Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = bio polyamide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6500 KiB  
Article
The Effect of Bio-Based Polyamide 10.10 and Treated Fly Ash on Glass-Fiber-Reinforced Polyamide 6 Properties
by George-Mihail Teodorescu, Zina Vuluga, Toma Fistoș, Sofia Slămnoiu-Teodorescu, Jenica Paceagiu, Cristian-Andi Nicolae, Augusta Raluca Gabor, Marius Ghiurea, Cătălina Gîfu and Rodica Mariana Ion
Polymers 2025, 17(14), 1950; https://doi.org/10.3390/polym17141950 - 16 Jul 2025
Viewed by 245
Abstract
Increased concern for human health and the environment has pushed various industries to adopt new approaches towards satisfying modern regulations. Strategies to achieve these approaches include utilizing lightweight materials, repurposing waste materials, and substituting synthetic polymers with bio-based counterparts. This study investigates the [...] Read more.
Increased concern for human health and the environment has pushed various industries to adopt new approaches towards satisfying modern regulations. Strategies to achieve these approaches include utilizing lightweight materials, repurposing waste materials, and substituting synthetic polymers with bio-based counterparts. This study investigates the effects of treated fly ash (C) and bio-based polyamide 10.10 (PA10) on the thermal, morphological, and mechanical properties of glass fiber (GF)-reinforced polyamide 6 (PA6). Our main objective was to develop a composite that would allow for the partial replacement of glass fiber in reinforced polyamide 6 composites (PA6-30G) while maintaining a favorable balance of mechanical properties. Composites processed via melt processing demonstrated enhanced mechanical properties compared to PA6-30G. Notably, significant improvements were observed in impact strength and tensile strain at break. The addition of PA10 resulted in increases of 18% in impact strength and 35% in tensile strain relative to PA6-30G. Complementary, structural and morphological analyses confirmed strong interfacial interactions within the composite matrix. These findings indicate that a PA6/PA10 hybrid composite may represent a viable alternative material for potential automotive applications. Full article
Show Figures

Figure 1

22 pages, 7233 KiB  
Article
Dimer Fatty Acid-Based Polyamide/Organoclays: Structural, Thermal Properties, and Statistical Analysis of Factors Affecting Polymer Chain Intercalation in Bentonite Layers
by Afonso D. Macheca, Diocrecio N. Microsse, Theophile M. Mujuri, Robert Kimutai Tewo, António Benjamim Mapossa and Shepherd M. Tichapondwa
Processes 2025, 13(7), 2168; https://doi.org/10.3390/pr13072168 - 7 Jul 2025
Viewed by 341
Abstract
This work investigates the potential industrial applications of two sodium bentonite samples (white and yellow), obtained from raw Ca-rich bentonite from Maputo Province in Southern Mozambique. Bentonite bio-organoclays were successfully developed from two Mozambican montmorillonite clays through the intercalation of protonated dimer fatty [...] Read more.
This work investigates the potential industrial applications of two sodium bentonite samples (white and yellow), obtained from raw Ca-rich bentonite from Maputo Province in Southern Mozambique. Bentonite bio-organoclays were successfully developed from two Mozambican montmorillonite clays through the intercalation of protonated dimer fatty acid-based polyamide chains using a solution casting method. X-ray diffraction (XRD) analysis confirmed polymer intercalation, with the basal spacing (d001) increasing from approximately 1.5 nm to 1.7 nm as the polymer concentration varied between 2.5 and 7.5 wt.%. However, the extent of intercalation was limited at this stage, suggesting that polymer concentration alone had a minimal effect, likely due to the formation of agglomerates. In a subsequent optimization phase, the influence of temperature (30–90 °C), stirring speed (1000–2000 rpm), and contact time (30–90 min) was evaluated while maintaining a constant polymer concentration. These parameters significantly enhanced intercalation, achieving d001 values up to 4 nm. Statistical Design of Experiments and Response Surface Methodology revealed that temperature and stirring speed exerted a stronger influence on d001 expansion than contact time. Optimal intercalation occurred at 90 °C, 1500 rpm, and 60 min. The predictive models demonstrated high accuracy, with R2 values of 0.9861 for white bentonite (WB) and 0.9823 for yellow bentonite (YB). From statistical modeling, several key observations emerged. Higher stirring speeds promoted intercalation by enhancing mass transfer and dispersion; increased agitation disrupted stagnant layers surrounding the clay particles, facilitating deeper penetration of the polymer chains into the interlayer galleries and preventing particle settling. Furthermore, the ANOVA results showed that all individual and interaction effects of the factors investigated had a significant influence on the d001 spacing for both WB and YB clays. Each factor exhibited a positive effect on the degree of intercalation. Full article
(This article belongs to the Special Issue Processing and Applications of Polymer Composite Materials)
Show Figures

Figure 1

14 pages, 7215 KiB  
Article
Insight into the Dyeability of Bio-Based Polyamide 56 by Natural Dyes
by Chenchen Sun, Jiaqing Wu and Ying Wang
Chemistry 2025, 7(3), 95; https://doi.org/10.3390/chemistry7030095 - 9 Jun 2025
Viewed by 521
Abstract
Bio-based polyamide 56 (PA56) is a new sustainable material in the polyamide family. In this study, dyes suitable for PA56 fibers were experimentally screened from natural plants rich in pigments. The results showed that the preferred natural dyes for PA56 fabric are turmeric [...] Read more.
Bio-based polyamide 56 (PA56) is a new sustainable material in the polyamide family. In this study, dyes suitable for PA56 fibers were experimentally screened from natural plants rich in pigments. The results showed that the preferred natural dyes for PA56 fabric are turmeric for a yellow hue, madder for a red hue, catechu for a brown hue, and indigo for a blue hue. A green hue was achieved by the two-bath dyeing method using indigo and turmeric, respectively. For a dyability comparison with conventional PA6 and PA66, PA56, PA6, and PA66 fabrics were woven under identical conditions and dyed with turmeric, madder, catechu, and commercial indigo extracts. PA56 fabric exhibited the best dye uptake and the fastest dyeing rate (PA56 > PA6 > PA66). The reason for the excellent dyeability of PA56 fibers was analyzed in terms of differential scanning calorimetry measurement and molecular dynamics simulations. The results showed that the lowest crystallinity was exhibited by PA56 (PA56 < PA6 < PA66); in addition, PA56 displayed the largest fractional free volume (PA56 > PA6 > PA66). These structural characteristics contribute to the excellent dyeability of PA56 fibers. Therefore, PA56 fibers are promising materials, as they are derived from a sustainable source and have superior dyeing properties compared to PA6 and PA66 fibers. Full article
(This article belongs to the Topic Green and Sustainable Chemical Products and Processes)
Show Figures

Figure 1

32 pages, 5548 KiB  
Article
Analysis of the Impact of Fabric Surface Profiles on the Electrical Conductivity of Woven Fabrics
by Ayalew Gebremariam, Magdalena Tokarska and Nawar Kadi
Materials 2025, 18(11), 2456; https://doi.org/10.3390/ma18112456 - 23 May 2025
Viewed by 509
Abstract
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their [...] Read more.
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their electrical resistance properties. Surface roughness was assessed using the MicroSpy® Profile profilometer FRT (Fries Research & Technology) Metrology™, while electrical resistance was evaluated using the Van der Pauw method. The findings indicate that rougher fabric surfaces exhibit higher electrical resistance due to surface irregularities and lower yarn compactness. In contrast, smoother fabrics improve conductivity by enhancing surface uniformity and yarn contact. Fabric density, particularly weft density, governs the structural alignment of yarns. A 35% increase in weft density (W19–W27) resulted in a 13–15% reduction in resistance, confirming that denser fabrics facilitate current flow. Higher weft density also increases directional resistance differences, enhancing anisotropic behavior. Angular distribution analysis showed lower resistance and greater anisotropy at perpendicular orientations (0° and 180°, the weft direction; 90° and 270°, the warp direction), while diagonal directions (45°, 135°, 225°, and 315°) exhibited higher resistance. Surface roughness further hindered current flow, whereas increased weft density and surface mass reduced resistance and improved the directional dependencies of the electrical resistances. This analysis was conducted based on research using woven fabrics produced from silver-plated polyamide yarns (Shieldex® 117/17 HCB). These insights support the optimization of these conductive fabrics for smart textiles, wearable sensors, and e-textiles. Fabric variants W19 and W21, with lower resistance variability and better isotropic behavior under the S electrode arrangement, could be proposed as suitable materials for integration into compact sensing systems like heart rate or bio-signal monitors. Full article
Show Figures

Figure 1

12 pages, 3963 KiB  
Article
Mechanical Properties of Surface-Treated Bamboo Strip-Reinforced Biobased Polyamide Composites
by Clément Pébère, Gautier Mangeret, Eric Dantras, Colette Lacabanne, Jany Dandurand, Thomas Moussiegt, Edouard Sherwood and Gilles Hochstetter
Polymers 2025, 17(10), 1379; https://doi.org/10.3390/polym17101379 - 17 May 2025
Viewed by 496
Abstract
Fully bio-based composites were obtained from continuous bamboo strips and flame-retardant polyamide 11 (PA11-FR) matrix. A mercerization treatment was performed on the bamboo strips surface to optimize fiber-matrix interactions. Composites were obtained by thermocompression molding with two pressure plateaus. The influence of the [...] Read more.
Fully bio-based composites were obtained from continuous bamboo strips and flame-retardant polyamide 11 (PA11-FR) matrix. A mercerization treatment was performed on the bamboo strips surface to optimize fiber-matrix interactions. Composites were obtained by thermocompression molding with two pressure plateaus. The influence of the concentration of NaOH solution treatment was analyzed. The thermogravimetric analysis highlighted that the mercerization treatment removes part of hemicellulose, low molecular weight lignin and amorphous cellulose, while crystalline cellulose is preserved. Dynamic mechanical analysis performed in the shear configuration revealed the level of interactions between bamboo strips and PA11-FR matrix. The glassy modulus was improved for the composites compared to the matrix and their rubbery modulus was increased by a factor 4.6. Composites with bamboo strips treated at 1% NaOH showed the highest shear modulus across the entire temperature range with an increase by a factor of 1.39 on the glassy plateau and 1.3 on the rubbery plateau, with the untreated bamboo strips/polyamide 11-FR composite as reference. Water uptake was analogous for composites and bamboo strips, so the shear modulus at room temperature was not impacted by moisture. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

15 pages, 4070 KiB  
Review
Sustainable Bio-Based Epoxy Technology Progress
by Chunfu Chen
Processes 2025, 13(4), 1256; https://doi.org/10.3390/pr13041256 - 21 Apr 2025
Viewed by 945
Abstract
Sustainable bio-based epoxy technology is developed by using bio-based epoxy materials instead of conventional fossil-derived ones. Significant progress in new bio-based epoxy material development on bio-based epoxy resins, curing agents, and additives, as well as bio-based epoxy formulated products, has been achieved recently [...] Read more.
Sustainable bio-based epoxy technology is developed by using bio-based epoxy materials instead of conventional fossil-derived ones. Significant progress in new bio-based epoxy material development on bio-based epoxy resins, curing agents, and additives, as well as bio-based epoxy formulated products, has been achieved recently not only in fundamental academic studies but also in industrial product development. There are mainly two types of bio-based epoxy resins: conventional epoxy resins and novel epoxy resins, depending on the epoxy resin building-block type used. Bio-based conventional epoxy resins are prepared by using the bio-based epichlorohydrin to replace conventional fossil-based epichlorohydrin. Bio-based novel epoxy resins are usually prepared from epoxidation of renewable precursors such as unsaturated vegetable oils, saccharides, tannins, cardanols, terpenes, rosins, and lignin. Typical bio-based curing agents are bio-based polyamines, polyamides, amidoamines, and cardanol-based phenalkamine-type curing agents. Cardanol is a typical bio-based reactive additive available commercially. Certain types of partially bio-based formulated epoxy products have been developed and supplied for use in bonding, coating, casting, composite, and laminating applications. Full article
(This article belongs to the Special Issue Research on Polymer Processing Technology)
Show Figures

Figure 1

15 pages, 20353 KiB  
Article
Study on the Preparation and Properties of Thermally Conductive Semi-Aromatic Heat-Resistant PA5T-CO-10T/ Hexagonal Boron Nitride Composites
by Bingxiao Liu, Yunzhen Zhu, Chen Yang, Liqun Ma, Fuchun Zhang, Mingzheng Hao, Zhongqiang Wang, Lizhen Bai, Jiale An and Dongqi Xiao
Polymers 2025, 17(8), 1031; https://doi.org/10.3390/polym17081031 - 10 Apr 2025
Viewed by 425
Abstract
In this paper, we report a novel thermally conductive semi-aromatic heat-resistant PA5T-CO-10T/hexagonal boron nitride (PA5T-CO-10T/BN) composite, based on as-synthesized PA5T-CO-10T, which is a copolymer of poly (pentamethylene terephthalamide) (PA5T) and poly (decamethylene terephthalamide) (PA10T). We confirmed the structure of PA5T-CO-10T through a nuclear [...] Read more.
In this paper, we report a novel thermally conductive semi-aromatic heat-resistant PA5T-CO-10T/hexagonal boron nitride (PA5T-CO-10T/BN) composite, based on as-synthesized PA5T-CO-10T, which is a copolymer of poly (pentamethylene terephthalamide) (PA5T) and poly (decamethylene terephthalamide) (PA10T). We confirmed the structure of PA5T-CO-10T through a nuclear magnetic resonance carbon spectrometer (13C-NMR). The differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results indicate that PA5T-CO-10T demonstrates a processing window (greater than 90 °C) which is suitable for melt processing and injection molding. Moreover, the PA5T-CO-10T composites with different BN contents were tested by scanning electron microscopy (SEM), a thermal conductivity meter, a rotational rheometer and X-ray diffraction (XRD). The results indicate that as the content of h-BN increases, the thermal conductivity of the PA5T-CO-10T/BN composites is significantly enhanced. When the mass of h-BN reaches 30 wt%, the thermal conductivity of the composite material is 2.5 times that of the original matrix resin. Simultaneously, there is a notable upward trend observed in the storage modulus, loss modulus, complex viscosity and orientation degree of h-BN. This is attributed to the high thermal conductivity and the high orientation degree of h-BN, which ensure the continuous enhancement of the material’s thermal conductivity. Additionally, the introduction of h-BN enhances the degree of connection between the material’s molecular chains. PA5T-CO-10T/BN possesses excellent heat resistance and thermal conductivity, presenting significant application prospects in the fields of electronics, electrical appliances and automobiles. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymer Blends and Composites II)
Show Figures

Figure 1

18 pages, 5294 KiB  
Article
Multi-Layer Oil- and Water-Resistant Food Containers Made Using Cellulose Nanofibril-Laminated Wood Veneer
by Nabanita Das, Islam Hafez, Douglas Bousfield and Mehdi Tajvidi
Polysaccharides 2025, 6(2), 28; https://doi.org/10.3390/polysaccharides6020028 - 2 Apr 2025
Viewed by 905
Abstract
This work aimed at replacing per- or poly-fluoroalkyl substance (PFAS)-based food-serving containers with wood-based, oil- and grease-resistant food-serving containers. A novel container was developed by laminating wet cellulose nanofibril (CNF) films to both sides of yellow birch wood veneer using a food-grade polyamide–epichlorohydrin [...] Read more.
This work aimed at replacing per- or poly-fluoroalkyl substance (PFAS)-based food-serving containers with wood-based, oil- and grease-resistant food-serving containers. A novel container was developed by laminating wet cellulose nanofibril (CNF) films to both sides of yellow birch wood veneer using a food-grade polyamide–epichlorohydrin additive (PAE) as an adhesive. CNFs significantly improved the wood veneer container’s mechanical strength and barrier properties. The container’s mechanical testing results showed significant increases in flexural strength and modulus of elasticity (MOE) values in both parallel and perpendicular directions to the grain. All formulations of the container showed excellent oil and grease resistance properties by passing “kit” number 12 based on the TAPPI T 559 cm-12 standard. The water absorption tendency of the formulation treated at higher temperature, pressure, and longer press time showed similar performance to commercial paper plates containing PFASs. The developed composite demonstrates superior flexural strength and barrier properties, presenting a sustainable alternative to PFASs in food-serving containers. Both wood and CNFs stand out for their remarkable eco-friendliness, as they are biodegradable and naturally compostable. This unique characteristic not only helps minimize waste but also promotes a healthier environment. If scaled up, these novel containers may present a solution to the oil/grease resistance of bio-based food containers. Full article
Show Figures

Figure 1

16 pages, 6727 KiB  
Article
Processing and Characterization of Unidirectional Flax Fiber-Reinforced Bio-Based Polyamide 11 Biocomposites
by Patrick Hirsch, Benjamin Tillner, André Henkel, Nico Teuscher, Ivonne Jahn and Maik Feldmann
Polymers 2025, 17(5), 666; https://doi.org/10.3390/polym17050666 - 28 Feb 2025
Viewed by 933
Abstract
Within this study, the impregnation behavior and resulting mechanical properties of unidirectional flax fiber-reinforced polyamide 11 biocomposites were investigated. Therefore, different grades of bio-based polyamide 11 have been evaluated regarding their eligibility as composite matrix material. The production of the unidirectional flax fiber-reinforced [...] Read more.
Within this study, the impregnation behavior and resulting mechanical properties of unidirectional flax fiber-reinforced polyamide 11 biocomposites were investigated. Therefore, different grades of bio-based polyamide 11 have been evaluated regarding their eligibility as composite matrix material. The production of the unidirectional flax fiber-reinforced biocomposites was investigated using a continuous film-stacking method. It was found that the flow behavior of the polyamide 11 matrix polymer significantly affected the impregnation quality and the resulting mechanical properties as tested by tensile and bending tests. A lower shear viscosity and stronger shear thinning behavior led to better impregnation, a 15% higher stiffness, and 18% higher strength. This was also analyzed with morphological analysis by scanning electron microscopy. Additionally, the effect of the fiber volume content of the flax fibers on the mechanical properties was tested, showing a positive correlation between the fiber content and the resulting stiffness and strength, leading to an increase of 48% and 55%, respectively. In result, a maximum Young’s modulus of 16.9 GPa and tensile strength of 175 MPa at a fiber volume content of 33% was achieved. Thus, the unidirectional flax fiber-reinforced polyamide 11 biocomposites investigated can be a sustainable construction material for lightweight applications, e.g., in the automotive industry. Full article
(This article belongs to the Special Issue Natural Fiber Composites: Synthesis and Applications)
Show Figures

Figure 1

20 pages, 8018 KiB  
Article
Extrusion Parameters Optimization and Mechanical Properties of Bio-Polyamide 11-Based Biocomposites Reinforced with Short Basalt Fibers
by Vito Gigante, Francesca Cartoni, Bianca Dal Pont and Laura Aliotta
Polymers 2024, 16(21), 3092; https://doi.org/10.3390/polym16213092 - 31 Oct 2024
Cited by 3 | Viewed by 2060
Abstract
The increasing demand for sustainable materials in high-value applications, particularly in the automotive industry, has prompted the development of biocomposites based on renewable or recyclable matrices and natural fibers as reinforcements. In this context, this paper aimed to produce composites with improved mechanical [...] Read more.
The increasing demand for sustainable materials in high-value applications, particularly in the automotive industry, has prompted the development of biocomposites based on renewable or recyclable matrices and natural fibers as reinforcements. In this context, this paper aimed to produce composites with improved mechanical and thermal properties (tensile, flexural, and heat deflection temperature) through an optimized process pathway using a biobased polyamide reinforced with short basalt fibers. This study emphasizes the critical impact of fiber length, matrix adhesion, and the variation in matrix properties with increasing fiber content. These factors influence the properties of short-fiber composites produced via primary processing using extrusion and shaped through injection molding. The aim of this work was to optimize extrusion conditions using a 1D simulation software to minimize excessive fiber fragmentation during the extrusion process. The predictive model’s capacity to forecast fiber degradation and the extent of additional fiber breakage during extrusion was evaluated. Furthermore, the impact of injection molding on these conditions was investigated. Moreover, a comprehensive thermomechanical characterization of the composites, comprising 10%, 20%, and 30% fiber content, was carried out, focusing on the correlation with morphology and processing using SEM and micro-CT analyses. In particular, how the extrusion process parameters adopted can influence fiber breakage and how injection molding can influence the fiber orientation were investigated, highlighting their influence in determining the final mechanical properties of short fiber composites. By optimizing the process parameters, an increment with respect to bio-PA11 in the tensile strength of 38%, stiffness of 140%, and HDT of 77% compared to the matrix were obtained. Full article
Show Figures

Figure 1

15 pages, 6600 KiB  
Article
Solid Forms of Bio-Based Monomer Salts for Polyamide 512 and Their Effect on Polymer Properties
by Xiaohan Zhang, Xincao Fang, Yongliang Yan, Zihan Li, Qingshi Wen, Keke Zhang, Ming Li, Jinglan Wu, Pengpeng Yang and Junzhi Wang
Polymers 2024, 16(21), 2953; https://doi.org/10.3390/polym16212953 - 22 Oct 2024
Viewed by 1196
Abstract
Polyamides’ properties are greatly influenced by the polymerization process and the type of feedstock used. The solid forms of nylon salts play a significant role in determining the final characteristics of the material. This study focuses on the long-chain bio-nylon 512. Firstly, we [...] Read more.
Polyamides’ properties are greatly influenced by the polymerization process and the type of feedstock used. The solid forms of nylon salts play a significant role in determining the final characteristics of the material. This study focuses on the long-chain bio-nylon 512. Firstly, we systematically investigated the possible solid forms of the nylon 512 salt, including crystal forms and morphologies, by massive experimental screening, single-crystal X-ray diffraction, Hirshfeld surface analysis, and TG-DSC measurements. The regulation and control of the various solid forms were achieved through solid-state transformations (SSTs) and solution-mediated phase transformations (SMPTs). Our findings shows that the nylon 512 salt exists in two crystal forms (anhydrate and dihydrate) and four morphologies (needle-like, plate-like, rod-like, and massive block crystal). Many factors will influence the formation of these solid forms, such as water activity, temperature, solvent, and ultrasonic physical fields. We can choose the right factors to regulate this as needed. On this basis, we studied the effects of different solid forms (crystal forms and morphologies) on the properties of the resulting polyamides prepared using direct solid-state polymerization (DSSP). The solid form of the salt had many effects on the polymer, including its structure, melting point, and mechanical properties. The polyamide obtained through DSSP of the anhydrate salt exhibited a higher melting point (204.22 °C) and greater elastic modulus (3.366 GPa) compared to that of the dihydrate salt, especially for the anhydrate salt of plate-like crystals. Full article
Show Figures

Graphical abstract

19 pages, 4889 KiB  
Article
Insights on Microplastic Contamination from Municipal and Textile Industry Effluents and Their Removal Using a Cellulose-Based Approach
by Solange Magalhães, Daniel Paciência, João M. M. Rodrigues, Björn Lindman, Luís Alves, Bruno Medronho and Maria da Graça Rasteiro
Polymers 2024, 16(19), 2803; https://doi.org/10.3390/polym16192803 - 3 Oct 2024
Cited by 4 | Viewed by 1932
Abstract
The rampant use of plastics, with the potential to degrade into insidious microplastics (MPs), poses a significant threat by contaminating aquatic environments. In the present study, we delved into the analysis of effluents from textile industries, a recognized major source of MPs contamination. [...] Read more.
The rampant use of plastics, with the potential to degrade into insidious microplastics (MPs), poses a significant threat by contaminating aquatic environments. In the present study, we delved into the analysis of effluents from textile industries, a recognized major source of MPs contamination. Data were further discussed and compared with a municipal wastewater treatment plant (WWTP) effluent. All effluent samples were collected at the final stage of treatment in their respective WWTP. Laser diffraction spectroscopy was used to evaluate MP dimensions, while optical and fluorescence microscopies were used for morphology analysis and the identification of predominant plastic types, respectively. Electrophoresis was employed to unravel the prevalence of negative surface charge on these plastic microparticles. The analysis revealed that polyethylene terephthalate (PET) and polyamide were the dominant compounds in textile effluents, with PET being predominant in municipal WWTP effluents. Surprisingly, despite the municipal WWTP exhibiting higher efficiency in MP removal (ca. 71% compared to ca. 55% in textile industries), it contributed more to overall pollution. A novel bio-based flocculant, a cationic cellulose derivative derived from wood wastes, was developed as a proof-of-concept for MP flocculation. The novel derivatives were found to efficiently flocculate PET MPs, thus allowing their facile removal from aqueous media, and reducing the threat of MP contamination from effluents discharged from WWTPs. Full article
(This article belongs to the Special Issue Micro- and Nanoplastics Engineering and Design for Research)
Show Figures

Figure 1

15 pages, 4880 KiB  
Article
Guanidine Derivatives Leverage the Antibacterial Performance of Bio-Based Polyamide PA56 Fibres
by Lili Wang, Bobo Zhou, Yuliu Du, Miao Bai, Xiang Xu, Yong Guan and Xiucai Liu
Polymers 2024, 16(19), 2707; https://doi.org/10.3390/polym16192707 - 25 Sep 2024
Cited by 2 | Viewed by 1249
Abstract
Bacterial damage has significantly impacted humanity, prompting the control of harmful microorganisms and infectious diseases. In this study, antibacterial bio-based PA56 fibres were prepared with high-speed spinning using ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EMA) as the compatibiliser and polypentamethylene guanidine sulphate (PPGS) as the [...] Read more.
Bacterial damage has significantly impacted humanity, prompting the control of harmful microorganisms and infectious diseases. In this study, antibacterial bio-based PA56 fibres were prepared with high-speed spinning using ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EMA) as the compatibiliser and polypentamethylene guanidine sulphate (PPGS) as the antibacterial agent. The effects of PPGS content on the properties of PA56 draw-textured yarns (DTYs) were investigated. The compatibility between PPGS and PA greatly improved with EMA incorporation. Compared with PA56 fibres, the elongation at break of the sample containing 2.0 wt% EMA and PPGS increased by 25.93%. The inhibition rates of the fibres with 1.0 wt% PPGS against Escherichia coli and Staphylococcus aureus reached over 99.99%. Samples were easily coloured with dyes, exhibiting good colour fastness, regardless of the EMA content. However, the antibacterial performances of dyed DTYs decreased to varying degrees. the inhibition rates of samples of 0.5wt% addition of PPGS against E. coli were reduced from 99.99% to 28.50% and 25.36% after dyeing with Acid Blue 80 and Dispersible Blue 2BLN, respectively. The EMA-modified fibres exhibited the best antibacterial activity after dyeing with neutral gray 2BL. These findings are expected to promote the wider use of biobased PA56 in practical applications that require antibacterial performance and to guide the dyeing process of antimicrobial fibres. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

11 pages, 6460 KiB  
Article
Role of Minor Phase Morphology on Mechanical and Shape-Memory Properties of Polylactide/Bio-Polyamide Nanocomposite
by Vladislav Bondarenko, Ramin Hosseinnezhad and Andrei Voznyak
Polymers 2024, 16(17), 2413; https://doi.org/10.3390/polym16172413 - 26 Aug 2024
Viewed by 1089
Abstract
In situ-generated nanofibrillar polymer–polymer composites are excellent candidates for the production of polymer materials, with high mechanical and SME properties. Their special feature is the high degree of dispersion of the in situ-generated nanofibers and the ability to form entangled nanofiber structures with [...] Read more.
In situ-generated nanofibrillar polymer–polymer composites are excellent candidates for the production of polymer materials, with high mechanical and SME properties. Their special feature is the high degree of dispersion of the in situ-generated nanofibers and the ability to form entangled nanofiber structures with high aspect ratios through an end-to-end coalescence process, which makes it possible to effectively reinforce the polymer matrix and, in many cases, increase its ductility. The substantial interfacial area, created by the in situ formed fiber/matrix morphology, significantly strengthens the interfacial interactions, which are crucial for shape fixation and shape recovery. Using the polylactide/bio-polyamide (PLA/PA) system as an example, it is shown that in situ PA fibrillation improves the mechanical and shape-memory properties of PLA. The modulus of elasticity increases by a factor of 1.4, the elongation at break increases by a factor of 30, and the shape-strain/fixity ratio and shape recovery increase from 80.2 to 97.4% and from 15.5 to 94.0%, respectively. The morphology of the minor PA phase is crucial. The best result is achieved when a physically entangled nanofibrous network is formed. Full article
Show Figures

Figure 1

14 pages, 3759 KiB  
Article
Investigation of Dual Network Construction for Toughening in Bio-Based Polyamide Composites
by Chenxu Zhou, Chao Ding, Huaguang Yang and Xianbo Huang
Polymers 2024, 16(16), 2248; https://doi.org/10.3390/polym16162248 - 8 Aug 2024
Cited by 2 | Viewed by 1413
Abstract
This study investigated the role of constructing a dual network in toughening bio-based long-chain polyamide 610 (PA610) composites. Rheological studies were conducted to reveal the effects of toughening agent type and content on the material properties. According to the variation trend of mechanical [...] Read more.
This study investigated the role of constructing a dual network in toughening bio-based long-chain polyamide 610 (PA610) composites. Rheological studies were conducted to reveal the effects of toughening agent type and content on the material properties. According to the variation trend of mechanical properties and the appearance of a rheological low-frequency plateau of the materials, the percolation network concentration ϕc of the toughening agent in the PA610 matrix was determined to be 13.5 vol.%. The interfacial interaction of the composite was evaluated through the percolation theory, and the scaling value v = 1.36 for both indicated the good affinity between PA610 and the toughening agent. Rheology results found that the combination of ethylene terpolymer (PTW) and maleic anhydride-g-styrene-b-(ethylene-butylene)-b-styrene (MAH-SEBS) could achieve an optimal balance between the mechanical properties and fluidity of the composites. Furthermore, the addition of ultra-high-molecular-weight polytetrafluoroethylene (PTFE), in conjunction with the toughening agent, facilitated the construction of a dual semi-interpenetrating network. The strengthened intermolecular interactions restricted the relative slippage and mobility of the polymer chains and therefore enhanced the strength and toughness of the material. This study provides new possibilities and approaches for optimizing the comprehensive properties of bio-based polyamide materials. Full article
Show Figures

Figure 1

Back to TopTop