Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,479)

Search Parameters:
Keywords = bidirectional networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 5777 KiB  
Article
ACNet: An Attention–Convolution Collaborative Semantic Segmentation Network on Sensor-Derived Datasets for Autonomous Driving
by Qiliang Zhang, Kaiwen Hua, Zi Zhang, Yiwei Zhao and Pengpeng Chen
Sensors 2025, 25(15), 4776; https://doi.org/10.3390/s25154776 (registering DOI) - 3 Aug 2025
Abstract
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in [...] Read more.
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in balancing global and local features leads to blurred object boundaries and misclassification; second, conventional convolutions have limited ability to perceive irregular objects, causing information loss and affecting segmentation accuracy. To address these issues, this paper proposes a global–local collaborative attention module and a spider web convolution module. The former enhances feature representation through bidirectional feature interaction and dynamic weight allocation, reducing false positives and missed detections. The latter introduces an asymmetric sampling topology and six-directional receptive field paths to effectively improve the recognition of irregular objects. Experiments on the Cityscapes, CamVid, and BDD100K datasets, collected using vehicle-mounted cameras, demonstrate that the proposed method performs excellently across multiple evaluation metrics, including mIoU, mRecall, mPrecision, and mAccuracy. Comparative experiments with classical segmentation networks, attention mechanisms, and convolution modules validate the effectiveness of the proposed approach. The proposed method demonstrates outstanding performance in sensor-based semantic segmentation tasks and is well-suited for environmental perception systems in autonomous driving. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

27 pages, 4163 KiB  
Article
Rainfall Forecasting Using a BiLSTM Model Optimized by an Improved Whale Migration Algorithm and Variational Mode Decomposition
by Yueqiao Yang, Shichuang Li, Ting Zhou, Liang Zhao, Xiao Shi and Boni Du
Mathematics 2025, 13(15), 2483; https://doi.org/10.3390/math13152483 (registering DOI) - 1 Aug 2025
Viewed by 53
Abstract
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale [...] Read more.
The highly stochastic nature of rainfall presents significant challenges for the accurate prediction of its time series. To enhance the prediction performance of non-stationary rainfall time series, this study proposes a hybrid deep learning forecasting framework—VMD-IWMA-BiLSTM—that integrates Variational Mode Decomposition (VMD), Improved Whale Migration Algorithm (IWMA), and Bidirectional Long Short-Term Memory network (BiLSTM). Firstly, VMD is employed to decompose the original rainfall series into multiple modes, extracting Intrinsic Mode Functions (IMFs) with more stable frequency characteristics. Secondly, IWMA is utilized to globally optimize multiple hyperparameters of the BiLSTM model, enhancing its ability to capture complex nonlinear relationships and long-term dependencies. Finally, experimental validation is conducted using daily rainfall data from 2020 to 2024 at the Xinzheng National Meteorological Observatory. The results demonstrate that the proposed framework outperforms traditional models such as LSTM, ARIMA, SVM, and LSSVM in terms of prediction accuracy. This research provides new insights and effective technical pathways for improving rainfall time series prediction accuracy and addressing the challenges posed by high randomness. Full article
Show Figures

Figure 1

26 pages, 1112 KiB  
Review
The Invisible Influence: Can Endocrine Disruptors Reshape Behaviors Across Generations?
by Antonella Damiano, Giulia Caioni, Claudio D’Addario, Carmine Merola, Antonio Francioso and Michele Amorena
Stresses 2025, 5(3), 46; https://doi.org/10.3390/stresses5030046 (registering DOI) - 1 Aug 2025
Viewed by 64
Abstract
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive [...] Read more.
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive health, it is now evident that EDCs may impact neurodevelopment, altering the integrity of neural circuits essential for cognitive abilities, emotional regulation, and social behaviors. These compounds may elicit epigenetic modifications, such as DNA methylation and histone acetylation, that result in altered expression patterns, potentially affecting multiple generations and contribute to long-term behavioral phenotypes. The effects of EDCs may occur though both direct and indirect mechanisms, ultimately converging on neurodevelopmental vulnerability. In particular, the gut–brain axis has emerged as a critical interface targeted by EDCs. This bidirectional communication network integrates the nervous, immune, and endocrine systems. By altering the microbiota composition, modulating immune responses, and triggering epigenetic mechanisms, EDCs can act on multiple and interconnected pathways. In this context, elucidating the impact of EDCs on neurodevelopmental processes is crucial for advancing our understanding of their contribution to neurological and behavioral health risks. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Viewed by 82
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

24 pages, 4039 KiB  
Review
A Mathematical Survey of Image Deep Edge Detection Algorithms: From Convolution to Attention
by Gang Hu
Mathematics 2025, 13(15), 2464; https://doi.org/10.3390/math13152464 - 31 Jul 2025
Viewed by 205
Abstract
Edge detection, a cornerstone of computer vision, identifies intensity discontinuities in images, enabling applications from object recognition to autonomous navigation. This survey presents a mathematically grounded analysis of edge detection’s evolution, spanning traditional gradient-based methods, convolutional neural networks (CNNs), attention-driven architectures, transformer-backbone models, [...] Read more.
Edge detection, a cornerstone of computer vision, identifies intensity discontinuities in images, enabling applications from object recognition to autonomous navigation. This survey presents a mathematically grounded analysis of edge detection’s evolution, spanning traditional gradient-based methods, convolutional neural networks (CNNs), attention-driven architectures, transformer-backbone models, and generative paradigms. Beginning with Sobel and Canny’s kernel-based approaches, we trace the shift to data-driven CNNs like Holistically Nested Edge Detection (HED) and Bidirectional Cascade Network (BDCN), which leverage multi-scale supervision and achieve ODS (Optimal Dataset Scale) scores 0.788 and 0.806, respectively. Attention mechanisms, as in EdgeNAT (ODS 0.860) and RankED (ODS 0.824), enhance global context, while generative models like GED (ODS 0.870) achieve state-of-the-art precision via diffusion and GAN frameworks. Evaluated on BSDS500 and NYUDv2, these methods highlight a trajectory toward accuracy and robustness, yet challenges in efficiency, generalization, and multi-modal integration persist. By synthesizing mathematical formulations, performance metrics, and future directions, this survey equips researchers with a comprehensive understanding of edge detection’s past, present, and potential, bridging theoretical insights with practical advancements. Full article
(This article belongs to the Special Issue Artificial Intelligence and Algorithms with Their Applications)
Show Figures

Figure 1

34 pages, 4388 KiB  
Article
IRSD-Net: An Adaptive Infrared Ship Detection Network for Small Targets in Complex Maritime Environments
by Yitong Sun and Jie Lian
Remote Sens. 2025, 17(15), 2643; https://doi.org/10.3390/rs17152643 - 30 Jul 2025
Viewed by 271
Abstract
Infrared ship detection plays a vital role in maritime surveillance systems. As a critical remote sensing application, it enables maritime surveillance across diverse geographic scales and operational conditions while offering robust all-weather operation and resilience to environmental interference. However, infrared imagery in complex [...] Read more.
Infrared ship detection plays a vital role in maritime surveillance systems. As a critical remote sensing application, it enables maritime surveillance across diverse geographic scales and operational conditions while offering robust all-weather operation and resilience to environmental interference. However, infrared imagery in complex maritime environments presents significant challenges, including low contrast, background clutter, and difficulties in detecting small-scale or distant targets. To address these issues, we propose an Infrared Ship Detection Network (IRSD-Net), a lightweight and efficient detection network built upon the YOLOv11n framework and specially designed for infrared maritime imagery. IRSD-Net incorporates a Hierarchical Multi-Kernel Convolution Network (HMKCNet), which employs parallel multi-kernel convolutions and channel division to enhance multi-scale feature extraction while reducing redundancy and memory usage. To further improve cross-scale fusion, we design the Dynamic Cross-Scale Feature Pyramid Network (DCSFPN), a bidirectional architecture that combines up- and downsampling to integrate low-level detail with high-level semantics. Additionally, we introduce Wise-PIoU, a novel loss function that improves bounding box regression by enforcing geometric alignment and adaptively weighting gradients based on alignment quality. Experimental results demonstrate that IRSD-Net achieves 92.5% mAP50 on the ISDD dataset, outperforming YOLOv6n and YOLOv11n by 3.2% and 1.7%, respectively. With a throughput of 714.3 FPS, IRSD-Net delivers high-accuracy, real-time performance suitable for practical maritime monitoring systems. Full article
Show Figures

Figure 1

18 pages, 4452 KiB  
Article
Upper Limb Joint Angle Estimation Using a Reduced Number of IMU Sensors and Recurrent Neural Networks
by Kevin Niño-Tejada, Laura Saldaña-Aristizábal, Jhonathan L. Rivas-Caicedo and Juan F. Patarroyo-Montenegro
Electronics 2025, 14(15), 3039; https://doi.org/10.3390/electronics14153039 - 30 Jul 2025
Viewed by 229
Abstract
Accurate estimation of upper-limb joint angles is essential in biomechanics, rehabilitation, and wearable robotics. While inertial measurement units (IMUs) offer portability and flexibility, systems requiring multiple inertial sensors can be intrusive and complex to deploy. In contrast, optical motion capture (MoCap) systems provide [...] Read more.
Accurate estimation of upper-limb joint angles is essential in biomechanics, rehabilitation, and wearable robotics. While inertial measurement units (IMUs) offer portability and flexibility, systems requiring multiple inertial sensors can be intrusive and complex to deploy. In contrast, optical motion capture (MoCap) systems provide precise tracking but are constrained to controlled laboratory environments. This study presents a deep learning-based approach for estimating shoulder and elbow joint angles using only three IMU sensors positioned on the chest and both wrists, validated against reference angles obtained from a MoCap system. The input data includes Euler angles, accelerometer, and gyroscope data, synchronized and segmented into sliding windows. Two recurrent neural network architectures, Convolutional Neural Network with Long-short Term Memory (CNN-LSTM) and Bidirectional LSTM (BLSTM), were trained and evaluated using identical conditions. The CNN component enabled the LSTM to extract spatial features that enhance sequential pattern learning, improving angle reconstruction. Both models achieved accurate estimation performance: CNN-LSTM yielded lower Mean Absolute Error (MAE) in smooth trajectories, while BLSTM provided smoother predictions but underestimated some peak movements, especially in the primary axes of rotation. These findings support the development of scalable, deep learning-based wearable systems and contribute to future applications in clinical assessment, sports performance analysis, and human motion research. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

19 pages, 2698 KiB  
Article
Orga-Dete: An Improved Lightweight Deep Learning Model for Lung Organoid Detection and Classification
by Xuan Huang, Qin Gao, Hanwen Zhang, Fuhong Min, Dong Li and Gangyin Luo
Appl. Sci. 2025, 15(15), 8377; https://doi.org/10.3390/app15158377 - 28 Jul 2025
Viewed by 216
Abstract
Lung organoids play a crucial role in modeling drug responses in pulmonary diseases. However, their morphological analysis remains hindered by manual detection inefficiencies and the high computational cost of existing algorithms. To overcome these challenges, this study proposes Orga-Dete—a lightweight, high-precision detection model [...] Read more.
Lung organoids play a crucial role in modeling drug responses in pulmonary diseases. However, their morphological analysis remains hindered by manual detection inefficiencies and the high computational cost of existing algorithms. To overcome these challenges, this study proposes Orga-Dete—a lightweight, high-precision detection model based on YOLOv11n—which first employs data augmentation to mitigate the small-scale dataset and class imbalance issues, then optimizes via a triple co-optimization strategy: a bi-directional feature pyramid network for enhanced multi-scale feature fusion, MPCA for stronger micro-organoid feature response, and EMASlideLoss to address class imbalance. Validated on a lung organoid microscopy dataset, Orga-Dete achieves 81.4% mAP@0.5 with only 2.25 M parameters and 6.3 GFLOPs, surpassing the baseline model YOLOv11n by 3.5%. Ablation experiments confirm the synergistic effects of these modules in enhancing morphological feature extraction. With its balance of precision and efficiency, Orga-Dete offers a scalable solution for high-throughput organoid analysis, underscoring its potential for personalized medicine and drug screening. Full article
Show Figures

Figure 1

24 pages, 2815 KiB  
Article
Blockchain-Powered LSTM-Attention Hybrid Model for Device Situation Awareness and On-Chain Anomaly Detection
by Qiang Zhang, Caiqing Yue, Xingzhe Dong, Guoyu Du and Dongyu Wang
Sensors 2025, 25(15), 4663; https://doi.org/10.3390/s25154663 - 28 Jul 2025
Viewed by 243
Abstract
With the increasing scale of industrial devices and the growing complexity of multi-source heterogeneous sensor data, traditional methods struggle to address challenges in fault detection, data security, and trustworthiness. Ensuring tamper-proof data storage and improving prediction accuracy for imbalanced anomaly detection for potential [...] Read more.
With the increasing scale of industrial devices and the growing complexity of multi-source heterogeneous sensor data, traditional methods struggle to address challenges in fault detection, data security, and trustworthiness. Ensuring tamper-proof data storage and improving prediction accuracy for imbalanced anomaly detection for potential deployment in the Industrial Internet of Things (IIoT) remain critical issues. This study proposes a blockchain-powered Long Short-Term Memory Network (LSTM)–Attention hybrid model: an LSTM-based Encoder–Attention–Decoder (LEAD) for industrial device anomaly detection. The model utilizes an encoder–attention–decoder architecture for processing multivariate time series data generated by industrial sensors and smart contracts for automated on-chain data verification and tampering alerts. Experiments on real-world datasets demonstrate that the LEAD achieves an F0.1 score of 0.96, outperforming baseline models (Recurrent Neural Network (RNN): 0.90; LSTM: 0.94; and Bi-directional LSTM (Bi-LSTM, 0.94)). We simulate the system using a private FISCO-BCOS network with a multi-node setup to demonstrate contract execution, anomaly data upload, and tamper alert triggering. The blockchain system successfully detects unauthorized access and data tampering, offering a scalable solution for device monitoring. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

26 pages, 5325 KiB  
Article
Spatiotemporal Dengue Forecasting for Sustainable Public Health in Bandung, Indonesia: A Comparative Study of Classical, Machine Learning, and Bayesian Models
by I Gede Nyoman Mindra Jaya, Yudhie Andriyana, Bertho Tantular, Sinta Septi Pangastuti and Farah Kristiani
Sustainability 2025, 17(15), 6777; https://doi.org/10.3390/su17156777 - 25 Jul 2025
Viewed by 345
Abstract
Accurate dengue forecasting is essential for sustainable public health planning, especially in tropical regions where the disease remains a persistent threat. This study evaluates the predictive performance of seven modeling approaches—Seasonal Autoregressive Integrated Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network [...] Read more.
Accurate dengue forecasting is essential for sustainable public health planning, especially in tropical regions where the disease remains a persistent threat. This study evaluates the predictive performance of seven modeling approaches—Seasonal Autoregressive Integrated Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Convolutional LSTM (CNN–LSTM), and a Bayesian spatiotemporal model—using monthly dengue incidence data from 2009 to 2023 in Bandung City, Indonesia. Model performance was assessed using MAE, sMAPE, RMSE, and Pearson’s correlation (R). Among all models, the Bayesian spatiotemporal model achieved the best performance, with the lowest MAE (5.543), sMAPE (62.137), and RMSE (7.482), and the highest R (0.723). While SARIMA and XGBoost showed signs of overfitting, the Bayesian model not only delivered more accurate forecasts but also produced spatial risk estimates and identified high-risk hotspots via exceedance probabilities. These features make it particularly valuable for developing early warning systems and guiding targeted public health interventions, supporting the broader goals of sustainable disease management. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

25 pages, 5449 KiB  
Article
A Contribution of Shortest Paths Algorithms to the NetworkX Python Library
by Miguel Cruz, Rui Carvalho, André Costa, Luis Pinto, Luis Dias, Paulino Cerqueira, Rodrigo Machado, Tiago Batista, Pedro Castro and Jorge Ribeiro
Appl. Sci. 2025, 15(15), 8273; https://doi.org/10.3390/app15158273 - 25 Jul 2025
Viewed by 830
Abstract
NetworkX is a free Python library for graphs and networks and is used in many applications and projects to find the shortest path in path planning scenarios. For dense graphs, the library provides the Floyd–Warshall algorithm for shortest paths and the A* (“A-Star”) [...] Read more.
NetworkX is a free Python library for graphs and networks and is used in many applications and projects to find the shortest path in path planning scenarios. For dense graphs, the library provides the Floyd–Warshall algorithm for shortest paths and the A* (“A-Star”) algorithm for shortest paths and path lengths. However, several extensions have been proposed to improve the A*, but they are not included in the library. In this context, this paper presents a set of implementations improving the A*, such as the IDA*, D* Lite, SMA*, Bidirectional A* and RTA*. The goal or challenge is to address the limitations of the A* in specific scenarios, such as searching for an optimal path repeatedly or when confronted with memory limitations, as exemplified by the NetworkX library. To do this, we first review the literature of the usage and general application of NetworkX in different domains of applicability and then explore their usage in a shortest path context. By reviewing and validating the usage of A* and extensions in Python using the NetworkX framework, the implementations were submitted to the network environment validation and passed the tests. We have also done the benchmarking of the A*, comparing it with the new ones, and concluded the better efficiency of the A* extensions in tri-objective scenario parameters (length, cost and toll). Despite the extensive utilisation of A* and its notable efficacy in identifying optimal paths, its performance is suboptimal in specific scenarios, such as when confronted with memory constraints and dynamic environments. Almost every algorithm outperformed or matched the A* in the fields that were developed to have an advantage, demonstrating the quality and robustness of the implemented algorithms. As a contribution and to foster further research in this shortest path specific context field, the dataset and Python code of the algorithms are available in a GitHub opensource repository. Full article
Show Figures

Figure 1

25 pages, 9119 KiB  
Article
An Improved YOLOv8n-Based Method for Detecting Rice Shelling Rate and Brown Rice Breakage Rate
by Zhaoyun Wu, Yehao Zhang, Zhongwei Zhang, Fasheng Shen, Li Li, Xuewu He, Hongyu Zhong and Yufei Zhou
Agriculture 2025, 15(15), 1595; https://doi.org/10.3390/agriculture15151595 - 24 Jul 2025
Viewed by 258
Abstract
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. [...] Read more.
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. This paper proposes a high-precision, lightweight solution based on an enhanced YOLOv8n with improvements in network architecture, feature fusion, and attention mechanism. The backbone’s C2f module is replaced with C2f-Faster-CGLU, integrating partial convolution (PConv) local convolution and convolutional gated linear unit (CGLU) gating to reduce computational redundancy via sparse interaction and enhance small-target feature extraction. A bidirectional feature pyramid network (BiFPN) weights multiscale feature fusion to improve edge positioning accuracy of dense grains. Attention mechanism for fine-grained classification (AFGC) is embedded to focus on texture and damage details, enhancing adaptability to light fluctuations. The Detect_Rice lightweight head compresses parameters via group normalization and dynamic convolution sharing, optimizing small-target response. The improved model achieved 96.8% precision and 96.2% mAP. Combined with a quantity–mass model, SR/BR detection errors reduced to 1.11% and 1.24%, meeting national standard (GB/T 29898-2013) requirements, providing an effective real-time solution for intelligent hulling sorting. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

29 pages, 9765 KiB  
Article
Multi-Head Graph Attention Adversarial Autoencoder Network for Unsupervised Change Detection Using Heterogeneous Remote Sensing Images
by Meng Jia, Xiangyu Lou, Zhiqiang Zhao, Xiaofeng Lu and Zhenghao Shi
Remote Sens. 2025, 17(15), 2581; https://doi.org/10.3390/rs17152581 - 24 Jul 2025
Viewed by 274
Abstract
Heterogeneous remote sensing images, acquired from different sensors, exhibit significant variations in data structure, resolution, and radiometric characteristics. These inherent heterogeneities present substantial challenges for change detection, a task that involves identifying changes in a target area by analyzing multi-temporal images. To address [...] Read more.
Heterogeneous remote sensing images, acquired from different sensors, exhibit significant variations in data structure, resolution, and radiometric characteristics. These inherent heterogeneities present substantial challenges for change detection, a task that involves identifying changes in a target area by analyzing multi-temporal images. To address this issue, we propose the Multi-Head Graph Attention Mechanism (MHGAN), designed to achieve accurate detection of surface changes in heterogeneous remote sensing images. The MHGAN employs a bidirectional adversarial convolutional autoencoder network to reconstruct and perform style transformation of heterogeneous images. Unlike existing unidirectional translation frameworks (e.g., CycleGAN), our approach simultaneously aligns features in both domains through multi-head graph attention and dynamic kernel width estimation, effectively reducing false changes caused by sensor heterogeneity. The network training is constrained by four loss functions: reconstruction loss, code correlation loss, graph attention loss, and adversarial loss, which together guide the alignment of heterogeneous images into a unified data domain. The code correlation loss enforces consistency in feature representations at the encoding layer, while a density-based kernel width estimation method enhances the capture of both local and global changes. The graph attention loss models the relationships between features and images, improving the representation of consistent regions across bitemporal images. Additionally, adversarial loss promotes style consistency within the shared domain. Our bidirectional adversarial convolutional autoencoder simultaneously aligns features across both domains. This bilateral structure mitigates the information loss associated with one-way mappings, enabling more accurate style transformation and reducing false change detections caused by sensor heterogeneity, which represents a key advantage over existing unidirectional methods. Compared with state-of-the-art methods for heterogeneous change detection, the MHGAN demonstrates superior performance in both qualitative and quantitative evaluations across four benchmark heterogeneous remote sensing datasets. Full article
Show Figures

Figure 1

26 pages, 15535 KiB  
Article
BCA-MVSNet: Integrating BIFPN and CA for Enhanced Detail Texture in Multi-View Stereo Reconstruction
by Ning Long, Zhengxu Duan, Xiao Hu and Mingju Chen
Electronics 2025, 14(15), 2958; https://doi.org/10.3390/electronics14152958 - 24 Jul 2025
Viewed by 154
Abstract
The 3D point cloud generated by MVSNet has good scene integrity but lacks sensitivity to details, causing holes and non-dense areas in flat and weak-texture regions. To address this problem and enhance the point cloud information of weak-texture areas, the BCA-MVSNet network is [...] Read more.
The 3D point cloud generated by MVSNet has good scene integrity but lacks sensitivity to details, causing holes and non-dense areas in flat and weak-texture regions. To address this problem and enhance the point cloud information of weak-texture areas, the BCA-MVSNet network is proposed in this paper. The network integrates the Bidirectional Feature Pyramid Network (BIFPN) into the feature processing of the MVSNet backbone network to accurately extract the features of weak-texture regions. In the feature map fusion stage, the Coordinate Attention (CA) mechanism is introduced into 3DU-Net to obtain the position information on the channel dimension related to the direction, improve the detail feature extraction, optimize the depth map and improve the depth accuracy. The experimental results show that BCA-MVSNet not only improves the accuracy of detail texture reconstruction, but also effectively controls the computational overhead. In the DTU dataset, the Overall and Comp metrics of BCA-MVSNet are reduced by 10.2% and 2.6%, respectively; in the Tanksand Temples dataset, the Mean metrics of the eight scenarios are improved by 6.51%. Three scenes are shot by binocular camera, and the reconstruction quality is excellent in the weak-texture area by combining the camera parameters and the BCA-MVSNet model. Full article
Show Figures

Figure 1

23 pages, 650 KiB  
Article
Exercise-Specific YANG Profile for AI-Assisted Network Security Labs: Bidirectional Configuration Exchange with Large Language Models
by Yuichiro Tateiwa
Information 2025, 16(8), 631; https://doi.org/10.3390/info16080631 - 24 Jul 2025
Viewed by 179
Abstract
Network security courses rely on hands-on labs where students configure virtual Linux networks to practice attack and defense. Automated feedback is scarce because no standard exists for exchanging detailed configurations—interfaces, bridging, routing tables, iptables policies—between exercise software and large language models (LLMs) that [...] Read more.
Network security courses rely on hands-on labs where students configure virtual Linux networks to practice attack and defense. Automated feedback is scarce because no standard exists for exchanging detailed configurations—interfaces, bridging, routing tables, iptables policies—between exercise software and large language models (LLMs) that could serve as tutors. We address this interoperability gap with an exercise-oriented YANG profile that augments the Internet Engineering Task Force (IETF) ietf-network module with a new network-devices module. The profile expresses Linux interface settings, routing, and firewall rules, and tags each node with roles such as linux-server or linux-firewall. Integrated into our LiNeS Cloud platform, it enables LLMs to both parse and generate machine-readable network states. We evaluated the profile on four topologies—from a simple client–server pair to multi-subnet scenarios with dedicated security devices—using ChatGPT-4o, Claude 3.7 Sonnet, and Gemini 2.0 Flash. Across 1050 evaluation tasks covering profile understanding (n = 180), instance analysis (n = 750), and instance generation (n = 120), the three LLMs answered correctly in 1028 cases, yielding an overall accuracy of 97.9%. Even with only minimal follow-up cues (≦3 turns) —rather than handcrafted prompt chains— analysis tasks reached 98.1% accuracy and generation tasks 93.3%. To our knowledge, this is the first exercise-focused YANG profile that simultaneously captures Linux/iptables semantics and is empirically validated across three proprietary LLMs, attaining 97.9% overall task accuracy. These results lay a practical foundation for artificial intelligence (AI)-assisted security labs where real-time feedback and scenario generation must scale beyond human instructor capacity. Full article
(This article belongs to the Special Issue AI Technology-Enhanced Learning and Teaching)
Show Figures

Figure 1

Back to TopTop