Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = bilateral arm training

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2066 KiB  
Article
Sport-Specific Shoulder Rotator Adaptations: Strength, Range of Motion, and Asymmetries in Female Volleyball and Handball Athletes
by Manca Lenart, Žiga Kozinc and Urška Čeklić
Symmetry 2025, 17(8), 1211; https://doi.org/10.3390/sym17081211 - 30 Jul 2025
Viewed by 213
Abstract
This study aimed to compare isometric strength, range of motion (RoM), and strength ratios of shoulder internal and external rotators between female volleyball and hand ball players Twenty-five volleyball players (age = 21.8 ± 4.8 years, height = 178.5 ± 7.1 cm, mass [...] Read more.
This study aimed to compare isometric strength, range of motion (RoM), and strength ratios of shoulder internal and external rotators between female volleyball and hand ball players Twenty-five volleyball players (age = 21.8 ± 4.8 years, height = 178.5 ± 7.1 cm, mass = 69.3 ± 7.7 kg) and twenty-four handball players (age = 19.5 ± 2.9 years, height = 169.7 ± 6.4 cm, mass = 67.6 ± 8.4 kg), all competing in the Slovenian 1st national league, participated. Maximal isometric strength and passive RoM of internal and external rotation were measured bilaterally using a handheld dynamometer and goniometer, respectively. A significant group × side interaction was observed for internal rotation RoM (F = 5.41; p = 0.024; η2 = 0.10), with volleyball players showing lower RoM on the dominant side (p = 0.001; d = 0.89), but this was not the case for handball players (p = 0.304). External rotation strength also showed a significant interaction (F = 9.34; p = 0.004; η2 = 0.17); volleyball players were stronger in the non-dominant arm (p = 0.033), while handball players were stronger in the dominant arm (p = 0.041). The external-to-internal rotation strength ratio was significantly lower on the dominant side in volleyball players compared to handball players (p = 0.047; d = 0.59). Findings suggest sport-specific adaptations and asymmetries in shoulder function, emphasizing the need for sport-specific and individually tailored injury prevention strategies. Volleyball players, in particular, may benefit from targeted strengthening of external rotators and flexibility training to address imbalances. Full article
(This article belongs to the Special Issue Application of Symmetry in Biomechanics)
Show Figures

Figure 1

17 pages, 1788 KiB  
Article
Morphological and Functional Asymmetry Among Competitive Female Fencing Athletes
by Wiktoria Bany, Monika Nyrć and Monika Lopuszanska-Dawid
Appl. Sci. 2025, 15(14), 8020; https://doi.org/10.3390/app15148020 - 18 Jul 2025
Viewed by 279
Abstract
Maintaining body symmetry in sports characterized by high lateralization is crucial for optimizing long-term athletic performance and mitigating injury risk. This study aimed to evaluate the extent of morphological asymmetry in anthropometric features among elite professional fencers. Additionally, the presence of functional asymmetry [...] Read more.
Maintaining body symmetry in sports characterized by high lateralization is crucial for optimizing long-term athletic performance and mitigating injury risk. This study aimed to evaluate the extent of morphological asymmetry in anthropometric features among elite professional fencers. Additionally, the presence of functional asymmetry and its associations with morphological asymmetry were assessed. Thirty-two Polish adult female fencers, aged 18–33 yrs, were examined. Data collection involved a questionnaire survey, anthropometric measurements, calculation of anthropological indices, and assessment of functional asymmetry. For the 24 bilateral anthropometric features, small differences were found in seven characteristics: foot length, subscapular skinfold thickness, upper arm circumference, minimum and maximum forearm circumference, upper limb length, and arm circumference in tension. Morphological asymmetry index did not exceed 5%. Left-sided lateralization of either the upper or lower limbs was associated with significantly high asymmetry, specifically indicating larger minimum forearm circumferences in the right limb. Continuous, individualized monitoring of morphological asymmetry and its direction in athletes is essential, demanding concurrent consideration of functional lateralization. This ongoing assessment establishes a critical baseline for evaluating training adaptations, reducing injury susceptibility, and optimizing rehabilitation strategies. Deeper investigation of symmetry within non-dominant limbs is warranted to enhance our understanding. Full article
Show Figures

Figure 1

13 pages, 420 KiB  
Article
Improving Upper-Limb Recovery in Patients with Chronic Stroke Using an 8-Week Bilateral Arm-Training Device
by Thanyaporn Wongwatcharanon, Pinailug Tantilipikorn Earde, Bunyong Rungroungdouyboon and Patcharee Kooncumchoo
Life 2025, 15(7), 994; https://doi.org/10.3390/life15070994 - 22 Jun 2025
Viewed by 551
Abstract
Upper-limb impairments after stroke significantly affect patients’ quality of life and require effective rehabilitation strategies. Rehabilitation devices play a vital role in enhancing motor recovery. This study evaluated the efficacy of the Arm Booster, a bilateral arm-training device, in improving upper-limb impairment [...] Read more.
Upper-limb impairments after stroke significantly affect patients’ quality of life and require effective rehabilitation strategies. Rehabilitation devices play a vital role in enhancing motor recovery. This study evaluated the efficacy of the Arm Booster, a bilateral arm-training device, in improving upper-limb impairment in patients with chronic stroke. Eighteen participants were randomly assigned to two groups: a device group (n = 9), using the Arm Booster; and a conventional physiotherapy group (n = 9). Both groups performed six bilateral upper-limb exercises (32 repetitions each) three times per week for eight weeks. Participants were further classified into mild spasticity (n = 5) and moderate-to-severe spasticity (n = 4) subgroups. The primary outcome was motor impairment, assessed using the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE). Secondary outcomes included spasticity, measured by the Modified Ashworth Scale (MAS), and daily functional use of the arm, assessed with the Motor Activity Log (MAL). Both groups showed significant improvements in FMA-UE scores and overall arm movement. The conventional group demonstrated additional gains in hand and wrist function and coordination. Notably, in the moderate-to-severe spasticity subgroup, the device group exhibited improvements in upper-limb movement and a trend toward reduced spasticity. These findings suggest that the Arm Booster may support motor recovery, encourage the use of the affected arm, improve movement control, and provide an efficient means for patients to exercise more frequently on their own. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

19 pages, 4233 KiB  
Article
Muscle Recruitment and Asymmetry in Bilateral Shoulder Injury Prevention Exercises: A Cross-Sectional Comparison Between Tennis Players and Non-Tennis Players
by Maite Terré and Mònica Solana-Tramunt
Healthcare 2025, 13(10), 1153; https://doi.org/10.3390/healthcare13101153 - 15 May 2025
Viewed by 889
Abstract
Background/Objectives: Shoulder injuries are common in overhead sports like tennis due to repetitive unilateral movements that can lead to muscle imbalances. This study aimed to compare muscle recruitment and asymmetry during bilateral shoulder injury prevention exercises (performed with both arms simultaneously) in tennis [...] Read more.
Background/Objectives: Shoulder injuries are common in overhead sports like tennis due to repetitive unilateral movements that can lead to muscle imbalances. This study aimed to compare muscle recruitment and asymmetry during bilateral shoulder injury prevention exercises (performed with both arms simultaneously) in tennis players versus non-tennis athletes. Methods: Thirty-nine athletes (sixteen tennis players, twenty-three non-tennis athletes) performed two bilateral scapular retraction exercises at 45° and 90° shoulder abduction. Surface electromyography (sEMG) recorded the activation of the middle and lower trapezius. Root Mean Square (RMS), peak RMS and muscle symmetry indices were analyzed. Results: Tennis players showed significantly lower trapezius activation, especially during prone retraction at 90°. Muscle symmetry was slightly higher in tennis players at 90°, but asymmetry increased at 45°, suggesting angle-specific adaptations. Conclusions: Repetitive asymmetric loading in tennis may reduce the activation of scapular stabilizers and contribute to muscular imbalances. Including targeted bilateral exercises in training may help improve scapular muscle function and reduce injury risk in overhead athletes. Full article
(This article belongs to the Special Issue Common Sports Injuries and Rehabilitation)
Show Figures

Figure 1

11 pages, 1442 KiB  
Article
Unilateral Exercise and Bilateral Vascular Health in Female Tennis Players and Active Controls
by Chanhtel E. Thongphok, Abena O. Gyampo, Elisa Fioraso, Anneli O. Ramolins, Elianna G. Hills, Claire E. Coates and Stephen J. Ives
Sports 2025, 13(4), 107; https://doi.org/10.3390/sports13040107 - 1 Apr 2025
Viewed by 604
Abstract
Blood pressure (BP), interarm differences (IAD) in BP, and arterial stiffness (AS) are related to cardiovascular disease risk and are attenuated by exercise training. While active, tennis players (TP) experience bilateral differences in shear stress, and thus vascular function due to the unilateral [...] Read more.
Blood pressure (BP), interarm differences (IAD) in BP, and arterial stiffness (AS) are related to cardiovascular disease risk and are attenuated by exercise training. While active, tennis players (TP) experience bilateral differences in shear stress, and thus vascular function due to the unilateral nature of the sport. However, it is unknown if this translates into attenuated bilateral differences in peripheral blood pressure (pBP), estimated central blood pressure (cBP), and AS, which could provide insight into the local versus systemic effects of exercise training on BP in women. Purpose: to evaluate bilateral differences in pBP, cBP, and AS in Division III female college TP and healthy recreationally active (RA) age- and sex-matched controls. Methods: In a parallel design, TP (n = 10) and RA controls (n = 10) were assessed for anthropometrics, body composition, and bilateral BP measurements using oscillometric cuff technique. Results: TP and RA were well-matched for body weight, body fat percentage, and BMI (all, p > 0.69). Interaction of arm and group, and effects of arm, or group were insignificant for pSBP and pDBP (all, p > 0.137). IAD in pSBP tended lower in TP (p = 0.096, d = 0.8), but IAD in cSBP was lower (p = 0.040, d = 0.8). Augmentation pressure and index were different between arms (p = 0.02), but no interactions (group by arm) were observed (p > 0.05). Conclusions: In groups well-matched for age and body composition, TP tended to have lower BP and IAD in pSBP, but cSBP revealed ~50% lower IAD in TP. Thus, measurement site and exercise training matter when assessing arterial stiffness and interarm differences in BP. Full article
(This article belongs to the Special Issue Women's Special Issue Series: Sports)
Show Figures

Figure 1

11 pages, 243 KiB  
Article
Effects of Nordic Walking on Functional Capacity of Women Cohort with Breast Cancer
by Mirela Vuckovic, Ksenija Bazdaric, Amira Salibasic, Vlasta Loncar, Goran Slivsek, Silvije Segulja and Iva Sorta-Bilajac Turina
Curr. Oncol. 2024, 31(6), 2974-2984; https://doi.org/10.3390/curroncol31060226 - 25 May 2024
Viewed by 3189
Abstract
Background: Breast cancer is one of the most common tumours and one of the leading causes of death among women in all parts of the world. The aim of this study is to investigate the influence of Nordic walking on the functional [...] Read more.
Background: Breast cancer is one of the most common tumours and one of the leading causes of death among women in all parts of the world. The aim of this study is to investigate the influence of Nordic walking on the functional capacity of women who have undergone surgery for breast cancer. Methods: The study involved a cohort of women who exercised through Nordic walking for 10 weeks (from March to May 2022). The subjects trained with a licenced instructor (INWA method), with two training sessions per week of 70–80 min each. We collected information on pain, arm mobility, hand grip strength, shoulder joint range of motion bilaterally, circumference of both arms, body mass index, physical activity, aerobic capacity, and endurance. Results: There were 14 women, median age 63. BMI was significantly lower (28.9/28.1; p = 0.013) after training and a difference in shoulder range of motion was better (anteflexion right (142.5/170, p = 0.002), retroflexion right (40/60, p = 0.005), abduction right (135/180, p = 0.005), abduction left (135/180, p = 0.005)). There was no difference in right hand strength, while there was a significant difference in left hand strength (19/20, p = 0.007). A correlation was found between BMI and the six-minute walk test (r = −0.70; p = 0.005). Conclusions: Considering the multidimensionality of the disease itself and the results of this study, we believe that Nordic walking is a favourable and good choice of physical activity for breast cancer patients. Full article
(This article belongs to the Section Breast Cancer)
19 pages, 1687 KiB  
Article
Myoelectric, Myo-Oxygenation, and Myotonometry Changes during Robot-Assisted Bilateral Arm Exercises with Varying Resistances
by Hsiao-Lung Chan, Ling-Fu Meng, Yung-An Kao, Ya-Ju Chang, Hao-Wei Chang, Szi-Wen Chen and Ching-Yi Wu
Sensors 2024, 24(4), 1061; https://doi.org/10.3390/s24041061 - 6 Feb 2024
Cited by 2 | Viewed by 2135
Abstract
Robot-assisted bilateral arm training has demonstrated its effectiveness in improving motor function in individuals post-stroke, showing significant enhancements with increased repetitions. However, prolonged training sessions may lead to both mental and muscle fatigue. We conducted two types of robot-assisted bimanual wrist exercises on [...] Read more.
Robot-assisted bilateral arm training has demonstrated its effectiveness in improving motor function in individuals post-stroke, showing significant enhancements with increased repetitions. However, prolonged training sessions may lead to both mental and muscle fatigue. We conducted two types of robot-assisted bimanual wrist exercises on 16 healthy adults, separated by one week: long-duration, low-resistance workouts and short-duration, high-resistance exercises. Various measures, including surface electromyograms, near-infrared spectroscopy, heart rate, and the Borg Rating of Perceived Exertion scale, were employed to assess fatigue levels and the impacts of exercise intensity. High-resistance exercise resulted in a more pronounced decline in electromyogram median frequency and recruited a greater amount of hemoglobin, indicating increased muscle fatigue and a higher metabolic demand to cope with the intensified workload. Additionally, high-resistance exercise led to increased sympathetic activation and a greater sense of exertion. Conversely, engaging in low-resistance exercises proved beneficial for reducing post-exercise muscle stiffness and enhancing muscle elasticity. Choosing a low-resistance setting for robot-assisted wrist movements offers advantages by alleviating mental and physiological loads. The reduced training intensity can be further optimized by enabling extended exercise periods while maintaining an approximate dosage compared to high-resistance exercises. Full article
(This article belongs to the Special Issue Assistive Robotics in Healthcare)
Show Figures

Figure 1

15 pages, 1110 KiB  
Article
Effects of Uni- vs. Bilateral Upper Limb Robot-Assisted Rehabilitation on Motor Function, Activities of Daily Living, and Electromyography in Hemiplegic Stroke: A Single-Blinded Three-Arm Randomized Controlled Trial
by Runping Yuan, Xu Qiao, Congzhi Tang, Ting Zhou, Wenli Chen, Ruyan Song, Yong Jiang, Jan D. Reinhardt and Hongxing Wang
J. Clin. Med. 2023, 12(8), 2950; https://doi.org/10.3390/jcm12082950 - 18 Apr 2023
Cited by 9 | Viewed by 4274
Abstract
Objective: To evaluate if bilateral or unilateral upper limb robot-assisted rehabilitation training using a new three-dimensional end-effector robot that targets shoulder and elbow flexion and abduction is superior to conventional therapy with regard to upper extremity motor function recovery and neuromuscular improvement in [...] Read more.
Objective: To evaluate if bilateral or unilateral upper limb robot-assisted rehabilitation training using a new three-dimensional end-effector robot that targets shoulder and elbow flexion and abduction is superior to conventional therapy with regard to upper extremity motor function recovery and neuromuscular improvement in stroke patients. Design: Randomized, controlled, parallel, assessor-blinded, three-arm clinical trial. Setting: Southeast University Zhongda Hospital Nanjing, Jiangsu, China. Methods: Seventy patients with hemiplegic stroke were randomly assigned to conventional training (Control, n = 23) or unilateral (URT, n = 23), or bilateral robotic training (BRT, n = 24). The conventional group received routine rehabilitation, 60 min/day, 6 days/week, for 3 weeks. For URT and BRT upper limb robot-assisted rehabilitation training was added. This was 60 min/day, 6 days/week, for 3 weeks. The primary outcome was upper limb motor function assessed with Fugl-Meyer–Upper Extremity Scale (FMA–UE). Secondary outcomes were activities of daily living (ADL) assessed with the Modified Barthel Index (MBI), Motor Evoked Potential (MEP) to assess corticospinal tract connectivity, Root Mean Square (RMS) value, and integrate Electromyography (iEMG) value recorded by surface electromyography to evaluate muscle contraction function. Results: The primary outcome indicator FMA–UE (least square mean (LSMEAN): 31.40, 95% confidence interval (95% CI): 27.74–35.07) and the secondary outcome indicator MBI (LSMEAN: 69.95, 95% CI: 66.69–73.21) were significantly improved in BRT as opposed to control (FMA–UE, LSMEAN: 24.79, 95% CI: 22.23–27.35; MBI, LSMEAN: 62.75, 95% CI: 59.42–66.09); and unilateral (FMA–UE, LSMEAN: 25.97, 95% CI: 23.57–28.36; MBI, LSMEAN: 64.34, 95% CI: 61.01–67.68). BRT also showed greater improvement in the anterior deltoid bundle with regard to muscle contraction function indicated by RMS (LSMEAN: 257.79, 95% CI: 211.45–304.12) and iEMG (LSMEAN: 202.01, 95% CI: 167.09–236.94), as compared to the controls (RMS, LSMEAN: 170.77, 95% CI: 148.97–192.58; iEMG, LSMEAN: 132.09, 95% CI: 114.51–149.68), and URT (RMS, LSMEAN: 179.05, 95% CI: 156.03–202.07; iEMG, LSMEAN: 130.38, 95% CI: 107.50–153.26). There was no statistically significant difference between URT and conventional training for any outcome. There was no significant difference in MEP extraction rate after treatment between groups (p = 0.54 for URT, p = 0.08 for BRT). Conclusions: A 60 min daily training for upper extremities using a three-dimensional end-effector targeting elbow and shoulder adding conventional rehabilitation appears to promote upper limb function and ADL in stroke patients only if delivered bilaterally. URT does not seem to result in better outcomes than conventional rehabilitation. Electrophysiological results suggest that training using a bilateral upper limb robot increases the recruitment of motor neurons rather than improving the conduction function of the corticospinal tract. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

12 pages, 2933 KiB  
Article
Inter-Limb Asymmetry of Leg Stiffness in National Second-League Basketball Players during Countermovement Jumps
by Artur Struzik, Sławomir Winiarski and Jerzy Zawadzki
Symmetry 2022, 14(3), 440; https://doi.org/10.3390/sym14030440 - 23 Feb 2022
Cited by 5 | Viewed by 4486
Abstract
Assessment of the inter-limb asymmetry of leg stiffness is carried out using one-legged jumping tasks. However, the level of asymmetry may vary depending on the performance on one or both lower limbs. Therefore, the purpose of this study was to identify the differences [...] Read more.
Assessment of the inter-limb asymmetry of leg stiffness is carried out using one-legged jumping tasks. However, the level of asymmetry may vary depending on the performance on one or both lower limbs. Therefore, the purpose of this study was to identify the differences in leg stiffness between the dominant and non-dominant lower limb during a two-legged countermovement jump. The research was conducted on 35 s-league basketball players (body height: 1.90 ± 0.08 m, body mass: 81.9 ± 10 kg, age: 19.5 ± 1.7 years). Each participant performed three countermovement jumps with arm swing to the maximum height. Measurements employed a BTS SMART motion analysis system and two Kistler force plates. Statistically significant differences were found during the comparison of leg stiffness in the dominant and non-dominant lower limbs. Inter-limb asymmetry of leg stiffness reached 22.0% in the countermovement phase and 8.9% in the take-off phase. Significant inter-limb asymmetry of leg stiffness might lead to injury or considerably reduce the performance of athletes. Therefore, an important role is to conduct strength and speed-strength trainings with proper loads to both body sides. Coaches should pay more attention to similar lower limbs movement patterns during two-legged exercises and bilateral strength development. Full article
(This article belongs to the Special Issue New Insights into Motion Analysis)
Show Figures

Figure 1

10 pages, 1093 KiB  
Article
The Route of Motor Recovery in Stroke Patients Driven by Exoskeleton-Robot-Assisted Therapy: A Path-Analysis
by Loris Pignolo, Rocco Servidio, Giuseppina Basta, Simone Carozzo, Paolo Tonin, Rocco Salvatore Calabrò and Antonio Cerasa
Med. Sci. 2021, 9(4), 64; https://doi.org/10.3390/medsci9040064 - 26 Oct 2021
Cited by 3 | Viewed by 3983
Abstract
Background: Exoskeleton-robot-assisted therapy is known to positively affect the recovery of arm functions in stroke patients. However, there is a lack of evidence regarding which variables might favor a better outcome and how this can be modulated by other factors. Methods: [...] Read more.
Background: Exoskeleton-robot-assisted therapy is known to positively affect the recovery of arm functions in stroke patients. However, there is a lack of evidence regarding which variables might favor a better outcome and how this can be modulated by other factors. Methods: In this within-subject study, we evaluated the efficacy of a robot-assisted rehabilitation system in the recovery of upper limb functions. We performed a path analysis using a structural equation modeling approach in a large sample of 102 stroke patients (age 63.6 ± 13.1 years; 61% men) in the post-acute phase. They underwent 7 weeks of bilateral arm training assisted by an exoskeleton robot combined with a conventional treatment (consisting of simple physical activity together with occupational therapy). The upper extremity section of the Fugl–Meyer (FM-UE) scale at admission was used as a predictor of outcome, whereas age, gender, side of the lesion, days from the event, pain scale, duration of treatment, and number of sessions as mediators. Results: FM-UE at admission was a direct predictor of outcome, as measured by the motricity index of the contralateral upper limb and trunk control test, without any other mediating factors. Age, gender, days from the event, side of lesion, and pain scales were independently associated with outcomes. Conclusions: To the best of our knowledge, this is the first study assessing the relationship between clinical variables and outcomes induced by robot-assisted rehabilitation with a path-analysis model. We define a new route for motor recovery of stroke patients driven by exoskeleton-robot-assisted therapy, highlighting the role of FM-UE at admission as a useful predictor of outcome, although other variables need to be considered in the time-course of disease. Full article
(This article belongs to the Special Issue Advances in Neurorehabilitation: Robotics, Virtual Reality and Beyond)
Show Figures

Figure 1

20 pages, 1838 KiB  
Review
Unilateral versus Bilateral Landing after Spike Jumps in Male and Female Volleyball: A Systematic Review
by José Afonso, Rodrigo Ramirez-Campillo, Ricardo Franco Lima, Lorenzo Laporta, Ana Paulo, Henrique de Oliveira Castro, Gustavo De Conti Teixeira Costa, Antonio García-de-Alcaraz, Rui Araújo, Ana Filipa Silva, Luca Paolo Ardigò and Filipe Manuel Clemente
Symmetry 2021, 13(8), 1505; https://doi.org/10.3390/sym13081505 - 17 Aug 2021
Cited by 7 | Viewed by 5466
Abstract
Background: The spike is a key action in volleyball, and the landing technique and its asymmetries are commonly associated with an increased risk of injury. Objectives: The aim of this systematic review was to assess how male and female volleyball players land (i.e., [...] Read more.
Background: The spike is a key action in volleyball, and the landing technique and its asymmetries are commonly associated with an increased risk of injury. Objectives: The aim of this systematic review was to assess how male and female volleyball players land (i.e., unilaterally, or bilaterally) after spike jumps in matches and analytical settings (field or laboratory). Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines were followed, with eligibility criteria defined according to participants, interventions, comparators, study design (PICOS): (p) healthy indoor volleyball players of any sex, age group, or competitive level; (i) exposure to landing after spike actions during official matches AND/OR simulated 6 vs. 6 games AND/OR analytical training conditions AND/OR laboratorial experiments; (c) not mandatory; (o) data on landing mechanics after spike actions, including reporting of whether the landing was unilateral or bilateral; (s) no restrictions imposed on study design. Searches were performed in seven electronic databases (Cochrane Library, EBSCO, PubMed, Scielo, Scopus, SPORTDiscus, and Web of Science) on 23 April 2021. Results: Automated searches provided 420 results. Removal of 119 duplicates resulted in 301 records being screened for titles and abstracts. A total of 25 studies were eligible for full-text analysis. Of these, eight studies were deemed eligible for inclusion in the review. Studies showed that (i) attackers landed asymmetrically 68% of the times (61% left leg, 7% right leg); (ii) bilateral asymmetries were observed for the hip, knee, and ankle joints; (iii) bilateral asymmetries were observed even when players were instructed to land evenly on two feet; (iv) landing contact of the leg opposite to the hitting arm preceded the contact of the homolateral leg. One match analysis study showed that men landed more often on the left (31.5%) or right foot (8.5%) than women (23.7% and 1.6%). Conclusions: Studies analyzing spike landing showed a prevalence of unilateral landings (mostly the left leg first, for right-handed players) in men and women but more prevalently in men. Registration INPLASY202140104, DOI: 10.37766/inplasy2021.4.0104. Full article
Show Figures

Graphical abstract

13 pages, 5954 KiB  
Article
Effect of Immersive Virtual Reality-Based Bilateral Arm Training in Patients with Chronic Stroke
by Yo-Han Song and Hyun-Min Lee
Brain Sci. 2021, 11(8), 1032; https://doi.org/10.3390/brainsci11081032 - 3 Aug 2021
Cited by 19 | Viewed by 4235
Abstract
Virtual reality (VR)-based therapies are widely used in stroke rehabilitation. Although various studies have used VR techniques for bilateral upper limb training, most have been only semi-immersive and have only been performed in an artificial environment. This study developed VR content and protocols [...] Read more.
Virtual reality (VR)-based therapies are widely used in stroke rehabilitation. Although various studies have used VR techniques for bilateral upper limb training, most have been only semi-immersive and have only been performed in an artificial environment. This study developed VR content and protocols based on activities of daily living to provide immersive VR-based bilateral arm training (VRBAT) for upper limb rehabilitation in stroke patients. Twelve patients with chronic stroke were randomized to a VRBAT group or a normal bilateral arm training (NBAT) group and attended 30-min training sessions five times a week for four weeks. At the end of the training, there was a significant difference in upper limb function in both groups (p < 0.05) and in the upper limb function sensory test for proprioception in the NBAT group (p < 0.05). There was no significant between-group difference in upper limb muscle activity after training. The relative alpha and beta power values for electroencephalographic measurements were significantly improved in both groups. These findings indicate that both VRBAT and NBAT are effective interventions for improving upper limb function and electroencephalographic activity in patients with chronic stroke. Full article
(This article belongs to the Special Issue Innovations in Neurorehabilitation and Neuroplasticity)
Show Figures

Figure 1

13 pages, 965 KiB  
Study Protocol
Clinical Effects of Immersive Multimodal BCI-VR Training after Bilateral Neuromodulation with rTMS on Upper Limb Motor Recovery after Stroke. A Study Protocol for a Randomized Controlled Trial
by Francisco José Sánchez-Cuesta, Aida Arroyo-Ferrer, Yeray González-Zamorano, Athanasios Vourvopoulos, Sergi Bermúdez i Badia, Patricia Figuereido, José Ignacio Serrano and Juan Pablo Romero
Medicina 2021, 57(8), 736; https://doi.org/10.3390/medicina57080736 - 21 Jul 2021
Cited by 14 | Viewed by 5285
Abstract
Background and Objectives: The motor sequelae after a stroke are frequently persistent and cause a high degree of disability. Cortical ischemic or hemorrhagic strokes affecting the cortico-spinal pathways are known to cause a reduction of cortical excitability in the lesioned area not only [...] Read more.
Background and Objectives: The motor sequelae after a stroke are frequently persistent and cause a high degree of disability. Cortical ischemic or hemorrhagic strokes affecting the cortico-spinal pathways are known to cause a reduction of cortical excitability in the lesioned area not only for the local connectivity impairment but also due to a contralateral hemisphere inhibitory action. Non-invasive brain stimulation using high frequency repetitive magnetic transcranial stimulation (rTMS) over the lesioned hemisphere and contralateral cortical inhibition using low-frequency rTMS have been shown to increase the excitability of the lesioned hemisphere. Mental representation techniques, neurofeedback, and virtual reality have also been shown to increase cortical excitability and complement conventional rehabilitation. Materials and Methods: We aim to carry out a single-blind, randomized, controlled trial aiming to study the efficacy of immersive multimodal Brain–Computer Interfacing-Virtual Reality (BCI-VR) training after bilateral neuromodulation with rTMS on upper limb motor recovery after subacute stroke (>3 months) compared to neuromodulation combined with conventional motor imagery tasks. This study will include 42 subjects in a randomized controlled trial design. The main expected outcomes are changes in the Motricity Index of the Arm (MI), dynamometry of the upper limb, score according to Fugl-Meyer for upper limb (FMA-UE), and changes in the Stroke Impact Scale (SIS). The evaluation will be carried out before the intervention, after each intervention and 15 days after the last session. Conclusions: This trial will show the additive value of VR immersive motor imagery as an adjuvant therapy combined with a known effective neuromodulation approach opening new perspectives for clinical rehabilitation protocols. Full article
(This article belongs to the Special Issue Neurorehabilitation of Neurodegenerative Diseases and Brain Damage)
Show Figures

Figure 1

18 pages, 1549 KiB  
Article
Recovery of Distal Arm Movements in Spinal Cord Injured Patients with a Body-Machine Interface: A Proof-of-Concept Study
by Camilla Pierella, Elisa Galofaro, Alice De Luca, Luca Losio, Simona Gamba, Antonino Massone, Ferdinando A. Mussa-Ivaldi and Maura Casadio
Sensors 2021, 21(6), 2243; https://doi.org/10.3390/s21062243 - 23 Mar 2021
Cited by 9 | Viewed by 3626
Abstract
Background: The recovery of upper limb mobility and functions is essential for people with cervical spinal cord injuries (cSCI) to maximize independence in daily activities and ensure a successful return to normality. The rehabilitative path should include a thorough neuromotor evaluation and personalized [...] Read more.
Background: The recovery of upper limb mobility and functions is essential for people with cervical spinal cord injuries (cSCI) to maximize independence in daily activities and ensure a successful return to normality. The rehabilitative path should include a thorough neuromotor evaluation and personalized treatments aimed at recovering motor functions. Body-machine interfaces (BoMI) have been proven to be capable of harnessing residual joint motions to control objects like computer cursors and virtual or physical wheelchairs and to promote motor recovery. However, their therapeutic application has still been limited to shoulder movements. Here, we expanded the use of BoMI to promote the whole arm’s mobility, with a special focus on elbow movements. We also developed an instrumented evaluation test and a set of kinematic indicators for assessing residual abilities and recovery. Methods: Five inpatient cSCI subjects (four acute, one chronic) participated in a BoMI treatment complementary to their standard rehabilitative routine. The subjects wore a BoMI with sensors placed on both proximal and distal arm districts and practiced for 5 weeks. The BoMI was programmed to promote symmetry between right and left arms use and the forearms’ mobility while playing games. To evaluate the effectiveness of the treatment, the subjects’ kinematics were recorded while performing an evaluation test that involved functional bilateral arms movements, before, at the end, and three months after training. Results: At the end of the training, all subjects learned to efficiently use the interface despite being compelled by it to engage their most impaired movements. The subjects completed the training with bilateral symmetry in body recruitment, already present at the end of the familiarization, and they increased the forearm activity. The instrumental evaluation confirmed this. The elbow motion’s angular amplitude improved for all subjects, and other kinematic parameters showed a trend towards the normality range. Conclusion: The outcomes are preliminary evidence supporting the efficacy of the proposed BoMI as a rehabilitation tool to be considered for clinical practice. It also suggests an instrumental evaluation protocol and a set of indicators to assess and evaluate motor impairment and recovery in cSCI. Full article
(This article belongs to the Special Issue Impact of Sensors in Biomechanics, Health Disease and Rehabilitation)
Show Figures

Figure 1

14 pages, 1290 KiB  
Article
Load Position and Weight Classification during Carrying Gait Using Wearable Inertial and Electromyographic Sensors
by Maja Goršič, Boyi Dai and Domen Novak
Sensors 2020, 20(17), 4963; https://doi.org/10.3390/s20174963 - 2 Sep 2020
Cited by 5 | Viewed by 4089
Abstract
Lifting and carrying heavy objects is a major aspect of physically intensive jobs. Wearable sensors have previously been used to classify different ways of picking up an object, but have seen only limited use for automatic classification of load position and weight while [...] Read more.
Lifting and carrying heavy objects is a major aspect of physically intensive jobs. Wearable sensors have previously been used to classify different ways of picking up an object, but have seen only limited use for automatic classification of load position and weight while a person is walking and carrying an object. In this proof-of-concept study, we thus used wearable inertial and electromyographic sensors for offline classification of different load positions (frontal vs. unilateral vs. bilateral side loads) and weights during gait. Ten participants performed 19 different carrying trials each while wearing the sensors, and data from these trials were used to train and evaluate classification algorithms based on supervised machine learning. The algorithms differentiated between frontal and other loads (side/none) with an accuracy of 100%, between frontal vs. unilateral side load vs. bilateral side load with an accuracy of 96.1%, and between different load asymmetry levels with accuracies of 75–79%. While the study is limited by a lack of electromyographic sensors on the arms and a limited number of load positions/weights, it shows that wearable sensors can differentiate between different load positions and weights during gait with high accuracy. In the future, such approaches could be used to control assistive devices or for long-term worker monitoring in physically demanding occupations. Full article
(This article belongs to the Collection Sensors for Gait, Human Movement Analysis, and Health Monitoring)
Show Figures

Figure 1

Back to TopTop