Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = biarticular muscle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2646 KiB  
Article
Comparison of Empirical and Reinforcement Learning (RL)-Based Control Based on Proximal Policy Optimization (PPO) for Walking Assistance: Does AI Always Win?
by Nadine Drewing, Arjang Ahmadi, Xiaofeng Xiong and Maziar Ahmad Sharbafi
Biomimetics 2024, 9(11), 665; https://doi.org/10.3390/biomimetics9110665 - 1 Nov 2024
Cited by 1 | Viewed by 1868
Abstract
The use of wearable assistive devices is growing in both industrial and medical fields. Combining human expertise and artificial intelligence (AI), e.g., in human-in-the-loop-optimization, is gaining popularity for adapting assistance to individuals. Amidst prevailing assertions that AI could surpass human capabilities in customizing [...] Read more.
The use of wearable assistive devices is growing in both industrial and medical fields. Combining human expertise and artificial intelligence (AI), e.g., in human-in-the-loop-optimization, is gaining popularity for adapting assistance to individuals. Amidst prevailing assertions that AI could surpass human capabilities in customizing every facet of support for human needs, our study serves as an initial step towards such claims within the context of human walking assistance. We investigated the efficacy of the Biarticular Thigh Exosuit, a device designed to aid human locomotion by mimicking the action of the hamstrings and rectus femoris muscles using Serial Elastic Actuators. Two control strategies were tested: an empirical controller based on human gait knowledge and empirical data and a control optimized using Reinforcement Learning (RL) on a neuromuscular model. The performance results of these controllers were assessed by comparing muscle activation in two assisted and two unassisted walking modes. Results showed that both controllers reduced hamstring muscle activation and improved the preferred walking speed, with the empirical controller also decreasing gastrocnemius muscle activity. However, the RL-based controller increased muscle activity in the vastus and rectus femoris, indicating that RL-based enhancements may not always improve assistance without solid empirical support. Full article
(This article belongs to the Special Issue Biologically Inspired Design and Control of Robots: Second Edition)
Show Figures

Figure 1

21 pages, 814 KiB  
Article
Contractile Work of the Soleus and Biarticular Mechanisms of the Gastrocnemii Muscles Increase the Net Ankle Mechanical Work at High Walking Speeds
by Mohamadreza Kharazi, Christos Theodorakis, Falk Mersmann, Sebastian Bohm and Adamantios Arampatzis
Biology 2023, 12(6), 872; https://doi.org/10.3390/biology12060872 - 16 Jun 2023
Cited by 7 | Viewed by 4528
Abstract
Increasing walking speed is accompanied by an increase of the mechanical power and work performed at the ankle joint despite the decrease of the intrinsic muscle force potential of the soleus (Sol) and gastrocnemius medialis (GM) muscles. In the present study, we measured [...] Read more.
Increasing walking speed is accompanied by an increase of the mechanical power and work performed at the ankle joint despite the decrease of the intrinsic muscle force potential of the soleus (Sol) and gastrocnemius medialis (GM) muscles. In the present study, we measured Achilles tendon (AT) elongation and, based on an experimentally determined AT force–elongation relationship, quantified AT force at four walking speeds (slow 0.7 m.s1, preferred 1.4 m.s1, transition 2.0 m.s1, and maximum 2.6 ± 0.3 m.s1). Further, we investigated the mechanical power and work of the AT force at the ankle joint and, separately, the mechanical power and work of the monoarticular Sol at the ankle joint and the biarticular gastrocnemii at the ankle and knee joints. We found a 21% decrease in maximum AT force at the two higher speeds compared to the preferred; however, the net work of the AT force at the ankle joint (ATF work) increased as a function of walking speed. An earlier plantar flexion accompanied by an increased electromyographic activity of the Sol and GM muscles and a knee-to-ankle joint energy transfer via the biarticular gastrocnemii increased the net ATF mechanical work by 1.7 and 2.4-fold in the transition and maximum walking speed, respectively. Our findings provide first-time evidence for a different mechanistic participation of the monoarticular Sol muscle (i.e., increased contractile net work carried out) and the biarticular gastrocnemii (i.e., increased contribution of biarticular mechanisms) to the speed-related increase of net ATF work. Full article
Show Figures

Figure 1

10 pages, 1482 KiB  
Article
Analysis of Muscle Strength and Electromyographic Activity during Different Deadlift Positions
by Vinícius Marques Moreira, Leonardo Coelho Rabello de Lima, Arnaldo Luis Mortatti, Thiago Mattos Frota de Souza, Fernando Vitor Lima, Saulo Fernandes Melo Oliveira, Christian Emmanuel Torres Cabido, Felipe J. Aidar, Manoel da Cunha Costa, Thiago Pires, Tatiana Acioli, Rogério César Fermino, Cláudio Oliveira Assumpção and Túlio Banja
Muscles 2023, 2(2), 218-227; https://doi.org/10.3390/muscles2020016 - 8 May 2023
Cited by 1 | Viewed by 8033
Abstract
The aim of the study was to analyze muscle activation in the three positions of the deadlift (DL). Twenty male participants (33.4 ± 3.9 years; 42.2 ± 9.1 months of experience with DL; 91.0 ± 14.8 kg; and 1.78 ± 0.06 m) pulled [...] Read more.
The aim of the study was to analyze muscle activation in the three positions of the deadlift (DL). Twenty male participants (33.4 ± 3.9 years; 42.2 ± 9.1 months of experience with DL; 91.0 ± 14.8 kg; and 1.78 ± 0.06 m) pulled a bar through isometric actions in three DL positions: lift-off, mid-pull, and lockout. Isometric strength, knee angle, and activation of the rectus femoris (RF), biceps femoris (BF), lateral gastrocnemius (GAL), and erector spinae (ERE) muscles were collected. The analysis of variance showed that the maximum isometric force presented differences between the positions (p = 0.001; η2 = 0.973) considered large with higher values at the mid-pull position. Interactions were found between muscles and position (p = 0.001; η2 = 0.527) considered large. The RF and ERE showed greater activation in the lift-off position, while in the mid-pull position, there was greater activation of the BF and GAL muscles. The DL positions produce different activations in the bi-articular and uni-articular muscles. The lift-off requires more activation from the RF and ERE positions. The mid-pull position, despite generating greater force, presented greater activations in the BF and GAL. The ERE showed higher activations as the external torque was greater. Full article
(This article belongs to the Special Issue Recent Perspectives Regarding Muscle and Exercise Training)
Show Figures

Figure 1

11 pages, 1074 KiB  
Article
Muscle Activation during the Squat Performed in Different Ranges of Motion by Women
by Lissiane Almeida Cabral, Leonardo Coelho Rabello Lima, Christian Emmanuel Torres Cabido, Rogério César Fermino, Saulo Fernandes Melo Oliveira, Alexandre Igor Araripe Medeiros, Luis Fabiano Barbosa, Thiago Mattos Frota de Souza, Túlio Banja and Cláudio de Oliveira Assumpção
Muscles 2023, 2(1), 12-22; https://doi.org/10.3390/muscles2010002 - 12 Jan 2023
Cited by 6 | Viewed by 18227
Abstract
Purpose: To analyze the muscle activation of the rectus femoris (RF), vastus lateralis (VL), gluteus maximus (GM), and biceps femoris (BF) in concentric and eccentric actions in the squat at 90° and 140° range of motion. Methods: Thirty-five women (32.9 ± 7.4 years; [...] Read more.
Purpose: To analyze the muscle activation of the rectus femoris (RF), vastus lateralis (VL), gluteus maximus (GM), and biceps femoris (BF) in concentric and eccentric actions in the squat at 90° and 140° range of motion. Methods: Thirty-five women (32.9 ± 7.4 years; 64.5 ± 11.5 kg; 1.63 ± 0.1 m; BMI: 24.2 ± 2.9 kg/m2; %fat: 24.9 ± 6.5%) experienced exercise for at least eight weeks. Electrodes were positioned in standardized locations. The signals were acquired by an A/D SAS1000 V8 converter and the electromyographic activity normalized in the percentage of the highest produced value (%RMS). The data were analyzed using repeated measures two-way ANOVA, with effect size (η2) and differences calculated in percentage points (∆ p.p.). Results: The RF (p = 0.001; ∆ = 5.1 p.p.) and BF activation (p = 0.020; ∆ = 4.0 p.p.) was higher at 90° in the eccentric action. The RF showed an interaction between the range of motion and %RMS, with a large effect size (F = 37.9; p = 0.001; η2 = 0.485). The VL activation was higher at 140° (p = 0.005; ∆ = 3.9 p.p.) in the concentric action and higher at 90° (p = 0.006; ∆ = 3.7 p.p.) in the eccentric action, with a large effect size significant interaction (F = 21.3; p = 0.001; η2 = 0.485). The GM activation was higher at 90° in the concentric (p = 0.020; ∆ = 5.4 p.p.) and eccentric action (p = 0.022; ∆ = 41 p.p.). Conclusions: The biarticular muscles were influenced by the squat range only in the eccentric action of the movement, while the monoarticular muscles were influenced by the squat in both concentric and eccentric muscle action. Full article
(This article belongs to the Special Issue Feature Papers in Muscles)
Show Figures

Figure 1

14 pages, 4211 KiB  
Article
Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton
by Tiancheng Zhou, Zhijie Zhou, Hanwen Zhang and Wenbin Chen
Sensors 2022, 22(21), 8539; https://doi.org/10.3390/s22218539 - 6 Nov 2022
Cited by 2 | Viewed by 5141
Abstract
Researchers have made advances in reducing the metabolic rate of both walking and running by modulating mono-articular energy with exoskeletons. However, how to modulate multiarticular energy with exoskeletons to improve the energy economy of both walking and running is still a challenging problem, [...] Read more.
Researchers have made advances in reducing the metabolic rate of both walking and running by modulating mono-articular energy with exoskeletons. However, how to modulate multiarticular energy with exoskeletons to improve the energy economy of both walking and running is still a challenging problem, due to the lack of understanding of energy transfer among human lower-limb joints. Based on the study of the energy recycling and energy transfer function of biarticular muscles, we proposed a hip–knee unpowered exoskeleton that emulates and reinforces the function of the hamstrings and rectus femoris in different gait phases. The biarticular exo-tendon of the exoskeleton assists hamstrings to recycle the kinetic energy of the leg swing while providing hip extension torque in the swing phase. In the following stance phase, the exo-tendon releases the stored energy to assist the co-contraction of gluteus maximus and rectus femoris for both hip extension and knee extension, thus realizing the phased modulation of hip and knee joint energy. The metabolic rate of both walking (1.5 m/s) and running (2.5 m/s) can be reduced by 6.2% and 4.0% with the multiarticular energy modulation of a hip–knee unpowered exoskeleton, compared to that of walking and running without an exoskeleton. The bio-inspired design method of this study may inspire people to develop devices that assist multiple gaits in the future. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

12 pages, 541 KiB  
Article
Relationship of Vertical Jump Performance and Ankle Joint Range of Motion: Effect of Knee Joint Angle and Handedness in Young Adult Handball Players
by Vassilios Panoutsakopoulos, Mariana C. Kotzamanidou, Athanasios K. Giannakos and Iraklis A. Kollias
Sports 2022, 10(6), 86; https://doi.org/10.3390/sports10060086 - 28 May 2022
Cited by 13 | Viewed by 5865
Abstract
The purpose of the study is to examine the effect of the ankle joint range of motion (ROM) on the vertical jump (VJ) performance of adult handball players. The active (ACT) and passive (PAS) ankle joint ROM of 12 male members of the [...] Read more.
The purpose of the study is to examine the effect of the ankle joint range of motion (ROM) on the vertical jump (VJ) performance of adult handball players. The active (ACT) and passive (PAS) ankle joint ROM of 12 male members of the U21 National Handball Team with the knee joint at 0°, 40°, and 90° flexion (0° = fully extended knee) was evaluated using a video analysis measuring method. Participants also performed maximum VJ with (CMJ) and without (SQJ) countermovement, as well as with (AS) and without (NAS) an arm swing. Statistical analyses included 2 × 2 × 3 MANOVA, 2 × 2 repeated measures ANOVA, and Pearson’s correlation. Results reveal that PAS-ROM was larger (p < 0.05) in all knee joint flexion angles. ROM was smaller (p < 0.05) by approximately 10° at 0° compared to 90° knee flexion. No lateral effects on ROM due to the handedness of the players were observed. AS and CM resulted in increased jump height (p < 0.05). Finally, ACT-ROM when the knee joint was flexed at 40° was highly correlated (r ≥ 0.66, p < 0.05) with VJ performance except for CMJ-AS. In conclusion, the differences in the bi-articular gastrocnemius muscle flexibility due to the alteration of the angular position of the examined joints affected the ability to generate impulse during the VJ tests. Full article
Show Figures

Figure 1

13 pages, 16503 KiB  
Article
Design and Joint Position Control of Bionic Jumping Leg Driven by Pneumatic Artificial Muscles
by Zhenhao Dai, Jinjun Rao, Zili Xu and Jingtao Lei
Micromachines 2022, 13(6), 827; https://doi.org/10.3390/mi13060827 - 26 May 2022
Cited by 5 | Viewed by 3609
Abstract
Using the skeletal structure and muscle distribution of the hind limbs of a jumping kangaroo as inspiration, a bionic jumping leg was designed with pneumatic artificial muscles (PAMs) as actuators. Referring to the position of biarticular muscles in kangaroos, we constructed a bionic [...] Read more.
Using the skeletal structure and muscle distribution of the hind limbs of a jumping kangaroo as inspiration, a bionic jumping leg was designed with pneumatic artificial muscles (PAMs) as actuators. Referring to the position of biarticular muscles in kangaroos, we constructed a bionic joint using biarticular and monoarticular muscle arrangements. At the same time, the problem of the joint rotation angle limitations caused by PAM shrinkage was solved, and the range of motion of the bionic joint was improved. Based on the output force model of the PAM, we established a dynamic model of the bionic leg using the Lagrange method. In view of the coupling problem caused by the arrangement of the biarticular muscle, an extended state observer was used for decoupling. The system was decoupled into two single-input and single-output systems, and angle tracking control was carried out using active disturbance rejection control (ADRC). The simulation and experimental results showed that the ADRC algorithm had a better decoupling effect and shorter adjustment time than PID control. The jumping experiments showed that the bionic leg could jump with a horizontal displacement of 320 mm and a vertical displacement of 150 mm. Full article
(This article belongs to the Special Issue New Advances in Biomimetic Robots)
Show Figures

Figure 1

11 pages, 1463 KiB  
Communication
Ankle Muscle Activations during Different Foot-Strike Patterns in Running
by Jian-Zhi Lin, Wen-Yu Chiu, Wei-Hsun Tai, Yu-Xiang Hong and Chung-Yu Chen
Sensors 2021, 21(10), 3422; https://doi.org/10.3390/s21103422 - 14 May 2021
Cited by 6 | Viewed by 4003
Abstract
This study analysed the landing performance and muscle activity of athletes in forefoot strike (FFS) and rearfoot strike (RFS) patterns. Ten male college participants were asked to perform two foot strikes patterns, each at a running speed of 6 km/h. Three inertial sensors [...] Read more.
This study analysed the landing performance and muscle activity of athletes in forefoot strike (FFS) and rearfoot strike (RFS) patterns. Ten male college participants were asked to perform two foot strikes patterns, each at a running speed of 6 km/h. Three inertial sensors and five EMG sensors as well as one 24 G accelerometer were synchronised to acquire joint kinematics parameters as well as muscle activation, respectively. In both the FFS and RFS patterns, according to the intraclass correlation coefficient, excellent reliability was found for landing performance and muscle activation. Paired t tests indicated significantly higher ankle plantar flexion in the FFS pattern. Moreover, biceps femoris (BF) and gastrocnemius medialis (GM) activation increased in the pre-stance phase of the FFS compared with that of RFS. The FFS pattern had significantly decreased tibialis anterior (TA) muscle activity compared with the RFS pattern during the pre-stance phase. The results demonstrated that the ankle strategy focused on controlling the foot strike pattern. The influence of the FFS pattern on muscle activity likely indicates that an athlete can increase both BF and GM muscles activity. Altered landing strategy in cases of FFS pattern may contribute both to the running efficiency and muscle activation of the lower extremity. Therefore, neuromuscular training and education are required to enable activation in dynamic running tasks. Full article
(This article belongs to the Special Issue Sensors in Sports Biomechanics)
Show Figures

Figure 1

20 pages, 2336 KiB  
Article
Are Torque-Driven Simulation Models of Human Movement Limited by an Assumption of Monoarticularity?
by Martin G. C. Lewis, Maurice R. Yeadon and Mark A. King
Appl. Sci. 2021, 11(9), 3852; https://doi.org/10.3390/app11093852 - 24 Apr 2021
Cited by 3 | Viewed by 3806
Abstract
Subject-specific torque-driven computer simulation models employing single-joint torque generators have successfully simulated various sports movements with a key assumption that the maximal torque exerted at a joint is a function of the kinematics of that joint alone. This study investigates the effect on [...] Read more.
Subject-specific torque-driven computer simulation models employing single-joint torque generators have successfully simulated various sports movements with a key assumption that the maximal torque exerted at a joint is a function of the kinematics of that joint alone. This study investigates the effect on model accuracy of single-joint or two-joint torque generator representations within whole-body simulations of squat jumping and countermovement jumping. Two eight-segment forward dynamics subject-specific rigid body models with torque generators at five joints are constructed—the first model includes lower limb torques, calculated solely from single-joint torque generators, and the second model includes two-joint torque generators. Both models are used to produce matched simulations to a squat jump and a countermovement jump by varying activation timings to the torque generators in each model. The two-joint torque generator model of squat and countermovement jumps matched measured jump performances more closely (6% and 10% different, respectively) than the single-joint simulation model (10% and 24% different, respectively). Our results show that the two-joint model performed better for squat jumping and the upward phase of the countermovement jump by more closely matching faster joint velocities and achieving comparable amounts of lower limb joint extension. The submaximal descent phase of the countermovement jump was matched with similar accuracy by the two models (9% difference). In conclusion, a two-joint torque generator representation is likely to be more appropriate for simulating dynamic tasks requiring large joint torques and near-maximal joint velocities. Full article
(This article belongs to the Special Issue Computer Simulation Modelling in Sport)
Show Figures

Figure 1

11 pages, 6237 KiB  
Article
Predictive Validity of the Single Leg Hamstring Bridge Test in Military Settings
by Primož Pori, Bogdan Kovčan, Janez Vodičar, Edvin Dervišević, Damir Karpljuk, Vedran Hadžić and Jožef Šimenko
Appl. Sci. 2021, 11(4), 1822; https://doi.org/10.3390/app11041822 - 18 Feb 2021
Cited by 4 | Viewed by 5602
Abstract
The hamstrings are biarticular muscle group that plays an important role in the occupational performance of military personnel. The single leg hamstring bridge test (SLHBT) could be a good test to screen military personnel performance. The aims of our study were to assess [...] Read more.
The hamstrings are biarticular muscle group that plays an important role in the occupational performance of military personnel. The single leg hamstring bridge test (SLHBT) could be a good test to screen military personnel performance. The aims of our study were to assess the reproducibility of the SLHBT in the military population and to use receiver operating curve (ROC) analysis to examine the ability of the SLHBT to discriminate between soldiers with poor and good baseline fitness. A cross-sectional study was performed on 201 male members of the Slovenian Armed Forces (SAF). They undertook army physical fitness testing (APFT) and functional physical fitness testing (FPFT), which included the SLHBT. The SLHBT showed acceptable reproducibility in a military setting and had moderate predictive validity to discriminate between soldiers with poor and good overall physical fitness performance using a cut-off value of 20 repetitions. In conclusion, the SLHBT could be a good candidate test for the military population as the ROC analysis showed the ability of the SLHBT to discriminate between soldiers with poor and good baseline fitness. The SLHBT represents a simple and affordable test that can be used to evaluate performance and form preventive guidelines for military personnel. Full article
(This article belongs to the Special Issue Applied Biomechanics for Injury Prevention and Performance)
Show Figures

Figure 1

12 pages, 8266 KiB  
Article
The Effects of the Rectus Femoris Muscle on Knee and Foot Kinematics during the Swing Phase of Normal Walking
by Carlo Albino Frigo, Christian Wyss and Reinald Brunner
Appl. Sci. 2020, 10(21), 7881; https://doi.org/10.3390/app10217881 - 6 Nov 2020
Cited by 16 | Viewed by 7430
Abstract
The role of rectus femoris (RF) muscle during walking was analyzed through musculoskeletal models to understand the effects of muscle weakness and hyperactivity. Such understanding is fundamental when dealing with pathological gait, but the contribution of RF as a bi-articular muscle is particularly [...] Read more.
The role of rectus femoris (RF) muscle during walking was analyzed through musculoskeletal models to understand the effects of muscle weakness and hyperactivity. Such understanding is fundamental when dealing with pathological gait, but the contribution of RF as a bi-articular muscle is particularly difficult to estimate. Anybody software was used for inverse dynamics computation, and SimWise-4D for forward dynamics simulations. RF force was changed in the range of 0 to 150%, and the resulting kinematics were analyzed. Inverse dynamics showed a short positive RF power in correspondence with the onset of knee extension in the swing phase. Forward dynamics simulations showed an increasing knee flexion and initial toe contact when the RF force was decreased, and increasing knee extension and difficult foot clearance when the RF force was increased. The step became shorter with both increased and reduced RF force. In conclusion, the RF actively contributes to the knee extension in the swing phase. RF also contributes to obtaining a proper step length and to preparing the foot for initial heel contact. So the effect of RF muscle as a bi-articular muscle seems fundamental in controlling the motion of distal segments. RF overactivity should be considered as a possible cause for poor foot clearance in some clinical cases, while RF weakness should be considered in cases with apparent equinus. Full article
(This article belongs to the Special Issue Musculoskeletal Models in a Clinical Perspective)
Show Figures

Graphical abstract

14 pages, 5162 KiB  
Article
Analyzing Moment Arm Profiles in a Full-Muscle Rat Hindlimb Model
by Fletcher Young, Christian Rode, Alex Hunt and Roger Quinn
Biomimetics 2019, 4(1), 10; https://doi.org/10.3390/biomimetics4010010 - 25 Jan 2019
Cited by 14 | Viewed by 5953
Abstract
Understanding the kinematics of a hindlimb model is a fundamental aspect of modeling coordinated locomotion. This work describes the development process of a rat hindlimb model that contains a complete muscular system and incorporates physiological walking data to examine realistic muscle movements during [...] Read more.
Understanding the kinematics of a hindlimb model is a fundamental aspect of modeling coordinated locomotion. This work describes the development process of a rat hindlimb model that contains a complete muscular system and incorporates physiological walking data to examine realistic muscle movements during a step cycle. Moment arm profiles for selected muscles are analyzed and presented as the first steps to calculating torque generation at hindlimb joints. A technique for calculating muscle moment arms from muscle attachment points in a three-dimensional (3D) space has been established. This model accounts for the configuration of adjacent joints, a critical aspect of biarticular moment arm analysis that must be considered when calculating joint torque. Moment arm profiles from isolated muscle motions are compared to two existing models. The dependence of biarticular muscle’s moment arms on the configuration of the adjacent joint is a critical aspect of moment arm analysis that must be considered when calculating joint torque. The variability in moment arm profiles suggests changes in muscle function during a step. Full article
(This article belongs to the Special Issue Selected Papers from Living Machines 2018)
Show Figures

Figure 1

15 pages, 8759 KiB  
Article
Assist-as-Needed Control of a Robotic Orthosis Actuated by Pneumatic Artificial Muscle for Gait Rehabilitation
by Quy-Thinh Dao and Shin-ichiroh Yamamoto
Appl. Sci. 2018, 8(4), 499; https://doi.org/10.3390/app8040499 - 26 Mar 2018
Cited by 42 | Viewed by 7265
Abstract
Rehabilitation robots are designed to help patients improve their recovery from injury by supporting them to perform repetitive and systematic training sessions. These robots are not only able to guide the subjects’ lower-limb to a designate trajectory, but also estimate their disability and [...] Read more.
Rehabilitation robots are designed to help patients improve their recovery from injury by supporting them to perform repetitive and systematic training sessions. These robots are not only able to guide the subjects’ lower-limb to a designate trajectory, but also estimate their disability and adapt the compliance accordingly. In this research, a new control strategy for a high compliant lower-limb rehabilitation orthosis system named AIRGAIT is developed. The AIRGAIT orthosis is powered by pneumatic artificial muscle actuators. The trajectory tracking controller based on a modified computed torque control which employs a fractional derivative is proposed for the tracking purpose. In addition, a new method is proposed for compliance control of the robotic orthosis which results in the successful implementation of the assist-as-needed training strategy. Finally, various subject-based experiments are carried out to verify the effectiveness of the developed control system. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop