systems and the importance of incorporating feedback mechanisms into environmental policy and decision-making processes. The approach employed in this study offers a more robust framework for understanding ecosystem responses and for developing strategies to enhance resilience against climate change, thereby protecting the long-term sustainability of ecosystems. Full article
Show Figures

Figure 1

28 pages, 34681 KiB  
Article
Dancing Towards the End—Ecological Oscillations in Mediterranean Coral Reefs Prior to the Messinian Salinity Crisis (Calcare di Rosignano Formation, Acquabona, Tuscany, Italy)
by Giovanni Coletti, Alberto Vimercati, Francesca R. Bosellini, Alberto Collareta, Giulia Bosio, Adriano Guido, Alessandro Vescogni, Daniela Basso and Or M. Bialik
Geosciences 2024, 14(11), 285; https://doi.org/10.3390/geosciences14110285 - 25 Oct 2024
Viewed by 2640
Abstract
The lower Messinian Calcare di Rosignano Formation (Tuscany, Italy, 43° N) preserves one of the youngest and northernmost examples of coral reefs in the Mediterranean. The outcropping succession of the Acquabona quarry consists of four main facies, namely, in ascending stratigraphic order: (1) [...] Read more.
The lower Messinian Calcare di Rosignano Formation (Tuscany, Italy, 43° N) preserves one of the youngest and northernmost examples of coral reefs in the Mediterranean. The outcropping succession of the Acquabona quarry consists of four main facies, namely, in ascending stratigraphic order: (1) coral boundstone, (2) coralline algal rudstone, (3) serpulid floatstone to packstone, and (4) peloidal packstone to grainstone. The succession displays a trend toward increasingly more shallow conditions and progressively more restricted water circulation. The coral reef displays a limited coral biodiversity and a remarkable abundance of heterotrophs, similar to modern coral reefs developed at the edges of the ecological niche of symbiont-bearing colonial corals. The widespread presence of coral colonies pervasively encrusted by coralline algae and benthic foraminifera suggests that short-term environmental perturbations caused temporary shutdowns of the coral-dominated carbonate factory. Moving upwards, there are fewer corals and more highly adaptable carbonate producers like coralline algae and serpulids. This suggests that the decline of corals had been caused by the conditions in the basin becoming more stressful, up to the collapse of the coral community. The overall succession indicates that coral-dominated ecosystems located at the edges of the coral zone are very sensitive; they can be affected even by minor perturbations and easily collapse if negative conditions persist. Full article
(This article belongs to the Special Issue Advances in Carbonate Diagenesis)
Show Figures

Figure 1

23 pages, 466 KiB  
Article
Applying the Precautionary Principle to Hidden Collapse
by Rhett D. Martin and David B. Lindenmayer
Sustainability 2024, 16(10), 3904; https://doi.org/10.3390/su16103904 - 7 May 2024
Viewed by 1475
Abstract
There is growing evidence around the world of serious decline in biodiversity requiring urgent application of precautionary risk management. A better regulatory regime for precautionary management of long-term risk is now an urgent priority. This article addresses the prioritization of long-term risk management [...] Read more.
There is growing evidence around the world of serious decline in biodiversity requiring urgent application of precautionary risk management. A better regulatory regime for precautionary management of long-term risk is now an urgent priority. This article addresses the prioritization of long-term risk management by examining risk management of ecosystems that may be experiencing hidden collapse. Hidden collapse refers to the existence of environmental indicators indicative of future collapse of forests, even though the forest appears intact and not at risk of ecosystem collapse. Professor David Lindenmayer and Dr Chloe Sato (Lindenmayer) first identified hidden collapse in 2018 in Mountain Ash forests of Victoria, Australia. The risk of hidden collapse represents a long-term environmental threat and is a potential trigger for application of the precautionary principle (principle). Implicit in hidden collapse are two preconditions for application of the principle; the risk of a serious or irreversible environmental threat, and the existence of scientific uncertainty about the nature of the risk. Despite hidden collapse satisfying these essential preconditions for applying the principle, decision makers did not apply it in respect hidden collapse of Mountain Ash forests in Victoria. This article considers the current status of the principle in regulation and how it can be adjusted to address long term environmental risk. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

28 pages, 14264 KiB  
Article
Climate Risk Management in Cultural Heritage for Inclusive Adaptation Actions in Nigeria
by Olufemi Adetunji and Cathy Daly
Heritage 2024, 7(3), 1237-1264; https://doi.org/10.3390/heritage7030060 - 29 Feb 2024
Viewed by 2882
Abstract
Different regions around the world are experiencing climate risks, including increasing temperatures, rapid changes in rainfall patterns, loss of biodiversity and extreme weather events. Within the last decade, Nigeria has experienced a series of localised and regional drought and flooding events affecting not [...] Read more.
Different regions around the world are experiencing climate risks, including increasing temperatures, rapid changes in rainfall patterns, loss of biodiversity and extreme weather events. Within the last decade, Nigeria has experienced a series of localised and regional drought and flooding events affecting not only arable farmlands but also cultural heritage, including heritage buildings and cultural landscapes. This study assesses climate-related risks affecting cultural heritage using the ABC risk assessment method to understand the impacts of key climate drivers. The assessment method was applied to five cultural heritage sites with different values and functions. The findings revealed that changes in precipitation and wind speed and direction induce most of the sudden-onset impacts, such as bushfires, flooding and physical collapse. A sense of community connection and attachment to the built heritage remain strong but there have been limited efforts to implement actions that address climate risks to the built heritage and its surrounding spaces. The output of the assessment contributes to risk prioritisation and informs decision making for developing the needed adaptive actions. The study demonstrates the need to leverage climate information collected by different national and international organisations not to only assess climate risks to heritage but also to improve the involvement of local communities and non-heritage professionals in developing adaptation actions for built heritage. Full article
(This article belongs to the Special Issue Assessing Impacts of Climate Change on Cultural and Natural Heritage)
Show Figures

Figure 1

24 pages, 12940 KiB  
Article
Automatic Extraction for Land Parcels Based on Multi-Scale Segmentation
by Fei Liu, Huizhong Lu, Lilei Wu, Rui Li, Xinjun Wang and Longxi Cao
Land 2024, 13(2), 158; https://doi.org/10.3390/land13020158 - 30 Jan 2024
Cited by 4 | Viewed by 1740 | Correction
Abstract
Different land parcels possess unique microclimates, soils, and biological conditions, which in turn significantly influence the land parcels themselves, impacting biodiversity, hydrological relationships, land degradation, geological disasters, and other ecological environments. Therefore, researching an efficient and accurate method capable of extracting land parcels [...] Read more.
Different land parcels possess unique microclimates, soils, and biological conditions, which in turn significantly influence the land parcels themselves, impacting biodiversity, hydrological relationships, land degradation, geological disasters, and other ecological environments. Therefore, researching an efficient and accurate method capable of extracting land parcels with the least internal heterogeneity at the macro, meso, and micro scales is extremely important. Multi-scale segmentation, based on scale and resolution analysis techniques, is a bottom-up merging technology that minimizes internal heterogeneity within regions and maximizes heterogeneity between different units. This approach is extensively applied in multi-scale spectral feature extraction and classification and is further combined with deep learning techniques to enhance the accuracy of image classification. This study, using Xinghai County in Qinghai Province as an example, employs multi-scale segmentation and hydrological analysis methods to extract land parcels at different spatial scales. The results show (1) that the land parcels extracted using the hydrological analysis method are catchment units centered around rivers, including slopes on both sides of the river. In contrast, multi-scale segmentation extracts regions comprising land parcels with similar properties, enabling the segregation of slopes and channels into independent units. (2) At a classification threshold of 19, multi-scale segmentation divides the study area into five different types of land parcels, reflecting the heterogeneity of terrain undulations and their hydrological connections. When the classification threshold is set to 31, the study area is divided into 15 types of land parcels, primarily highlighting micro-topographic features. (3) Multi-scale segmentation can merge and categorize areas with the least heterogeneity in land parcels, facilitating subsequent statistical analysis. Therefore, mesoscale land parcels extracted through multi-scale segmentation are invaluable for analyzing regional Earth surface processes such as soil erosion, sediment distribution and transportation. Microscale land parcels are significantly important for identifying high-risk areas in relation to geological disasters like landslides and collapses. Full article
Show Figures

Graphical abstract

13 pages, 3869 KiB  
Article
The Microbiomes of Various Types of Abandoned Fallow Soils of South Taiga (Novgorod Region, Russian North-West)
by Evgeny V. Abakumov, Grigory V. Gladkov, Anastasiia K. Kimeklis and Evgeny E. Andronov
Agronomy 2023, 13(10), 2592; https://doi.org/10.3390/agronomy13102592 - 10 Oct 2023
Cited by 5 | Viewed by 1657
Abstract
More than 30 years have passed after the collapse of the Soviet Union, and huge areas of soil were left in a fallow state. The study of the microbiological status of fallow soils is an extremely urgent task because fallow soils represent the [...] Read more.
More than 30 years have passed after the collapse of the Soviet Union, and huge areas of soil were left in a fallow state. The study of the microbiological status of fallow soils is an extremely urgent task because fallow soils represent the “hidden” food basket of Eurasia. In this context, we studied the influence of land use type (pasture, vegetable garden, hayfield, or secondary afforestation) on key agrochemical parameters and parameters of soil microbial biodiversity. All anthropogenically transformed soils included in the analysis showed increased humus content and pH shift to a more neutral side compared to the mature soil; the same seemed to be the case for all nutrient elements. It was established that the key factor regulating soil microbiome composition shift was the duration and degree of irreversibility of an agrogenic impact. The key phyla of soil microorganisms were Pseudomonadota, Acidobacteriota, Verrucomicrobiota, Bacteroidota, and Actinobacteriota. The proportion of other phyla was quite variative in soils of different land use. At the same time, all the 30-year-old abandoned soils were more similar to each other than to mature reference soil and 130-year-old soils of monoculture vegetable gardens. Thus, the first factor, regulating soil microbiome composition, is a continuation of soil agrogenic transformation. The second factor is the type of land use if the soil age was equal for fallow territory in the case of one initial podzol soil and one type of landscape. Thus, 30-year-old abandoned soils are intermediate in terms of microbial biodiversity between pristine natural podzols and plaggic podzol. It could be suggested that in the case of secondary involvement of soils in agriculture, the composition of the microbiome may turn to mature soil or to plaggic soil under intensive amelioration. Full article
(This article belongs to the Special Issue Grassland and Pasture Ecological Management and Utilization)
Show Figures

Figure 1

15 pages, 1608 KiB  
Article
A Brief History of Broomcorn Millet Cultivation in Lithuania
by Giedrė Motuzaitė Matuzevičiūtė and Rimvydas Laužikas
Agronomy 2023, 13(8), 2171; https://doi.org/10.3390/agronomy13082171 - 18 Aug 2023
Cited by 7 | Viewed by 3439
Abstract
The eastern Baltic region represents the world’s most northerly limit of successful broomcorn millet (Panicum miliaceum) (hereafter, millet) cultivation in the past, yet this crop has been almost forgotten today. The earliest millet in the eastern Baltic region has been identified [...] Read more.
The eastern Baltic region represents the world’s most northerly limit of successful broomcorn millet (Panicum miliaceum) (hereafter, millet) cultivation in the past, yet this crop has been almost forgotten today. The earliest millet in the eastern Baltic region has been identified from macrobotanical remains which were directly dated to ca 1000 BCE. Between 800 and 500 BCE, millet was one of the major staple foods in the territory of modern-day Lithuania. Millet continued to play an important role in past agriculture up until the 15th century, with its use significantly declining during the following centuries. This paper analyses both the archaeobotanical records and written sources on broomcorn millet cultivation in Lithuania from its first arrival all the way through to the 19th century. The manuscript reviews the evidence of millet cultivation in the past as documented by archaeobotanical remains and historical accounts. In light of fluctuating records of millet cultivation through time, we present the hypothetical reasons for the decline in millet use as human food. The paper hypothesizes that the significant decrease in broomcorn millet cultivation in Lithuania from the 15th century onwards was likely influenced by several factors, which include climate change (the Little Ice Age) and the agricultural reforms of the 16th century. However, more detailed research is required to link past fluctuations in millet cultivation with climatic and historical sources, thus better understanding the roots of collapsing crop biodiversity in the past. Full article
Show Figures

Figure 1

18 pages, 3837 KiB  
Article
Invasive Fish and Sea Urchins Drive the Status of Canopy Forming Macroalgae in the Eastern Mediterranean
by Athanasios Nikolaou, Konstantinos Tsirintanis, Gil Rilov and Stelios Katsanevakis
Biology 2023, 12(6), 763; https://doi.org/10.3390/biology12060763 - 24 May 2023
Cited by 15 | Viewed by 5092
Abstract
Canopy-forming macroalgae, such as Cystoseira sensu lato, increase the three-dimensional complexity and spatial heterogeneity of rocky reefs, enhancing biodiversity and productivity in coastal areas. Extensive loss of canopy algae has been recorded in recent decades throughout the Mediterranean Sea due to various [...] Read more.
Canopy-forming macroalgae, such as Cystoseira sensu lato, increase the three-dimensional complexity and spatial heterogeneity of rocky reefs, enhancing biodiversity and productivity in coastal areas. Extensive loss of canopy algae has been recorded in recent decades throughout the Mediterranean Sea due to various anthropogenic pressures. In this study, we assessed the biomass of fish assemblages, sea urchin density, and the vertical distribution of macroalgal communities in the Aegean and Levantine Seas. The herbivore fish biomass was significantly higher in the South Aegean and Levantine compared to the North Aegean. Very low sea urchin densities suggest local collapses in the South Aegean and the Levantine. In most sites in the South Aegean and the Levantine, the ecological status of macroalgal communities was low or very low at depths deeper than 2 m, with limited or no canopy algae. In many sites, canopy algae were restricted to a very narrow, shallow zone, where grazing pressure may be limited due to harsh hydrodynamic conditions. Using Generalized Linear Mixed Models, we demonstrated that the presence of canopy algae is negatively correlated with the biomass of the invasive Siganus spp. and sea urchins. The loss of Cystoseira s.l. forests is alarming, and urgent conservation actions are needed. Full article
Show Figures

Figure 1

8 pages, 3228 KiB  
Proceeding Paper
Embracing the SDG 2030 and Resilience for Monitoring and Learning in Emergency and Developing Projects
by Francisco J. A. Guachalla
Med. Sci. Forum 2023, 19(1), 6; https://doi.org/10.3390/msf2023019006 - 23 May 2023
Viewed by 1270
Abstract
The Project Planning, Monitoring, Systematizing, and Learning (PlaMSyL) method was developed in a period of ten years (1996–2005) and has expanded since then to improve the results of development and emergency projects in developing countries, focusing mainly on the monitoring and learning process [...] Read more.
The Project Planning, Monitoring, Systematizing, and Learning (PlaMSyL) method was developed in a period of ten years (1996–2005) and has expanded since then to improve the results of development and emergency projects in developing countries, focusing mainly on the monitoring and learning process of different local stakeholders beyond the deliverables into the changes and impacts of outcomes. It has been applied in different countries in Asia, Africa, and Latin America between 2006 and 2016. Today, it is taught in universities to students of pre- and post-grade levels. The 17 Sustainable Development Goals are part of the UN Agenda 2030, signed by 193 governments in 2015, contain 169 Targets, and 232 indicators of social well-being (health, education, zero hunger, equality, and gender), and for economic (food production, industry, zero poverty, consumption, infrastructure, and technology), and ecological development (water, climate, governance, and biodiversity) preserving the planet from a collapse and ensuring the sustainable well-being of all. The SDGs provide the framework for a new circular economy based on clean energy and zero greenhouse gases. One basic principle of the SDG 2030 is “Leave No One Behind” and is what drives to work with the local governments and communities in a bottom-up approach, coordinating with the national level to set up appropriate policies. The PlaMSyL method has been practiced by different professional teams of education, health, engineering, agriculture, disaster risk reduction, and ecologists, and for this reason, the paper explains the use of the PlaMSyL method with the indicators and targets of the SDGs, and the resilience to facilitate local project teams and stakeholders to use the SDGs participatively as a framework, and as a metrics and communication tool. Full article
(This article belongs to the Proceedings of International One Health Conference)
Show Figures

Figure 1

Back to TopTop