Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = bio-based polyester polyols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1771 KB  
Article
An Integrated Biorefinery Proof of Concept: The Synthesis of Fully Bio-Based, Functional Lignin Polyester Copolymers of Cyclic Anhydrides and Epoxides Towards Polyol Applications and Tunable Bio-Derived Materials
by Oliver J. Driscoll, Daniel J. van de Pas, Kirk M. Torr, Hayden P. Thomas, Richard Vendamme and Elias Feghali
Polymers 2025, 17(20), 2806; https://doi.org/10.3390/polym17202806 - 21 Oct 2025
Viewed by 307
Abstract
A versatile, sustainable feedstock pathway to bio-based polymeric materials was developed utilizing lignin biomass and the ring-opening copolymerization (ROCOP) of cyclic anhydrides and epoxides to synthesize functional, lignin-derived, fully bio-based polyester polyols. The initial goal was to make the ROCOP reaction more applicable [...] Read more.
A versatile, sustainable feedstock pathway to bio-based polymeric materials was developed utilizing lignin biomass and the ring-opening copolymerization (ROCOP) of cyclic anhydrides and epoxides to synthesize functional, lignin-derived, fully bio-based polyester polyols. The initial goal was to make the ROCOP reaction more applicable to bio-derived starting materials and more attractive to commercialization by conducting the polymerization under less constrained and industrially relevant conditions in air and without the extensive purification of reagents, catalysts, or solvents, typically used in the literature. A refined ROCOP system was applied as a powerful tool in lignin valorization by successfully synthesizing the lignin-derived copolyester prepolymers from lignin models and depolymerized native lignin sourced from the reductive catalytic fractionation of Pinus radiata wood biomass. After mechanistic studies based on NMR characterization, an alternative ROCOP-style mechanism was proposed. This was found to be (1) contributing to the acceleration of the observed reaction rates with added [PPNCl] organo-catalyst and (2) ‘self-initiation/self-promoted’ ROCOP without any added external [PPNCl] catalyst, likely due to the presence of inherent [OH] groups/ species in the lignin-derived glycidyl ether monomer promoting reactivity. As a final goal, the potential of these lignin-derived polyesters as intermediate polyols was demonstrated by applying them in the synthesis of polyurethane (PU) film materials with a high biomass content of 75–79%. A dramatic range of thermomechanical properties was observed for the resulting materials, demonstrating how the ROCOP reaction can be used to tailor the properties of the functional polyester and PU material based on the nature of the epoxide and anhydride substrates used. These findings help endeavors towards predicting the relationship between chemical structure and material thermomechanical properties and performance, relevant for industrial applications. Overall, this study demonstrated the proof of concept that PU materials can be prepared from lignocellulosic biomass utilizing industrially feasible ROCOP of bio-derived cyclic anhydrides and epoxides. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Polymeric Materials)
Show Figures

Graphical abstract

29 pages, 5126 KB  
Article
Integrating Computational and Experimental Methods for the Rational Ecodesign and Synthesis of Functionalized Safe and Sustainable Biobased Oligoesters
by Federico Zappaterra, Anamaria Todea, Fioretta Asaro, Pasquale Fabio Alberto Ditalia, Chiara Danielli, Monia Renzi, Serena Anselmi and Lucia Gardossi
Polymers 2025, 17(18), 2537; https://doi.org/10.3390/polym17182537 - 19 Sep 2025
Viewed by 356
Abstract
A chemical platform for post-polymerization methods was developed, starting from the ecodesign and enzymatic synthesis of safe and sustainable bio-based polyesters containing discrete units of itaconic acid. This unsaturated bio-based monomer enables the covalent linkage of molecules that can impart desired properties such [...] Read more.
A chemical platform for post-polymerization methods was developed, starting from the ecodesign and enzymatic synthesis of safe and sustainable bio-based polyesters containing discrete units of itaconic acid. This unsaturated bio-based monomer enables the covalent linkage of molecules that can impart desired properties such as hydrophilicity, flexibility, permeability, or affinity for biological targets. Molecular descriptor-based computational methods, which are generally used for modeling the pharmacokinetic properties of drugs (ADME), were employed to predict in silico the hydrophobicity (LogP), permeability, and flexibility of virtual terpolymers composed of different polyols (1,4-butanediol, glycerol, 1,3-propanediol, and 1,2-ethanediol) with adipic acid and itaconic acid. Itaconic acid, with its reactive vinyl group, acts as a chemical platform for various post-polymerization functionalizations. Poly(glycerol adipate itaconate) was selected because of its higher hydrophilicity and synthetized via solvent-free enzymatic polycondensation at 50 °C to prevent the isomerization or crosslinking of itaconic acid. The ecotoxicity and marine biodegradability of the resulting oligoester were assessed experimentally in order to verify its compliance with safety and sustainability criteria. Finally, the viability of the covalent linkage of biomolecules via Michael addition to the vinyl pendant of the oligoesters was verified using four molecules bearing thiol and amine nucleophilic groups: N-acetylcysteine, N-Ac-Phe-ε-Lys-OtBu, Lys-Lys-Lys, and glucosamine. Full article
(This article belongs to the Special Issue Post-Functionalization of Polymers)
Show Figures

Figure 1

19 pages, 7384 KB  
Article
Lignin-Modified Petrochemical-Source Polyester Polyurethane Enhances Nutrient Release Performance of Coated Urea
by Xiaomin Hu, Baishan Liu, Siyu Chen, Qi Chen, Heping Chen, Jingjing Dong, Kexin Zhang, Junxi Wang, Min Zhang and Zhiguang Liu
Agronomy 2025, 15(9), 2030; https://doi.org/10.3390/agronomy15092030 - 25 Aug 2025
Viewed by 880
Abstract
The development of controlled-release fertilizers (CRFs) has faced significant challenges due to high hydrophilicity and short release lifespan of bio-based materials, as well as non-renewable and high cost of polyester polyols (PPs). In this study, lignin-based polyols (LPs) and PPs were modified to [...] Read more.
The development of controlled-release fertilizers (CRFs) has faced significant challenges due to high hydrophilicity and short release lifespan of bio-based materials, as well as non-renewable and high cost of polyester polyols (PPs). In this study, lignin-based polyols (LPs) and PPs were modified to form a cross-linked polymer film on the surface of urea through an in situ reaction. This approach effectively balanced the slow-release ability and environmental protection of controlled-release fertilizer films. A two-factor, five-level orthogonal test was designed for the mass ratio of lignin/polyester polyol and polyol/polyaryl polymethylene isocyanate (PAPI), comprising a total of 25 treatments. The results indicated that the appropriateness of lignin polyols increased the hydrogen bond content of polyurethane membrane, improved the mechanical strength of the fertilizer membrane shell, and effectively reduced friction losses during storage and transportation. Moreover, optimizing the polyol-to-PAPI ratio minimized coating porosity, produced a smoother and denser surface, and prolonged the nitrogen release period. When the lignin polyol dosage was 25% and the polyol to PAPI ratio was 1:2, the nitrogen release time of the prepared coated urea extended to 32 days, which was 3.5 times longer than that of lignin polyurethane coated urea (7 days). The incorporation of lignin and the optimal ratio of coating materials significantly improved the controlled-release efficiency of coated fertilizer, providing theoretical support for the sustainable agricultural application of biomass. Full article
(This article belongs to the Special Issue Advances Towards Innovative Fertilizers for Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 3137 KB  
Article
Functionalization of Phenolic Aldehydes for the Preparation of Sustainable Polyesters and Polyurethanes
by Rachele N. Carafa, Brigida V. Fernandes, Clara Repiquet, Sidrah Rana, Daniel A. Foucher and Guerino G. Sacripante
Polymers 2025, 17(5), 643; https://doi.org/10.3390/polym17050643 - 27 Feb 2025
Cited by 1 | Viewed by 1803
Abstract
Biobased organic diols derived from the phenolic aldehyde by-products in the depolymerization of lignin (4-hydroxybenzaldehyde, vanillin, and syringaldehyde) for the synthesis of polyesters and polyurethanes is described. Methods to prepare lignin-based diols involved a two-step synthetic route using either a hydroxy alkylation and [...] Read more.
Biobased organic diols derived from the phenolic aldehyde by-products in the depolymerization of lignin (4-hydroxybenzaldehyde, vanillin, and syringaldehyde) for the synthesis of polyesters and polyurethanes is described. Methods to prepare lignin-based diols involved a two-step synthetic route using either a hydroxy alkylation and aldehyde reduction or an aldehyde reduction and Williamson–Ether substitution. The preparation of five polyesters (PEs) and ten polyurethanes (PUs) from lignin-based diols was also performed and their physical and thermal properties were analyzed. DSC analysis confirmed the amorphous nature of all synthesized polymers, and GPC analysis revealed broad dispersities and high molecular weights. Two PE polyols were also derived from a vanillin-based diol at concentrations of 10 and 25 wt% for their usage in sustainable PU foams. PU foams were prepared from these polyols, where it was found that only the foam containing the 10 wt% formulation was suitable for mechanical testing. The PU foam samples were found to have good hardness and tensile strengths compared to both control foams, showing potential for the incorporation of biobased polyols for PU foam formation. Full article
Show Figures

Graphical abstract

15 pages, 986 KB  
Review
Advancements and Perspectives in Biodegradable Polyester Elastomers: Toward Sustainable and High-Performance Materials
by Lisheng Tang, Xiaoyan He and Ran Huang
Int. J. Mol. Sci. 2025, 26(2), 727; https://doi.org/10.3390/ijms26020727 - 16 Jan 2025
Cited by 3 | Viewed by 2091
Abstract
While the traditional rubber industry faces the severe pressure of environmental pollution and carbon emissions, bio-based and biodegradable elastomers have become a hot topic in the field and drawn intensive research interest. Inspired by polyester resin, incorporating polyol or polycarboxylic acid as a [...] Read more.
While the traditional rubber industry faces the severe pressure of environmental pollution and carbon emissions, bio-based and biodegradable elastomers have become a hot topic in the field and drawn intensive research interest. Inspired by polyester resin, incorporating polyol or polycarboxylic acid as a branching unit into aliphatic polyester and/or introducing a monomer with a C=C bond to provide open-bond cross-linking in the fashion of common vulcanization to form three-dimensional network structures are two mainstream strategies for designing biodegradable polyester elastomers (BPEs). Both methods encounter more or fewer problems, such as poor mechanical and thermal properties due to the easy hydrolysis of the ester bond and space hinderance, or the potential harm of the remaining degraded small molecules with olefin bonds. This article provides an overview of recent endeavors aimed at addressing these challenges and prospects the probable future advancements in the field. Full article
(This article belongs to the Special Issue Latest Review Papers in Macromolecules 2025)
Show Figures

Figure 1

17 pages, 5794 KB  
Article
Thermally Healable Polyurethane Elastomers Based on Biomass Polyester Polyol from Isosorbide and Dimer Fatty Acid
by Se-Ra Shin and Dai-Soo Lee
Polymers 2024, 16(24), 3571; https://doi.org/10.3390/polym16243571 - 20 Dec 2024
Cited by 2 | Viewed by 1374
Abstract
A fully bio-based polyester polyol based on isosorbide (ISB) and dimer fatty acid (DA) was synthesized through esterification. An ISB-based polyester polyol (DIS) was developed to synthesize a bio-based polyurethane elastomer (PUE) with enhanced mechanical and self-healing properties. The rigid bicyclic structure of [...] Read more.
A fully bio-based polyester polyol based on isosorbide (ISB) and dimer fatty acid (DA) was synthesized through esterification. An ISB-based polyester polyol (DIS) was developed to synthesize a bio-based polyurethane elastomer (PUE) with enhanced mechanical and self-healing properties. The rigid bicyclic structure of ISB improved tensile properties, while the urethane bonds formed between the hydroxyl groups in ISB and isocyanate exhibited reversible characteristics at elevated temperatures, significantly enhancing the self-healing performance of DIS-based PUE compared to the control PUE (self-healing efficiency: 98% for DIS-based PUE vs. 65% for control PUE). The dynamic mechanical and rheological properties of DIS-based PUE were investigated to confirm their relationship with self-healing performance. The DIS-based PUE, featuring reversible urethane bonds, demonstrated rapid stress relaxation and maintained constant normal stress under external stimuli, contributing to its improved self-healing capabilities. Thus, ISB can be regarded as a promising bio-resource for synthesizing bio-based polyester polyols and, consequently, PUE with superior mechanical and self-healing properties. Full article
(This article belongs to the Special Issue Bio-Based Polymer: Design, Property, and Application)
Show Figures

Graphical abstract

14 pages, 3161 KB  
Article
Enhanced Green Strength in a Polycarbonate Polyol-Based Reactive Polyurethane Hot-Melt Adhesive
by Alejandra Moyano-Vallejo, María Pilar Carbonell-Blasco, Carlota Hernández-Fernández, Francisca Arán-Aís, María Dolores Romero-Sánchez and Elena Orgilés-Calpena
Polymers 2024, 16(23), 3356; https://doi.org/10.3390/polym16233356 - 29 Nov 2024
Viewed by 1725
Abstract
This study aimed to enhance the initial adhesion performance of reactive polyurethane hot-melt adhesives by using a bio-based polycarbonate polyol instead of traditional polyester or polyether polyols and by incorporating thermoplastic polyurethane (TPU) in varied proportions. Adhesives synthesized from bio-based polycarbonate polyols and [...] Read more.
This study aimed to enhance the initial adhesion performance of reactive polyurethane hot-melt adhesives by using a bio-based polycarbonate polyol instead of traditional polyester or polyether polyols and by incorporating thermoplastic polyurethane (TPU) in varied proportions. Adhesives synthesized from bio-based polycarbonate polyols and polypropylene glycol with MDI as the isocyanate were characterized chemically, thermally, and mechanically (FTIR, DSC, plate–plate rheology, DMA, and T-peel strength test). Adding 10–15 wt.% TPU significantly improved green strength and initial adhesion at room temperature and after accelerated cooling. The bio-based polycarbonate polyol promotes superior flexibility at low temperatures compared to fossil-derived alternatives, aligning with sustainability objectives. The results showed that 10 wt.% TPU maximized green strength without compromising flexibility, whereas 15 wt.% TPU, though enhancing adhesion, reduced flexibility due to increased crystallinity. T-peel tests on footwear materials indicated that all the adhesives exceeded the EN 15307:2015 requirements, with the highest peel strength achieved after curing. These findings highlight the benefit of bio-based polycarbonate polyols and TPUs in achieving strong, flexible, and eco-friendly adhesives suitable for demanding applications. Full article
Show Figures

Figure 1

15 pages, 3149 KB  
Article
Polyurethane Adhesives for Wood Based on a Simple Mixture of Castor Oil and Crude Glycerin
by Tábata Larissa Corrêa Peres, Felipe Vahl Ribeiro, Arthur Behenck Aramburu, Kelvin Techera Barbosa, Andrey Pereira Acosta, André Luiz Missio, Mahbube Subhani and Rafael de Avila Delucis
Materials 2023, 16(23), 7251; https://doi.org/10.3390/ma16237251 - 21 Nov 2023
Cited by 7 | Viewed by 3232
Abstract
Developing a new type of polyurethane is essential because conventional options often exhibit shortcomings in terms of environmental sustainability, cost-effectiveness, and performance in specialized applications. A novel polyurethane adhesive derived from a simple mixture of castor oil (CO) and crude glycerin (CG) holds [...] Read more.
Developing a new type of polyurethane is essential because conventional options often exhibit shortcomings in terms of environmental sustainability, cost-effectiveness, and performance in specialized applications. A novel polyurethane adhesive derived from a simple mixture of castor oil (CO) and crude glycerin (CG) holds promise as it reduces reliance on fossil fuels and harnesses renewable resources, making it environmentally friendly. Simple CO/CG mixtures, adjusted at three different weight fractions, were used as bio-based polyester polyols to produce polyurethane adhesive for wood bonding. The resulting products are yellowish liquids with moderate-to-high viscosity, measuring 19,800–21,000 cP at 25 °C. The chemical structure of the polyester polyols was characterized using infrared spectroscopy (FTIR), thermogravimetry (TG), and differential scanning calorimetry (DSC). These polyols reacted with polymeric 4,4-methylene diphenyl diisocyanate (p-MDI) at a consistent isocyanate index of 1.3, resulting in the formation of polyurethane adhesives. Crucially, all final adhesives met the adhesive strength requirements specified by ASTM D-5751 standards, underscoring their suitability for wood bonding applications. The addition of CG enhanced the surface and volumetric hydrophobicity of the cured adhesives, resulting in adhesive properties that are not only stronger but also more weather-resistant. Although the thermal stability of the adhesives decreased with the inclusion of CG, FTIR analysis confirmed proper polyurethane polymer formation. The adhesive adjusted for a 2:1 CO:CG weight ratio promoted wood–wood bonding with the highest shear strength, likely due to a higher formation of urethane linkages between hydroxyl groups from the blend of polyols and isocyanate groups from the p-MDI. Full article
(This article belongs to the Special Issue Biomass Materials: From Processing to Modern Applications)
Show Figures

Figure 1

12 pages, 1538 KB  
Article
Fully Bio-Based and Solvent-Free Polyester Polyol for Two-Component Polyurethane Coatings
by Nataša Čuk, Miha Steinbücher, Nejc Vidmar, Martin Ocepek and Peter Venturini
Coatings 2023, 13(10), 1779; https://doi.org/10.3390/coatings13101779 - 16 Oct 2023
Cited by 3 | Viewed by 4908
Abstract
In recent years, many efforts are being devoted to the development of new materials that originate from renewable resources. Polyesters are one of the most important classes of such materials and several bio-based monomers are available for their synthesis. In this work, the [...] Read more.
In recent years, many efforts are being devoted to the development of new materials that originate from renewable resources. Polyesters are one of the most important classes of such materials and several bio-based monomers are available for their synthesis. In this work, the development of fully bio-based and solvent-free polyester polyol used for two-component polyurethane coatings on industrial scale is presented. Fossil-based raw materials were substituted with bio-based alternatives that are commercially available on a large scale. Properties of polyols and coatings were determined and measured. Polyols were characterized by the determination of acid number, hydroxyl number, glass transition temperature and refractive index, and measurement of viscosity, color and molecular weight. Coatings were characterized by the determination of mechanical properties, such as hardness, elasticity and impact resistance, and the measurement of optical properties such as gloss, haze, distinctness of image (DOI) and reflected image quality (RIQ) and weathering resistance. Three variations of bio-based polyol were synthesized, then the most suitable version was validated in a clear coat. The results showed that the properties of the bio-based polyol and coating met the requirements and were comparable to the properties of the synthetic counterpart. Results indicate that this newly developed 100% bio-based and solvent-free polyol can be used as a drop-in replacement for synthetic polyol. Furthermore, this work implies that the supply chain is established which allows the green transition in the paint industry. Full article
Show Figures

Figure 1

18 pages, 1957 KB  
Article
Soybean-Based Polyol as a Substitute of Fossil-Based Polyol on the Synthesis of Thermoplastic Polyurethanes: The Effect of Its Content on Morphological and Physicochemical Properties
by Juliano R. Ernzen, José A. Covas, Angel Marcos-Fernández, Rudinei Fiorio and Otávio Bianchi
Polymers 2023, 15(19), 4010; https://doi.org/10.3390/polym15194010 - 6 Oct 2023
Cited by 4 | Viewed by 2450
Abstract
Thermoplastic polyurethanes (TPUs) are remarkably versatile polymers due to the wide range of raw materials available for their synthesis, resulting in physicochemical characteristics that can be tailored according to the specific requirements of their final applications. In this study, a renewable bio-based polyol [...] Read more.
Thermoplastic polyurethanes (TPUs) are remarkably versatile polymers due to the wide range of raw materials available for their synthesis, resulting in physicochemical characteristics that can be tailored according to the specific requirements of their final applications. In this study, a renewable bio-based polyol obtained from soybean oil is used for the synthesis of TPU via reactive extrusion, and the influence of the bio-based polyol on the multi-phase structure and properties of the TPU is studied. As raw materials, 4,4′-diphenylmethane (MDI), 1,4-butanediol, a fossil-based polyester polyol, and a bio-based polyol are used. The fossil-based to soybean-based polyol ratios studied are 100/0, 99/1, 95/5, 90/10, 80/20, and 50/50% by weight, respectively. The TPUs were characterized by size exclusion chromatography (SEC), gel content analysis, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), dynamic mechanical analysis (DMA), and contact angle measurements. The results reveal that incorporating the renewable polyol enhances the compatibility between the rigid and flexible segments of the TPU. However, due to its high functionality, the addition of soybean-based polyol can promote cross-linking. This phenomenon reduces the density of hydrogen bonds within the material, also reducing polarity and restricting macromolecular mobility, as corroborated by higher glass transition temperature (Tg) values. Remarkably, the addition of small amounts of the bio-based polyol (up to 5 wt.% of the total polyol content) results in high-molecular-weight TPUs with lower polarity, combined with suitable processability and mechanical properties, thus broadening the range of applications and improving their sustainability. Full article
(This article belongs to the Collection Polyurethanes)
Show Figures

Graphical abstract

15 pages, 4163 KB  
Article
Toughening Enhancement Mechanism and Performance Optimization of Castor-Oil-Based Polyurethane Cross-Linked Modified Polybutylene Adipate/Terephthalate Composites
by Qing Zhang, Jin Huang and Na Zhou
Materials 2023, 16(18), 6256; https://doi.org/10.3390/ma16186256 - 18 Sep 2023
Cited by 1 | Viewed by 1523
Abstract
In this study, polyol castor oil (CO) and toluene-2,4-diisocyanate (TDI) were selected to modify PBAT, and castor-oil-based polyurethane (COP) was produced in a PBAT matrix using melt-blending and hot-pressing technology to study the effect of network cross-linking structure on various properties of bio-based [...] Read more.
In this study, polyol castor oil (CO) and toluene-2,4-diisocyanate (TDI) were selected to modify PBAT, and castor-oil-based polyurethane (COP) was produced in a PBAT matrix using melt-blending and hot-pressing technology to study the effect of network cross-linking structure on various properties of bio-based polyester PBAT, aiming to introduce CO and TDI to improve the mechanical properties of composite materials. The results showed that when the total addition of CO and TDI was 15%, and the ratio of the hydroxyl group of CO to the isocyanate group of TDI was 1:1, the mechanical properties were the best. The tensile strength of the composite was 86.19% higher than that of pure PBAT, the elongation at break was 70.09% higher than that of PBAT, and the glass transition temperature was 7.82 °C higher than that of pure PBAT. Therefore, the composite modification of PBAT by CO and TDI can effectively improve the heat resistance and mechanical properties of PBAT-based composites. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

22 pages, 5892 KB  
Article
Synthesis of Novel Shape Memory Thermoplastic Polyurethanes (SMTPUs) from Bio-Based Materials for Application in 3D/4D Printing Filaments
by Yang-Sook Jung, Sunhee Lee, Jaehyeung Park and Eun-Joo Shin
Materials 2023, 16(3), 1072; https://doi.org/10.3390/ma16031072 - 26 Jan 2023
Cited by 20 | Viewed by 3352
Abstract
Bio-based thermoplastic polyurethanes have attracted increasing attention as advanced shape memory materials. Using the prepolymer method, novel fast-responding shape memory thermoplastic polyurethanes (SMTPUs) were prepared from 100% bio-based polyester polyol, poly-propylene succinate derived from corn oil, diphenyl methane diisocyanate, and bio-based 1,3-propanediol as [...] Read more.
Bio-based thermoplastic polyurethanes have attracted increasing attention as advanced shape memory materials. Using the prepolymer method, novel fast-responding shape memory thermoplastic polyurethanes (SMTPUs) were prepared from 100% bio-based polyester polyol, poly-propylene succinate derived from corn oil, diphenyl methane diisocyanate, and bio-based 1,3-propanediol as a chain extender. The morphologies of the SMTPUs were investigated by Fourier transform infrared spectroscopy, atomic force microscopy, and X-ray diffraction, which revealed the interdomain spacing between the hard and soft phases, the degree of phase separation, and the intermixing level between the hard and soft phases. The thermal and mechanical properties of the SMTPUs were also investigated, wherein a high hard segment content imparted unique properties that rendered the SMTPUs suitable for shape memory applications at varying temperatures. More specifically, the SMTPUs exhibited a high level of elastic elongation and good mechanical strength. Following compositional optimization, a tensile strength of 24–27 MPa was achieved, in addition to an elongation at break of 358–552% and a hardness of 84–92 Shore A. Moreover, the bio-based SMTPU exhibited a shape recovery of 100%, thereby indicating its potential for use as an advanced temperature-dependent shape memory material with an excellent shape recoverability. Full article
(This article belongs to the Special Issue Functional Fiber Materials and Composites)
Show Figures

Graphical abstract

20 pages, 4755 KB  
Article
Sustainable Strategy for Algae Biomass Waste Management via Development of Novel Bio-Based Thermoplastic Polyurethane Elastomers Composites
by Ewa Głowińska, Olga Gotkiewicz and Paulina Kosmela
Molecules 2023, 28(1), 436; https://doi.org/10.3390/molecules28010436 - 3 Jan 2023
Cited by 17 | Viewed by 3824
Abstract
This work concerns the waste management method of algae biomass wastes (ABW). For this purpose, we prepared bio-based thermoplastic polyurethane elastomer (bio-TPU) composites. Algae biomass wastes are derived from algal oil extraction of Chlorella vulgaris and from biomass of Enteromorpha and Zostera marina [...] Read more.
This work concerns the waste management method of algae biomass wastes (ABW). For this purpose, we prepared bio-based thermoplastic polyurethane elastomer (bio-TPU) composites. Algae biomass wastes are derived from algal oil extraction of Chlorella vulgaris and from biomass of Enteromorpha and Zostera marina. ABWs were used in the bio-TPUs composites as a filler in the quantity of 1, 5, 10, and 15 wt.%. The bio-based composites were prepared via the in situ method. Polymer matrix was synthesized from a bio-based polyester polyol, diisocyanate mixture (composed of partially bio-based and synthetic diisocyanates), and bio-based 1,3 propanediol. In this study, the chemical structure, morphology, thermal and mechanical properties of prepared composites were investigated. Based on the conducted research, it was determined that the type and the content of algae waste influence the properties of the bio-based polyurethane matrix. In general, the addition of algae biomass wastes led to obtain materials characterized by good mechanical properties and noticeable positive ecological impact by increasing the total amount of green components in prepared bio-TPU-based composites from 68.7% to 73.54%. Full article
Show Figures

Figure 1

13 pages, 3400 KB  
Article
Selective Solvolysis of Bio-Based PU-Coated Fabric
by David De Smet, Jente Verjans and Myriam Vanneste
Polymers 2022, 14(24), 5452; https://doi.org/10.3390/polym14245452 - 13 Dec 2022
Cited by 12 | Viewed by 3835
Abstract
Polyurethane (PU) coatings are widely applied on high performing textiles due to their excellent durability and mechanical properties. PUs based on renewable resources were developed to improve the environmental impact of coatings by decreasing the carbon footprint. However, at the end-of-life, PU-coated textiles [...] Read more.
Polyurethane (PU) coatings are widely applied on high performing textiles due to their excellent durability and mechanical properties. PUs based on renewable resources were developed to improve the environmental impact of coatings by decreasing the carbon footprint. However, at the end-of-life, PU-coated textiles still end up as landfill or are incinerated since PUs are not biodegradable and are not being recycled at this moment. Therefore, the recycling of PU-coated substrates needs to be examined. This study reports the selective solvolysis of a polyester (PET) fabric coated with a bio-based PU using a 70% ZnCl2 aqueous solution. This method allowed the easy separation of the coating from the fabric. The thermal, chemical and mechanical characteristics of the virgin PET and recycled PET were examined via tensile strength tests, IR, TGA, DSC and GPC. Analysis of the fractions after solvolysis revealed that the PU was converted into the original polyol and an amine, corresponding to the isocyanate used for PU synthesis. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials II)
Show Figures

Figure 1

8 pages, 1447 KB  
Proceeding Paper
Weatherability of Bio-Based versus Fossil-Based Polyurethane Coatings
by Pieter Samyn, Joey Bosmans and Patrick Cosemans
Eng. Proc. 2023, 31(1), 36; https://doi.org/10.3390/ASEC2022-13797 - 2 Dec 2022
Cited by 2 | Viewed by 2614
Abstract
The use of bio-based feedstock for the formulation of protective coatings has been implemented in the increased industrial supply of building blocks synthesized from biomass. The alternation of traditional polyurethane coatings by bio-based polyurethanes has focused on the replacement of the polyisocyanate component [...] Read more.
The use of bio-based feedstock for the formulation of protective coatings has been implemented in the increased industrial supply of building blocks synthesized from biomass. The alternation of traditional polyurethane coatings by bio-based polyurethanes has focused on the replacement of the polyisocyanate component in combination with polyester or polyacrylate polyols. In this research, the performance of an aliphatic isocyanate synthesized from crude oil (i.e., HDI, or hexamethylenediisocyanate) has been compared to an alternative hardener synthesized through fermentation of biomass (i.e., PDI, or pentamethylenediisocyante). As the chemical structure of the bio-based PDI is slightly different, with an aliphatic chain of five compared to six carbon atoms, an almost similar or better performance as a protective coating is demonstrated. The application of bio-based PU coatings resulted in lower drying times and higher hardness with similar gloss, chemical resistance and mechanical resistance. In particular, the resistance of bio-based coatings after QUV accelerated weathering testing was improved owing to the better hydrophobicity of the bio-based PDI hardener. There was a gradual trend in evolution of the performance with stepwise replacement of fossil-based with bio-based content. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

Back to TopTop