Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = bilinear stress–strain model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 20596 KiB  
Article
Critical Review and Benchmark Proposal on FE Modeling for Patch Loading Resistance of Slender Steel Plate Girders in Launched Bridges
by Marck Anthony Mora Quispe
Buildings 2025, 15(13), 2153; https://doi.org/10.3390/buildings15132153 - 20 Jun 2025
Viewed by 411
Abstract
The patch loading resistance of slender steel plate girders is a critical factor in the design of launched steel and composite steel–concrete bridges. Traditional design methods enhance patch loading resistance through various stiffening techniques, with contributions typically estimated via code expressions calibrated on [...] Read more.
The patch loading resistance of slender steel plate girders is a critical factor in the design of launched steel and composite steel–concrete bridges. Traditional design methods enhance patch loading resistance through various stiffening techniques, with contributions typically estimated via code expressions calibrated on experimental data that do not always reflect the complexities of full-scale bridge applications. Finite Element (FE) modeling offers a more realistic alternative, though its practical application is often hindered by modeling uncertainties and nonlinearities. To bridge this gap, this paper introduces an advanced FE modeling approach. It provides a comprehensive description of an FE model that accurately predicts both the load–displacement behavior and the patch loading resistance. The model is benchmarked against a broad set of experimental tests and systematically investigates the effects of key modeling parameters and their interactions—material stress–strain law, boundary condition representation, stiffness of the load introduction area, initial geometric imperfections, and solving algorithms. Key findings demonstrate that a bilinear elastoplastic material model with hardening is sufficient for estimating ultimate resistance, and kinematic constraints can effectively replace rigid transverse stiffeners. The stiffness of the load application zone significantly influences the response, especially in launched bridge scenarios. Initial imperfections notably affect both stiffness and strength, with standard fabrication tolerances offering suitable input values. The modified Riks algorithm is recommended for its efficiency and stability in nonlinear regimens. The proposed methodology advances the state of practice by providing a simple yet reliable FE modeling approach for predicting patch loading resistance in real-world bridge applications, leading to safer and more reliable structural designs. Full article
(This article belongs to the Special Issue Advanced Analysis and Design for Steel Structure Stability)
Show Figures

Figure 1

15 pages, 2374 KiB  
Article
Fatigue Life (Limit) Analysis Through Infrared Thermography on Flax/PLA Composites with Different Reinforcement Configurations
by Samuel Charca, Diego G. Cervantes, Liu Jiao-Wang and Carlos Santiuste
Appl. Sci. 2025, 15(11), 6189; https://doi.org/10.3390/app15116189 - 30 May 2025
Viewed by 407
Abstract
This paper presents the fatigue limit of flax/PLA composites with different fiber reinforcement architectures. The configurations of the analyzed flax/PLA composites are [0°]8, [0°/90°]s, [+45°/−45°]s, [90°]4, stacking sequences, and basket weave laminates. The methods used [...] Read more.
This paper presents the fatigue limit of flax/PLA composites with different fiber reinforcement architectures. The configurations of the analyzed flax/PLA composites are [0°]8, [0°/90°]s, [+45°/−45°]s, [90°]4, stacking sequences, and basket weave laminates. The methods used to estimate the fatigue limit are the fitting of stress versus number of cycles data using Weibull and Basquin equations, the surface thermographic technique with bilinear and exponential models to analyze the evolution of temperature increment, and volumetric dissipated energy. According to the results found, superficial temperature and the maximum strain reached stabilization over 2000 cycles for σmaxut < 0.7, which was used to determine cyclic stress–strain curves and the fatigue limit. The cyclic stress–strain shows a nonlinear behavior for all laminates, having a good correlation to the Ramberg–Osgood model. Furthermore, having the stabilized temperature and volumetric dissipated energy, the exponential model was used to evaluate the fatigue limit and compared to the values found by Basquin and bilinear models. The fatigue limit found by Basquin and bilinear models shows conservative values compared to the exponential models. The results also show that temperature measurement using infrared thermography is quite sensitive to the environmental temperature variation, especially at low stress applied, and finally, the comparison of these methods on different reinforcement configurations provides a guide to select a proper technique in each case. Full article
(This article belongs to the Special Issue Recent Progress and Applications of Infrared Thermography)
Show Figures

Figure 1

20 pages, 15704 KiB  
Article
Microstructural Deformation and Failure of Highly Explosive-Filled Polymer Composites Under Dynamic Compression
by Xiaowei Zhang, Heming Zhao, Wanqian Yu, Qiao Zhang, Yi Sun and Youcai Xiao
Polymers 2025, 17(7), 867; https://doi.org/10.3390/polym17070867 - 24 Mar 2025
Viewed by 431
Abstract
The dynamic mechanical properties and damage behaviors of polymer-bonded explosives (PBXs), as a kind of highly particle-filled polymer composite, must be known to ensure the safe use of related weapons and munitions. The high particle volume fraction of PBXs, which can reach approximately [...] Read more.
The dynamic mechanical properties and damage behaviors of polymer-bonded explosives (PBXs), as a kind of highly particle-filled polymer composite, must be known to ensure the safe use of related weapons and munitions. The high particle volume fraction of PBXs, which can reach approximately 95%, makes it difficult to investigate their mechanical properties and damage behavior via conventional methods. In this study, a microstructural model was developed by employing the Voronoi correction method to achieve a highly particle-filled PBX. Additionally, a bilinear model was used to accurately represent the nonlinearity of the stress–strain curve, while a zero-thickness cohesive zone model was incorporated to effectively describe the damage mechanism. The dynamic mechanical properties and damage behavior of PBXs with high particle fractions were elucidated to comprehensively understand the effects of strain rate, interface strength, and particle volume fraction on peak stress, failure strain, and damage extent. The numerical results exhibit excellent concurrence with existing experimental measurements and other computational simulations. The mechanical behavior of PBXs was also described by developing a viscoelastic model based on damage, which incorporated the equations associated with macroscopic and microscopic damage evolution. Overall, the proposed numerical technique is effective for comprehending the mechanical behavior and microscopic damage response of PBXs subjected to dynamic compression. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

26 pages, 7318 KiB  
Article
A Modified Trilinear Post-Cracking Model for Fiber-Reinforced Concrete to Improve the Evaluation of the Serviceability Limit State Performance
by Fan Zhang, Wouter De Corte, Xian Liu, Yihai Bao and Luc Taerwe
Materials 2025, 18(7), 1395; https://doi.org/10.3390/ma18071395 - 21 Mar 2025
Cited by 1 | Viewed by 395
Abstract
An accurate constitutive model for fiber-reinforced concrete (FRC) is fundamental for analyzing and designing FRC structures. The recently released fib Model Code 2020 (MC2020) includes significant modifications to the tensile constitutive model for FRC, enhancing its accuracy. However, it has been observed that [...] Read more.
An accurate constitutive model for fiber-reinforced concrete (FRC) is fundamental for analyzing and designing FRC structures. The recently released fib Model Code 2020 (MC2020) includes significant modifications to the tensile constitutive model for FRC, enhancing its accuracy. However, it has been observed that the applicability of this model for certain types of FRC is limited due to its overly simplified post-cracking mechanical assumptions. This is particularly evident in structural FRC, where the fiber pull-out force reaches its maximum at a large fiber slip, resulting in a load decrease before increasing again after the notched beam cracks. In that case, the bilinear assumption in the stress–strain model of MC2020 for post-cracking is insufficient to reflect the fiber mechanism and the mechanical properties of FRC at small crack widths. Therefore, based on the characteristics of fiber pull-out in structural FRC, this paper proposes a trilinear post-cracking stress–strain model to reflect the fiber pull-out mechanism more accurately and better analyze the performance of FRC structures in the serviceability limit state. Through an analysis of experimental data and numerical simulation studies on steel fiber-reinforced concrete (SFRC) notched beams, the parameters for the proposed trilinear constitutive model are determined and validated, and the results indicate that the stress value at the new inflection point in the post-cracking trilinear model should be 0.8fFts (the serviceability residual strength of the FRC). Although the proposed trilinear model seems similar to the trilinear model provided in MC2020, it is developed based on fiber pull-out behavior, whereas the trilinear model in MC2020 was mainly developed to eliminate numerical singularities. Finally, while the models in MC2020 perform well in evaluating the ultimate limit state performance, the proposed constitutive model can serve as a supplement, especially when serviceability limit state performance is considered. Full article
(This article belongs to the Special Issue Advanced Computational Methods in Manufacturing Processes)
Show Figures

Figure 1

14 pages, 6407 KiB  
Article
Tensile Properties and Constitutive Model of BFRP–Steel–BFRP Composite Plates
by Yirui Zhang, Jiyang Yi, Yang Wei and Hu Zhao
Materials 2025, 18(4), 756; https://doi.org/10.3390/ma18040756 - 8 Feb 2025
Viewed by 798
Abstract
Traditional materials such as steel and concrete often face limitations in terms of corrosion resistance and long-term performance. Over the past few decades, the search for alternative reinforcement solutions has grown, driven by the need for more sustainable, lightweight, and corrosion-resistant materials. Basalt [...] Read more.
Traditional materials such as steel and concrete often face limitations in terms of corrosion resistance and long-term performance. Over the past few decades, the search for alternative reinforcement solutions has grown, driven by the need for more sustainable, lightweight, and corrosion-resistant materials. Basalt fibers, with their superior mechanical properties and resistance to environmental degradation, have emerged as a promising candidate. This study investigated the tensile mechanical properties and constitutive behavior of basalt fiber-reinforced polymer (BFRP)–steel–BFRP composite plates. A total of 12 specimens were fabricated, varying in BFRP layer thickness, and subjected to uniaxial tensile testing. The results reveal that bonding BFRP layers significantly enhances the strengthening stiffness and strength of the steel plates, while maintaining ductility and fracture stability. The stress–strain analysis indicates a bilinear behavior, with the BFRP layers contributing to a higher slope during the strengthening stage and stable fracture strain across specimens. Additionally, a three-segment constitutive model was proposed and validated, demonstrating high accuracy in predicting tensile behavior. The findings highlight the potential of BFRP–steel–BFRP composite plates as efficient reinforcement solutions, offering a balance of strength, flexibility, and cost-effectiveness. This study provides data and modeling insights to guide the design and optimization of composite materials for structural applications. Full article
Show Figures

Figure 1

14 pages, 4813 KiB  
Article
Characterization of Micro-Crack Orientation in a Thin Plate Using Quasi-Static Component Generated by Incident Ultrasonic Lamb Waves
by Liang Zhao, Jun Zhou, Weifeng Yuan, Bin Gu, Mingxi Deng, Caibin Xu, Xiangyan Ding, Zhengpan Qi, Jishuo Wang and Qin Ying
Sensors 2025, 25(1), 222; https://doi.org/10.3390/s25010222 - 2 Jan 2025
Viewed by 1147
Abstract
The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress–strain constitutive model, a three-dimensional (3D) finite element model (FEM) is [...] Read more.
The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress–strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC. The amplitude of the QSC generated can be used for directly charactering the micro-crack orientation. The finite element simulation results show that the directivity of the QSC radiated by the micro-crack is closely related to the orientation of the micro-crack, allowing for the characterization of micro-crack orientation without the need for baseline signals. The results indicate that the directionality of the QSC can be used for characterizing the orientation of the micro-crack. The amplitude of the QSC is affected by the contact area between two surfaces of the micro-crack. It is demonstrated that the proposed method is a feasible means for the characterization of micro-crack orientation. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 3580 KiB  
Article
Predicting the Tensile Properties of Carbon FRCM Using a LASSO Model
by María Rodríguez-Marcos, Paula Villanueva-Llaurado, Jaime Fernández-Gómez, Joaquín Abellán-García and Augusto Sisa-Camargo
Fibers 2024, 12(12), 109; https://doi.org/10.3390/fib12120109 - 9 Dec 2024
Cited by 1 | Viewed by 1338
Abstract
The use of Fibre Reinforced Cementitious Matrix (FRCM) for structural retrofitting requires prior assessment of the composite’s mechanical properties, particularly its tensile stress–strain response. This paper presents a LASSO regression model applied to 107 uniaxial tensile tests on Carbon FRCM in order to [...] Read more.
The use of Fibre Reinforced Cementitious Matrix (FRCM) for structural retrofitting requires prior assessment of the composite’s mechanical properties, particularly its tensile stress–strain response. This paper presents a LASSO regression model applied to 107 uniaxial tensile tests on Carbon FRCM in order to investigate the impact of both the material and testing parameters on FRCM performance. A highly effective LASSO regression model was trained using k-fold validation, resulting in concise and comprehensible models. Within the testing parameters, both the gripping system and load–speed ratio significantly affected the performance. A substantial impact on ultimate values was found for the load–speed ratio. From the material-related parameters, the most influential was the textile coating in terms of strength and the existence of bilinear or trilinear behaviour. It was also concluded that the combination of textile and matrix properties influenced the stress–strain response at all stages, with high-performance mortars resulting in better textile-to-matrix interaction. Full article
Show Figures

Graphical abstract

15 pages, 2839 KiB  
Article
Computational Modeling of U-Shaped Seismic Dampers for Structural Damage Mitigation
by Víctor Tuninetti, Álvaro Gómez, Flavia Bustos, Angelo Oñate, Jorge Hinojosa, Calogero Gallo, Anne-Marie Habraken and Laurent Duchêne
Appl. Sci. 2024, 14(22), 10238; https://doi.org/10.3390/app142210238 - 7 Nov 2024
Cited by 2 | Viewed by 1661
Abstract
U-shaped seismic dampers, passive metallic devices that dissipate energy by cyclic plastic deformation, are designed to mitigate the effects of seismic loads on structures. This study focuses on the development of an advanced computational model of a U-shaped damper, chosen for its unique [...] Read more.
U-shaped seismic dampers, passive metallic devices that dissipate energy by cyclic plastic deformation, are designed to mitigate the effects of seismic loads on structures. This study focuses on the development of an advanced computational model of a U-shaped damper, chosen for its unique design of variable thickness and width, which contributes to its superior performance. The simulation uses nonlinear finite element analysis and a bilinear hardening model calibrated to the actual stress–strain curve of the low-carbon steel. To ensure accuracy, a rigorous mesh convergence analysis is performed to quantify numerical prediction errors and establish a model suitable for predicting local deformation phenomena, including strain and stress fields, throughout the displacement-based loading protocol. Mesh sensitivity analysis, performed by examining the equivalent stress and cumulative plastic strain, derives the damper hysteresis curve and confirms the convergence criteria of the mesh within the experimentally observed plastic response range of the material. The resulting computational model is a novel contribution that provides reliable predictions of local inhomogeneous deformation and energy dissipation, essential for optimizing damper design and performance through more sophisticated damage-fatigue models that guarantee the lifetime of a damper. Full article
Show Figures

Figure 1

22 pages, 7233 KiB  
Article
Incremental Growth Analysis of a Cantilever Beam under Cyclic Thermal and Axial Loads
by Ali Shahrjerdi, Hamidreza Heydari, Mehdi Bayat and Mohammadmehdi Shahzamanian
Materials 2024, 17(18), 4550; https://doi.org/10.3390/ma17184550 - 16 Sep 2024
Cited by 1 | Viewed by 1389
Abstract
Ratcheting analysis for cantilever beams subjected to the thermomechanical loads is presented using the finite element method. The cantilever beam is constrained along the vertical direction, and plane stress conditions are assumed according to the bilinear isotropic hardening model. Two points are considered [...] Read more.
Ratcheting analysis for cantilever beams subjected to the thermomechanical loads is presented using the finite element method. The cantilever beam is constrained along the vertical direction, and plane stress conditions are assumed according to the bilinear isotropic hardening model. Two points are considered to obtain areas of ratcheting by using linear extrapolation. The results and output diagrams for ratcheting with elastic-perfect plastic behavior are illustrated. It was revealed that the beam behaves elastically after the first considerable plastic strain, which is seen in two shakedown regimes. The numerical results are verified with known and analytical results in the literature. The results indicate a strong correlation between the outcomes from the cyclic ANSYS Parametric Design Language (APDL) model and Bree’s analytical predictions. This consistency between the finite element analysis and the analytical solutions underscores the potential of finite element analysis as a powerful tool for addressing complex engineering challenges, offering a reliable and robust alternative to traditional analytical methods. Full article
Show Figures

Figure 1

31 pages, 40452 KiB  
Article
Incremental Viscoelastic Damage Contact Models for Asphalt Mixture Fracture Assessment
by Gustavo Câmara, Rui Micaelo, Nuno Monteiro Azevedo and Hugo Silva
Infrastructures 2024, 9(7), 118; https://doi.org/10.3390/infrastructures9070118 - 22 Jul 2024
Viewed by 2043
Abstract
Asphalt mixtures are widely used as a surfacing material for pavements due to their several advantages. For this reason, robust numerical models still need to be developed to improve the understanding of their fracture behaviour. Recently, an incremental generalised Kelvin (GK) contact model [...] Read more.
Asphalt mixtures are widely used as a surfacing material for pavements due to their several advantages. For this reason, robust numerical models still need to be developed to improve the understanding of their fracture behaviour. Recently, an incremental generalised Kelvin (GK) contact model that relates increments in contact displacements with increments in contact forces was proposed to assess the viscoelastic behaviour of asphalt mixtures within a discrete element method (DEM) framework. In this work, the contact model is extended to allow its application to asphalt mixture fracture studies. Two damage models—a brittle and a bilinear softening—coupled with the GK contact model are proposed to consider damage initiation and propagation. A parametric study is presented that assesses the impact of the GK-Damage parameters, showing a sensitivity to the loading velocity and the Maxwell elements, particularly its viscosity element, on the stress–strain response of a single contact. A reduced-size numerical mastic is initially used to speed up the calibration process of the GK-Damage contact parameters, with subsequent validation on a specimen with real experimental dimensions. It is shown that the proposed calibrated damage models can successfully reproduce the time-dependent behaviour, peak stress, and crack path observed in experimental results, highlighting the benefits of the adopted methodology. For the GK-Bilinear model, the fracture energy and maximum contact tensile stress are shown to adjust both the peak stress and softening response. Uniaxial tensile tests on asphalt mixtures indicate that the GK-Bilinear model provides a more realistic characterisation of fracture development. A higher susceptibility to damage at aggregate-to-mastic contacts compared to contacts within the mastic phase is identified. Full article
Show Figures

Figure 1

19 pages, 3475 KiB  
Article
Load–Displacement Behaviour and a Parametric Study of Hybrid Rubberised Concrete Double-Skin Tubular Columns
by Shovona Khusru, David P. Thambiratnam, Mohamed Elchalakani and Sabrina Fawzia
Buildings 2023, 13(12), 3131; https://doi.org/10.3390/buildings13123131 - 18 Dec 2023
Cited by 2 | Viewed by 1378
Abstract
Rubberised concrete has emerged as a material of interest to the research community with the mission of creating sustainable structural members and decreasing the burden of waste tyre rubber. The potential benefits of replacing natural aggregates with rubber particles to obtain greater energy [...] Read more.
Rubberised concrete has emerged as a material of interest to the research community with the mission of creating sustainable structural members and decreasing the burden of waste tyre rubber. The potential benefits of replacing natural aggregates with rubber particles to obtain greater energy absorption and ductility are proven in the literature. To negate the reduction in capacity due to the addition of rubber particles, single- and double-skin confinements were proposed and successfully tested by researchers. Hybrid rubberised double-skin tubular columns (RuDSTCs) were recently trialled and tested by the authors. Each of these hybrid RuDSTCs had a filament-wound carbon fibre-reinforced polymer (CFRP) outer tube and an inner steel tube with rubberised concrete as the sandwich material between the two tubes. To explore the axial behaviour of such a column, this paper develops a finite element modelling strategy and carries out a comprehensive parametric study of the hybrid RuDSTC with 0%, 15%, and 30% combined aggregates replaced with rubber particles. This methodology is validated by experimental results, and a good agreement is found. Hybrid RuDSTC models are developed in four groups with different material and geometric parameters, in addition to those corresponding to the experimentally tested column, to explore the effects of the thickness ratio, hollow ratio, steel tube yield strength, and CFRP tube diameter with a special focus on the transition of the characteristic bilinear stress–strain curve of the hybrid RuDSTCs. The results show the smooth transition of the stress–strain curve with increasing rubber content after the yielding of steel, which indicates better ductility of the rubberised columns. The novel hybrid RuDSTCs can provide a promising sustainable solution with greater capacity compared with their unconfined counterparts. Better strain and enhanced ductility of the hybrid RuDSTCs compared with non-rubberized hybrid DSTCs enable their use in seismic-prone regions and mining infrastructure. Full article
(This article belongs to the Special Issue Sustainable Building Materials for Infrastructure Application)
Show Figures

Figure 1

16 pages, 4078 KiB  
Article
Engineering the Tensile Response of Glass Textile Reinforced Concrete for Thin Elements
by Sachin Paul and Ravindra Gettu
Sustainability 2023, 15(19), 14502; https://doi.org/10.3390/su151914502 - 5 Oct 2023
Cited by 7 | Viewed by 1984
Abstract
Textile-reinforced concrete (TRC) is a composite made with bi-directional non-metallic fabric embedded in a fine-grained cementitious matrix. When engineered appropriately, these composites can reduce material usage for the desired performance, resulting in slimmer sections and enhanced material efficiency, which in turn lowers the [...] Read more.
Textile-reinforced concrete (TRC) is a composite made with bi-directional non-metallic fabric embedded in a fine-grained cementitious matrix. When engineered appropriately, these composites can reduce material usage for the desired performance, resulting in slimmer sections and enhanced material efficiency, which in turn lowers the CO2 footprint. To facilitate the widespread application of TRC in practice, it is crucial to comprehend the material and structural behavior of these composites, which can pave the way toward an optimized design methodology. In this paper, the tensile response of TRC is studied with different textile geometries, volume fractions and matrix strengths. The influence of the coating impregnation on the effectiveness of the textile to enhance the response of the composite is discussed, with complementing evidence from microstructural observations. The results of tests with different textile configurations indicate a transition in the type of stress–strain response from tri-linear to bi-linear, beyond a certain effective volume fraction. The paper also presents a simplified model to predict the bi-linear response from the efficiency factor-based approach. The insights gained can assist in achieving composite designs with optimized sections and limited tensile stress cracking, ensuring the targeted performance in slender elements. Full article
(This article belongs to the Special Issue Circular Economy in the Construction Sector)
Show Figures

Figure 1

32 pages, 23019 KiB  
Article
Comparative Studies of the Confined Effect of Shear Masonry Walls Made of Autoclaved Aerated Concrete Masonry Units
by Radosław Jasiński and Tomasz Gąsiorowski
Materials 2023, 16(17), 5885; https://doi.org/10.3390/ma16175885 - 28 Aug 2023
Cited by 6 | Viewed by 1534
Abstract
Confined walls are popular in areas exposed to seismic action. The advantage of such structures is increased load-bearing capacity, ductility, and energy dissipation. Confined masonry walls are also used to restrain the intensity of cracking and improve load-bearing capacity in areas exposed to [...] Read more.
Confined walls are popular in areas exposed to seismic action. The advantage of such structures is increased load-bearing capacity, ductility, and energy dissipation. Confined masonry walls are also used to restrain the intensity of cracking and improve load-bearing capacity in areas exposed to seismic action. This paper describes the research on 18 confined walls and presents a comparison with research on unconfined walls (referenced models). The confined models were classified into three series: HOS-C-AAC—without openings and with confining elements around the perimeter; HAS-C1-AAC with a centrally positioned opening and circumferential confinement; and HAS-C2-AAC with a centrally positioned window opening and additional confinement along the vertical edges of the opening. The area of the window opening was 1.5 m2. All walls were made of autoclaved aerated concrete (AAC) masonry units of the nominal density class of 600. The walls were tested under initial compressive stresses σc = 0.1; 0.75; and 1.0 N/mm2. The reference models without confinement (six models of the series HOS-AAC without openings and the series HAS-AAC with openings) were prepared from the same masonry units, had almost the same outer dimensions, and were tested under the same initial compressive stresses σc. The analysis was performed for the morphology of cracks, stress values at the moment of cracking and failure, stiffness, and angles of shear strain. The morphology of cracks was found to depend on initial compressive stresses and the presence of an opening. A significant increase in compressive stress leading to cracks and failure stresses was observed with increasing values of initial compressive stresses. As the wall behavior was clearly non-linear, the bilinear relationship described by energy dissipation E, stiffness at the moment of cracking Kcr, and maximum displacement uu was proposed to be included in the engineering description of the relationship between horizontal load and displacement of confined walls. Confinement along the vertical edges of the opening having an area of 1.5 m2 (acc. to EN 1996-1-1) increased the maximum forces Pmax by ca. 45% and marginally affected the ductility of the wall when compared to the elements with circumferential confinement. Full article
(This article belongs to the Special Issue Masonry Structures and Reinforced Concrete Structures (2nd Edition))
Show Figures

Figure 1

13 pages, 3622 KiB  
Article
Mechanical Properties of SMA/PVA-ECC under Uniaxial Tensile Loading
by Zhao Yang, Jiankun Li, Yilan Zhong and Xiaolong Qi
Buildings 2023, 13(8), 2116; https://doi.org/10.3390/buildings13082116 - 21 Aug 2023
Cited by 4 | Viewed by 1956
Abstract
Although shape memory alloy/Polyvinyl alcohol (SMA/PVA) hybrid fiber reinforced cementitious composites, (SMA/PVA-ECC) exhibit excellent crack closure and deformation recovery capabilities, however, the research on their fundamental mechanical properties is still limited. This study investigates the tensile mechanical properties of SMA/PVA-ECC materials by conducting [...] Read more.
Although shape memory alloy/Polyvinyl alcohol (SMA/PVA) hybrid fiber reinforced cementitious composites, (SMA/PVA-ECC) exhibit excellent crack closure and deformation recovery capabilities, however, the research on their fundamental mechanical properties is still limited. This study investigates the tensile mechanical properties of SMA/PVA-ECC materials by conducting uniaxial tensile tests, analyzing the failure behavior, stress–strain curves, and characteristic parameters of the specimens, comparing the influence of SMA fiber content and diameter, and establishing a tensile constitutive model. The results show that the residual crack width of SMA/PVA-ECC specimens significantly decreases after unloading, and SMA fiber content and diameter have a significant impact on the tensile properties of the specimens. The comprehensive tensile properties of specimens with a fiber diameter of 0.2 mm and content of 0.2% are the best, with their initial cracking strength, ultimate strength, and strain increasing by 56.4%, 23.6%, and 13.4%, respectively, compared to ECC specimens. The proposed bilinear tensile constitutive model has high accuracy. This study provides a theoretical basis for further research on SMA/PVA-ECC materials. Full article
Show Figures

Figure 1

21 pages, 9261 KiB  
Article
Experimental and Theoretical Investigation of Rotational Behavior of Straight Mortise-Tenon Joints Considering Local Compression Perpendicular to Grain
by Xingxing Liu, Weidong Lu, Kaifeng Liu, Fengyan Xu, Zhibin Ling and Kong Yue
Buildings 2023, 13(7), 1839; https://doi.org/10.3390/buildings13071839 - 20 Jul 2023
Cited by 2 | Viewed by 1380
Abstract
This paper comprehensively investigates the moment-rotation relationship of straight mortise-tenon joints commonly used in Chinese antique timber buildings, focusing on analyzing the local compression mechanism at the tenon end-mortise and the tenon neck-mortise contact areas. Different compression tests were performed, and the experimental [...] Read more.
This paper comprehensively investigates the moment-rotation relationship of straight mortise-tenon joints commonly used in Chinese antique timber buildings, focusing on analyzing the local compression mechanism at the tenon end-mortise and the tenon neck-mortise contact areas. Different compression tests were performed, and the experimental compressive stress-strain curves displayed a typical bi-linear response comprising an elastic increasing response followed by a plastic stage. The specimens subjected to middle local compression tests exhibited higher yield stress, elastic modulus, and plastic modulus than the others. Cyclic loading tests were conducted on twelve mortise-tenon joints with varying lengths, widths, and heights of the tenon to investigate the rotational behavior of the joints under alternating loading directions. The hysteresis curves of the tested specimens generally showed a “Z” shaped pinching effect, indicating limited energy dissipation of the joints during cyclic loading. The length and width of the tenon were observed to have a significant influence on the joint rotational behavior. Finally, a theoretical model was proposed to predict the moment-rotation relationship of the mortise-tenon joint, considering the proposed bilinear stress-strain relationship for wood under compression perpendicular to the grain. The predicted results obtained by the proposed theoretical model were generally validated by the experimental results. Full article
(This article belongs to the Special Issue Wood and Composite Wood in Sustainable Construction)
Show Figures

Figure 1

Back to TopTop