A Modified Trilinear Post-Cracking Model for Fiber-Reinforced Concrete to Improve the Evaluation of the Serviceability Limit State Performance
Abstract
:1. Introduction
2. An Overview of the FRC Constitutive Model in the fib Model Codes 2010 and 2020
2.1. An Overview of the Constitutive Models
2.2. Derivation and Applicability Analysis of Constitutive Models
2.2.1. Serviceability Limit State
2.2.2. Ultimate Limit State
2.2.3. Trilinear Post-Cracking Constitutive Model
2.2.4. The Influence of the Characteristic Length on the Constitutive Parameters
2.2.5. Correspondence Between Constitutive Models and Fiber Enhancement Mechanisms
3. Analysis of Experimental Data
4. Analysis of Constitutive Parameters
4.1. FEM Model
4.2. Analysis Conditions
4.3. Simulation Results and Analysis
5. Verification of Constitutive Parameters
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sorelli, L.G.; Meda, A.; Plizzari, G.A. Steel Fiber Concrete Slabs on Ground: A Structural Matter. ACI Mater. J. 2006, 103, 551. [Google Scholar]
- Belletti, B.; Cerioni, R.; Meda, A.; Plizzari, G. Design Aspects on Steel Fiber-Reinforced Concrete Pavements. J. Mater. Civ. Eng. 2008, 20, 599–607. [Google Scholar] [CrossRef]
- Pombo, R.; Altamirano, M.G.; Giaccio, G.M.; Zerbino, R.L. Design and Execution of Floors on Ground and Industrial Pavements with Fibre Reinforced Concrete. In Fibre Reinforced Concrete: Improvements and Innovations II; Serna, P., Llano-Torre, A., Martí-Vargas, J.R., Navarro-Gregori, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 640–651. [Google Scholar]
- Marushchak, U.D.; Sydor, N.I.; Braichenko, S.P.; Margal, I.V.; Soltysik, R.A. Modified Fiber Reinforced Concrete for Industrial Floors. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kharkiv, Ukraine, 20–22 November 2019; p. 012094. [Google Scholar] [CrossRef]
- Hrynyk, T.D.; Vecchio, F.J. Behavior of Steel Fiber-Reinforced Concrete Slabs under Impact Load. Struct. J. 2014, 111, 1213–1224. [Google Scholar] [CrossRef]
- Lee, J.-H.; Cho, B.; Choi, E. Flexural Capacity of Fiber Reinforced Concrete with a Consideration of Concrete Strength and Fiber Content. Constr. Build. Mater. 2017, 138, 222–231. [Google Scholar] [CrossRef]
- Conforti, A.; Cuenca, E.; Zerbino, R.; Plizzari, G.A. Influence of Fiber Orientation on the Behavior of Fiber Reinforced Concrete Slabs. Struct. Concr. 2021, 22, 1831–1844. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Q.; Yuan, Y.; Taerwe, L. Comparison of the Structural Behavior of Reinforced Concrete Tunnel Segments with Steel Fiber and Synthetic Fiber Addition. Tunn. Undergr. Space Technol. 2020, 103, 103506. [Google Scholar] [CrossRef]
- de la Fuente, A.; Escariz, R.C.; de Figueiredo, A.D.; Molins, C.; Aguado, A.A. New Design Method for Steel Fibre Reinforced Concrete Pipes. Constr. Build. Mater. 2012, 30, 547–555. [Google Scholar] [CrossRef]
- Conforti, A.; Tiberti, G.; Plizzari, G.A.; Caratelli, A.; Meda, A. Precast Tunnel Segments Reinforced by Macro-Synthetic Fibers. Tunn. Undergr. Space Technol. 2017, 63, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Cui, G.; Zhang, C.; Zhao, Y.; Ma, J.; Min, B. Failure Characteristics and Seismic Behavior of Steel Basalt Hybrid Fiber Reinforced Concrete Lining for the Tunnel in Strong Earthquake Areas. Eng. Fail. Anal. 2024, 162, 108357. [Google Scholar] [CrossRef]
- Zhan, Y. Multi-Level Modeling of Fiber Reinforced Concrete and Application to Numerical Simulations of Tunnel Lining Segments. Ph.D. Thesis, Ruhr University, Bochum, Germany, 2016. [Google Scholar]
- Mihai, I.C.; Jefferson, A.D. A Micromechanics Based Constitutive Model for Fibre Reinforced Cementitious Composites. Int. J. Solids Struct. 2017, 110–111, 152–169. [Google Scholar] [CrossRef]
- Niu, Y.; Wei, J.; Jiao, C. Multi-Scale Fiber Bridging Constitutive Law Based on Meso-Mechanics of Ultra High-Performance Concrete under Cyclic Loading. Constr. Build. Mater. 2022, 354, 129065. [Google Scholar] [CrossRef]
- Deng, F.; Ding, X.; Chi, Y.; Xu, L.; Wang, L. The Pull-Out Behavior of Straight and Hooked-End Steel Fiber from Hybrid Fiber Reinforced Cementitious Composite: Experimental Study and Analytical Modelling. Compos. Struct. 2018, 206, 693–712. [Google Scholar] [CrossRef]
- Gebuhr, G.; Pise, M.; Sarhil, M.; Anders, S.; Brands, D.; Schröder, J. Analysis and Evaluation of the Pull-Out Behavior of Hooked Steel Fibers Embedded in High and Ultra-High Performance Concrete for Calibration of Numerical Models. Struct. Concr. 2019, 20, 1254–1264. [Google Scholar] [CrossRef]
- DBV. Guide to Good Practice: Steel Fibre Concrete; German Society for Concrete and Construction Technology: Berlin, Germany, 2001. [Google Scholar]
- RILEM Technical Committees. σ-ε-Design Method. Mater. Struct. 2003, 36, 560–567. [Google Scholar] [CrossRef]
- CNR-DT 204; Guide for the Design and Construction of Fiber-Reinforced Concrete Structures. National Research Council: Rome, Italy, 2006.
- CPH. Instrucción del Hormigón Estructural EHE-08: Spanish Structural Concrete Standard. Annex 14: Recommendations for the Use of Fibre Reinforced Concrete; Ministerio de Fomento: Madrid, Spain, 2008. [Google Scholar]
- FIB. FIB Model Code for Concrete Structure 2010; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar]
- Blanco, A.; Pujadas, P.; de la Fuente, A.; Cavalaro, S.H.; Aguado, A. Application of Constitutive Models in European Codes to RC–FRC. Constr. Build. Mater. 2013, 40, 246–259. [Google Scholar] [CrossRef]
- Di Prisco, M.; Colombo, M.; Dozio, D. Fibre-Reinforced Concrete in fib Model Code 2010: Principles, Models and Test Validation. Struct. Concr. 2013, 14, 342–361. [Google Scholar] [CrossRef]
- Liao, L.; de la Fuente, A.; Cavalaro, S.; Aguado, A. Design of FRC Tunnel Segments Considering the Ductility Requirements of the Model Code 2010. Tunn. Undergr. Space Technol. 2015, 47, 200–210. [Google Scholar] [CrossRef]
- Nogales, A.; de la Fuente, A. Numerical-Aided Flexural-Based Design of Fibre Reinforced Concrete Column-Supported Flat Slabs. Eng. Struct. 2021, 232, 111745. [Google Scholar] [CrossRef]
- Barragán, B.E.; Facconi, L.; Laurence, O.; Plizzari, G.A. Design of Glass-Fibre-Reinforced Concrete Floors According to the fib Model Code 2010. In Fibre-Reinforced Concrete: From Design to Structural Applications—FRC 2014: ACI-Fib International Workshop; Massicotte, B., Charron, J.-P., Plizzari, G., Mosasher, B., Eds.; DCC Document Competence Center Siegmar Kästl e. K.: Montreal, QC, Canada, 2014. [Google Scholar]
- Marcucci, A.; Guanziroli, S.; Ferrara, L. An Experimental Campaign on Real-Scale SFRC Extruded Tunnel Segments. In Transforming Construction: Advances in Fiber Reinforced Concrete; Mechtcherine, V., Signorini, C., Junger, D., Eds.; BEFIB 2024, RILEM Bookseries; Springer: Cham, Switzerland, 2024; p. 54. [Google Scholar] [CrossRef]
- Woo, S.-K.; Kim, K.-J.; Han, S.-H. Tensile Cracking Constitutive Model of Steel Fiber Reinforced Concrete (SFRC). KSCE J. Civ. Eng. 2014, 18, 1446–1454. [Google Scholar] [CrossRef]
- Galeote, E.; Nogales, A.; de la Fuente, A. Analysis of Design Constitutive Model for Macro-Synthetic Fibre Reinforced Concrete Through Inverse Analysis. In Proceedings of the 75th RILEM Annual Week 2021; RILEM Bookseries. Springer: Cham, Switzerland, 2023; Volume 40, pp. 520–529. [Google Scholar] [CrossRef]
- Vandevyvere, B.; Vandewalle, L.; Li, J. Improved Simplified Constitutive Tensile Model for Fiber-Reinforced Concrete. Struct. Concr. 2023, 24, 4624–4644. [Google Scholar] [CrossRef]
- Vandevyvere, B.; Vandewalle, L.; Vrijdaghs, R.; Pauwels, H.; Li, J. Verification of the Improved Constitutive Tensile Model for Fibre Reinforced Concrete. Mater. Struct. 2024, 57, 57. [Google Scholar] [CrossRef]
- fib. fib Model Code for Concrete Structure 2020. 2024. Available online: https://fib-international.org/publications/fib-bulletins/fib-model-code-2020-detail.html (accessed on 1 May 2023).
- EN 14651:2005+A1:2007; Test Method for Metallic Fibre Concrete—Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual). European Committee for Standardization: Brussels, Belgium, 2007.
- GB 50010-2010; Code for Design of Concrete Structures, Chinese Standard. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2015.
- Isla, F.; Ruano, G.; Luccioni, B. Analysis of Steel Fibers Pull-Out. Experimental Study. Constr. Build. Mater. 2015, 100, 183–193. [Google Scholar] [CrossRef]
- Zhao, J.; Liao, L.; Zhang, F.; Wang, M. Experimental study on flexural properties and fiber distribution of steel fiber reinforced concrete. J. Build Materials. 2020, 04, 838–845. [Google Scholar]
- Zhao, J. Experimental and Numerical Study on the Relationship Between Mechanical Properties and Fiber Distribution of SFRC Under Static and Dynamic Loads. Ph.D. Thesis, Taiyuan University of Technology, Taiyuan, China, 2020. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
Type | No. | MC2010 | MC2020 |
---|---|---|---|
Stress-crack opening laws | 1 | Sketch: | |
Figure 1a | |||
Parameter: | |||
Limitation: | |||
This law can only be used for evaluating FRC contribution at ULS | |||
2 | Sketch: | Sketch: | |
Figure 1b | Figure 1c | ||
Parameter: | Parameter: | ||
Limitation: This law can only be used for evaluating FRC contribution at ULS | |||
Stress–strain laws | 3 | Sketch: | Sketch: |
Figure 2a | Figure 2a | ||
Parameter: | Parameter: | ||
: Ultimate strain, where 2% is adopted for structure in bending; | |||
: fracture energy | |||
Limitation: | |||
This law can only be used when FRC shows post-cracking softening behavior | |||
4 | Sketch: | Sketch: | |
Figure 2b | Figure 2c | ||
Parameter: | Parameter: | ||
The stresses and strains are the same as shown in No.2 and No.3 | and line DE | ||
Limitation: | Limitation: | ||
5 | Sketch: | Sketch: | |
Figure 2d | Figure 2e | ||
Parameter: | Parameter: | ||
The stresses and strains are the same as shown in No.2 and No.3 | : The stress and strain should be determined by uniaxial tests E, F: The equations in No.2 are not valid | ||
Limitation: | |||
This law should be adopted when FRC shows hardening pre-peak behavior | |||
6 | - | (corresponding to the peak stress) exceeds 1%, no softening law is defined, and the constitutive law only reduces to the pre-peak elastic-hardening branch | |
7 | - | This is recommended for finite element analysis, where the stress–crack width relationship is determined from an inverse analysis by fitting to the force-CMOD * registered in the EN 14651 tests [33] |
No. | FLOP | Fmin | F1 | F2 | F3 | F4 | Cf * | No. | FLOP | Fmin | F1 | F2 | F3 | F4 | Cf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 20.2 | 15.9 | 16.3 | 17.4 | 14.7 | 11.4 | 25 | 19 | 21.1 | 16.7 | 18.3 | 21.1 | 15.5 | 12.2 | 30 |
2 | 20.7 | 17.0 | 18.3 | 20.3 | 13.7 | 9.6 | 25 | 20 | 21.2 | 19.4 | 21.0 | 21.4 | 15.6 | 10.6 | 30 |
3 | 17.7 | 11.6 | 12.0 | 14.4 | 12.8 | 10.9 | 25 | 21 | 18.8 | 13.0 | 14.3 | 15.8 | 15.4 | 13.4 | 30 |
4 | 18.8 | 17.5 | 21.6 | 26.0 | 19.0 | 13.4 | 25 | 22 | 17.3 | 15.2 | 16.3 | 19.5 | 18.4 | 16.8 | 35 |
5 | 19.0 | 13.9 | 14.1 | 16.3 | 13.8 | 11.3 | 25 | 23 | 21.1 | 17.3 | 19.6 | 22.7 | 18.7 | 16.7 | 35 |
6 | 18.2 | 16.3 | 19.3 | 22.5 | 14.6 | 11.1 | 25 | 24 | 18.8 | 15.7 | 17.1 | 18.9 | 14.6 | 12.3 | 35 |
7 | 19.7 | 15.8 | 18.1 | 17.1 | 12.1 | 9.7 | 25 | 25 | 19.4 | 16.9 | 18.7 | 22.6 | 20.4 | 16.5 | 35 |
8 | 17.6 | 14.4 | 16.3 | 20.9 | 17.0 | 11.5 | 25 | 26 | 19.3 | 16.4 | 17.9 | 19.5 | 18.2 | 17.0 | 35 |
9 | 17.6 | 15.4 | 18.4 | 23.8 | 17.7 | 15.2 | 25 | 27 | 20.4 | 19.1 | 20.4 | 21.2 | 20.0 | 17.7 | 35 |
10 | 20.0 | 16.8 | 18.4 | 22.0 | 18.0 | 14.2 | 25 | 28 | 18.3 | 17.3 | 19.2 | 24.1 | 24.3 | 24.3 | 40 |
11 | 18.9 | 13.4 | 14.5 | 17.1 | 13.3 | 10.8 | 25 | 29 | 18.2 | 16.0 | 18.4 | 21.5 | 17.2 | 14.8 | 40 |
12 | 20.5 | 18.3 | 20.8 | 26.2 | 19.3 | 15.5 | 25 | 30 | 17.9 | 16.5 | 20.3 | 26.2 | 25.0 | 23.4 | 40 |
13 | 22.7 | 18.4 | 21.6 | 26.9 | 24.1 | 20.8 | 30 | 31 | 20.5 | 19.9 | 20.6 | 24.4 | 23.9 | 21.4 | 40 |
14 | 20.1 | 14.7 | 15.3 | 16.7 | 16.5 | 15.0 | 30 | 32 | 19.3 | 18.1 | 20.4 | 25.3 | 23.0 | 20.7 | 40 |
15 | 20.3 | 16.3 | 17.9 | 19.4 | 14.2 | 9.0 | 30 | 33 | 13.6 | 12.7 | 15.0 | 19.3 | 17.4 | 15.9 | 40 |
16 | 22.0 | 19.8 | 23.4 | 24.6 | 17.4 | 15.1 | 30 | 34 | 12.4 | 11.6 | 13.8 | 18.7 | 16.4 | 13.4 | 40 |
17 | 15.9 | 12.9 | 15.0 | 17.6 | 12.9 | 7.3 | 30 | 35 | 19.7 | 19.3 | 21.1 | 24.4 | 21.9 | 19.5 | 40 |
18 | 16.7 | 13.0 | 14.2 | 11.5 | 5.8 | 3.8 | 30 | ||||||||
Avg. | 19.1 | 15.5 | 17.3 | 20.3 | 15.5 | 12.1 | 25 | Avg. | 19.4 | 16.8 | 18.3 | 20.7 | 18.4 | 16.2 | 35 |
Avg. | 19.9 | 16.0 | 17.9 | 19.4 | 15.3 | 11.9 | 30 | Avg. | 17.5 | 16.4 | 18.6 | 23.0 | 21.1 | 19.2 | 40 |
Fmin-FLOP | Fmin-F1 | Fmin-F2 | Fmin-F3 | Fmin-F4 |
---|---|---|---|---|
0.57 | 0.7 | 0.67 | 0.52 | 0.42 |
Law | Bilinear Law | Trilinear Law | |||
---|---|---|---|---|---|
Symbol | Bi-L | Tri-1 | Tri-2 | Tri-3 | Tri-4 |
Stress at point C’ (σc’) | 2.218 | 1.948 | 1.702 | 1.455 | 1.209 |
Test Data | Bi-L | Tri-1 | Tri-2 | Tri-3 | Tri-4 | Optimal | |
---|---|---|---|---|---|---|---|
Fmin | 15.52 | - | 17.1 | 15.9 | 14.6 | 13.3 | 15.6 |
error | - | - | 10% | 2% | −6% | −14% | 1% |
F1 | 17.35 | 19.6 | 18.7 | 17.7 | 16.9 | 16.1 | 17.5 |
error | - | 13% | 8% | 2% | −3% | −7% | 1% |
Test 1 | Test 2 | Test 3 | Test 4 | Test 5 | Test 6 | |
---|---|---|---|---|---|---|
ffct,L | 5.64 | 6.02 | 6.46 | 6.61 | 7.00 | 5.92 |
fR1 | 3.83 | 4.63 | 5.23 | 6.59 | 7.46 | 7.67 |
fR3 | 4.11 | 4.24 | 4.71 | 6.48 | 5.55 | 8.54 |
fct | 3.32 | 3.54 | 3.80 | 3.89 | 4.12 | 3.48 |
fFts | 1.42 | 1.71 | 1.94 | 2.44 | 2.76 | 2.84 |
fFtu | 1.35 | 1.21 | 1.32 | 1.98 | 1.22 | 2.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; De Corte, W.; Liu, X.; Bao, Y.; Taerwe, L. A Modified Trilinear Post-Cracking Model for Fiber-Reinforced Concrete to Improve the Evaluation of the Serviceability Limit State Performance. Materials 2025, 18, 1395. https://doi.org/10.3390/ma18071395
Zhang F, De Corte W, Liu X, Bao Y, Taerwe L. A Modified Trilinear Post-Cracking Model for Fiber-Reinforced Concrete to Improve the Evaluation of the Serviceability Limit State Performance. Materials. 2025; 18(7):1395. https://doi.org/10.3390/ma18071395
Chicago/Turabian StyleZhang, Fan, Wouter De Corte, Xian Liu, Yihai Bao, and Luc Taerwe. 2025. "A Modified Trilinear Post-Cracking Model for Fiber-Reinforced Concrete to Improve the Evaluation of the Serviceability Limit State Performance" Materials 18, no. 7: 1395. https://doi.org/10.3390/ma18071395
APA StyleZhang, F., De Corte, W., Liu, X., Bao, Y., & Taerwe, L. (2025). A Modified Trilinear Post-Cracking Model for Fiber-Reinforced Concrete to Improve the Evaluation of the Serviceability Limit State Performance. Materials, 18(7), 1395. https://doi.org/10.3390/ma18071395