Relationship of Vertical Jump Performance and Ankle Joint Range of Motion: Effect of Knee Joint Angle and Handedness in Young Adult Handball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.2.1. Range of Motion Measurement
2.2.2. Vertical Jump Tests
- Squat jump without an arm swing (SQJ-NAS): At the initial position, the feet were in full contact with the force-plate, and θKNEE was checked to be at 90° flexion [50]. The arms were kept on the hips during the impulse phase, the flight, and the landing.
- Squat jump with an arm swing (SQJ-AS): The starting position of the lower extremities was the same as in the SQJ-NAS. The arms were hanging parallel to the side of the body and were swung upwards during the impulse phase.
- Countermovement jump without an arm swing (CMJ-NAS): An upright starting position was adopted with the feet having full contact with the force-plate. The arms were positioned as described for the SQJ-AS. No limitations concerning the knee flexion during the countermovement were imposed.
- Countermovement jump with an arm swing (CMJ-AS): The movement of the lower extremity was as in the CMJ-NAS. As for the arm swing, from a freely hanging position at the side of the body at the star, the upper extremities were swung backward and forward during the impulse phase.
2.3. Statistical Analysis
3. Results
3.1. Ankle Range of Motion
3.2. Vertical Jump Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prilutsky, B.I.; Zatsiorsky, V.M. Tendon action of two-joint muscles: Transfer of mechanical energy between joints during jumping, landing, and running. J. Biomech. 1994, 27, 25–34. [Google Scholar] [CrossRef]
- Moir, G.; Button, C.; Glaister, M.; Stone, M.H. Influence of familiarization on the reliability of vertical jump and acceleration sprinting performance in physically active men. J. Strength Cond. Res. 2004, 18, 276–280. [Google Scholar] [PubMed]
- Bosco, C.; Komi, P.V. Potentiation of the mechanical behavior of the human skeletal muscle through prestretching. Acta Physiol. Scand. 1979, 106, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.J.; Gaffney, S. Motor development and gender effects on stretch-shortening cycle performance. J. Sci. Med. Sport 2001, 4, 406–415. [Google Scholar] [CrossRef]
- Blache, Y.; Monteil, K. Effect of arm swing on effective energy during vertical jumping: Experimental and simulation study. Scand. J. Med. Sci. Sports 2013, 23, e121–e129. [Google Scholar] [CrossRef]
- Feltner, M.E.; Bishop, E.J.; Perez, C.M. Segmental and kinetic contributions in vertical jumps performed with and without an arm swing. Res. Q. Exerc. Sport 2004, 75, 216–230. [Google Scholar] [CrossRef]
- Wilson, G.J.; Elliot, B.C.; Wood, G.A. Performance benefits through flexibility training. Sports Coach. 1991, 2, 7–10. [Google Scholar]
- Panoutsakopoulos, V.; Kotzamanidou, M.C.; Papaiakovou, G.; Kollias, I.A. The ankle joint range of motion and its effect on squat jump performance with and without arm swing in adolescent female volleyball players. J. Funct. Morphol. Kinesiol. 2021, 6, 14. [Google Scholar] [CrossRef]
- Martín-Guzón, I.; Muñoz, A.; Lorenzo-Calvo, J.; Muriarte, D.; Marquina, M.; de la Rubia, A. Injury prevalence of the lower limbs in handball players: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 332. [Google Scholar] [CrossRef]
- Myklebust, G.; Maehlum, S.; Engebretsen, L.; Strand, T.; Solheim, E. Registration of cruciate ligament injuries in Norwegian top level team handball. A prospective study covering two seasons. Scand. J. Med. Sci. Sports 1997, 7, 289–292. [Google Scholar] [CrossRef]
- Raya-González, J.; García-Esteban, S.; de Ste Croix, M.; Manuel Clemente, F.; Castillo, D. Longitudinal differences in the injury profile of professional male handball players according to competitive-level. Res. Sports Med. 2021, 29, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Langevoort, G.; Myklebust, G.; Dvorak, J.; Junge, A. Handball injuries during major international tournaments. Scand. J. Med. Sci. Sports 2007, 17, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Hoeberigs, J.H.; van Galen, W.C.; Philipsen, H. Pattern of injury in handball and comparison of injured versus noninjured handball players. Int. J. Sports Med. 1986, 7, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.B.; Yde, J. An epidemiologic and traumatologic study of injuries in handball. Int. J. Sports Med. 1988, 9, 341–344. [Google Scholar] [CrossRef]
- Yde, J.; Nielsen, A. Sports injuries in adolescents’ ball games: Soccer, handball and basketball. Br. J. Sports Med. 1990, 24, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Dirx, M.; Bouter, L.M.; de Geus, H. An etiology of handball: A case control study. Br. J. Sports Med. 1992, 26, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Wedderkopp, N.; Kaltoft, M.; Lundgaard, B.; Rosendahl, M.; Froberg, K. Injuries in young female players in European team handball. Scand. J. Med. Sci. Sports 1997, 7, 342–347. [Google Scholar] [CrossRef]
- Seil, R.; Rupp, S.; Tempelhof, S.; Kohn, D. Sports injuries in team handball: A one year prospective study in sixteen men’s senior teams of superior nonprofessional level. Am. J. Sports Med. 1998, 26, 681–687. [Google Scholar] [CrossRef]
- Wedderkopp, N.; Kaltoft, M.; Lundgaard, B.; Rosendahl, M.; Froberg, K. Prevention of injuries in young female players in European team handball. A prospective intervention study. Scand. J. Med. Sci. Sports 1999, 9, 41–47. [Google Scholar] [CrossRef]
- Olsen, O.-E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury pattern in youth team handball: A comparison of two prospective registration methods. Scand. J. Med. Sci. Sports 2006, 16, 426–432. [Google Scholar] [CrossRef]
- Waterman, B.R.; Belmont, P.J., Jr.; Cameron, K.L.; Svoboda, S.J.; Alitz, C.J.; Owens, B.D. Risk factors for syndesmotic and medial ankle sprain: Role of sex, sport, and level of competition. Am. J. Sports Med. 2011, 39, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Bere, T.; Alonso, J.M.; Wangensteen, A.; Bakken, A.; Eirale, C.; Dijkstra, H.P.; Ahmed, H.; Bahr, R.; Popovic, N. Injury and illness surveillance during the 24th Men’s Handball World Championship 2015 in Qatar. Br. J. Sports Med. 2015, 49, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Mónaco, M.; Rincón, J.A.G.; Ronsano, B.J.M.; Whiteley, R.; Sanz-Lopez, F.; Rodas, G. Injury incidence and injury patterns by category, player position, and maturation in elite male handball elite players. Biol. Sport 2019, 36, 67–74. [Google Scholar] [CrossRef] [PubMed]
- López-Valenciano, A.; Ayala, F.; Vera-García, F.J.; De Ste Croix, M.; Hernández-Sánchez, S.; Ruiz-Pérez, I.; Cejudo, A.; Santonja, F. Comprehensive profile of hip, knee and ankle ranges of motion in professional football players. J. Sports Med. Phys. Fit. 2019, 59, 102–109. [Google Scholar] [CrossRef]
- Raya-González, J.; Clemente, F.M.; Castillo, D. Analyzing the magnitude of interlimb asymmetries in young female soccer players: A preliminary study. Int. J. Environ. Res. Public Health 2021, 18, 475. [Google Scholar] [CrossRef]
- Roaas, A.; Anderson, G.B.J. Normal range of motion of the hip, knee and ankle joints in male subjects, 30–40 years of the age. Acta. Orthop. Scand. 1982, 53, 205–208. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Turci, M.; Lovecchio, N.; Shirai, Y.F.; Sforza, C. Asymmetry of the active nonweightbearing foot and ankle range of motion for dorsiflexion-plantar flexion and its coupled movements in adults. Clin. Anat. 2007, 20, 834–842. [Google Scholar] [CrossRef]
- Belczak, C.E.Q.; Cavalheri, G., Jr.; Pereira de Godoy, J.M.; Caffaro, R.A. The differences in the ankle range of motion in distinct ethnical groups measured by goniometry. Phlebologie 2009, 38, 59–63. [Google Scholar] [CrossRef]
- Papaiakovou, G.; Kollias, I.; Siatras, T.; Panoutsakopoulos, V. The ankle joint and its influence upon dynamic and kinematic characteristics in a standing vertical jump. Exerc. Soc. 2002, 32, 30–40. [Google Scholar]
- Agre, J.C.; Baxter, T.L. Musculoskeletal profile of male collegiate soccer players. Arch. Phys. Med. Rehabil. 1987, 68, 147–150. [Google Scholar]
- Papaiakovou, G.; Tyros, G.; Natsis, K.; Panoutsakopoulos, V.; Kollias, I. Male soccer players’ ankle joint range of motion in different knee joint angles. Iatriki 2005, 87, 61–66. [Google Scholar]
- Zakas, A.; Vergou, A.; Zakas, N.; Grammatikopoulou, M.G.; Grammatikopoulos, G.T. Handball match effect on the flexibility of junior handball players. J. Hum. Mov. Stud. 2002, 43, 321–330. [Google Scholar]
- Zakas, A.; Vergou, A.; Grammatikopoulou, M.G.; Zakas, N.; Sentelidis, T.; Vamvakoudis, S. The effect of stretching during warming-up on the flexibility of junior handball players. J. Sports Med. Phys. Fit. 2003, 43, 145–149. [Google Scholar]
- Gruić, I.; Ohnjec, K.; Vuleta, D. Comparison and analyses of differences in flexibility among top-level male and female handball players of different ages. Facta Univ. Phys. Edu. Sport. 2011, 9, 1–7. [Google Scholar]
- Matthys, S.P.J.; Vaeyens, R.; Vandendriessche, J.; Vandorpe, B.; Pion, J.; Coutts, A.J.; Lenoir, M.; Philippaerts, R.M. A multidisciplinary identification model for youth handball. Eur. J. Sport Sci. 2011, 11, 355–363. [Google Scholar] [CrossRef]
- Matthys, S.P.J.; Vaeyens, R.; Fransen, J.; Deprez, D.; Pion, J.; Vandendriessche, J.; Vandorpe, B.; Lenoir, M.; Philippaerts, R. A longitudinal study of multidimensional performance characteristics related to physical capacities in youth handball. J. Sports Sci. 2013, 31, 325–334. [Google Scholar] [CrossRef]
- Yamada, E.; Aida, H.; Nakagawa, A. Notational analysis of shooting play in the middle area by world-class players and Japanese elite players in women’s handball. Int. J. Sport Health Sci. 2011, 9, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Povoas, S.C.A.; Seabra, A.F.T.; Ascensao, A.A.M.R.; Magalhaes, J.; Soares, J.M.C.; Rebelo, A.N.C. Physical and physiological demands of elite team handball. J. Strength Cond. Res. 2012, 26, 3365–3375. [Google Scholar] [CrossRef]
- Pori, P.; Bon, M.; Šibila, M. Jump shot performance in team handball–a kinematic model evaluated on the basis of expert modelling. Kineziologija 2005, 37, 40–49. [Google Scholar]
- Hubley, C.L.; Wells, R.P. A work-energy approach to determine individual joint contributions to vertical jump performance. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 247–254. [Google Scholar] [CrossRef]
- Luhtanen, P.; Komi, P.V. Segmental contribution to forces in vertical jump. Eur. J. Appl. Physiol. Occup. Physiol. 1978, 38, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.; van Zandwijk, J. Sensitivity of vertical jumping performance to changes in muscle stimulation onset times: A simulation study. Biol. Cybern. 1999, 81, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaiakovou, G. Kinematic and kinetic differences in the execution of vertical jumps between people with good and poor ankle joint dorsiflexion. J. Sports Sci. 2013, 31, 1789–1796. [Google Scholar] [CrossRef] [PubMed]
- Chaouachi, A.; Brughelli, M.; Levin, G.; Boudhina, N.B.B.; Cronin, J.; Chamari, K. Anthropometric, physiological and performance characteristics of elite team-handball players. J. Sports Sci. 2009, 27, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Kotzamanidis, C.; Papadopoulos, C.; Giavroglou, A. Kinematic-dynamic analysis of the support phase in different throws of handball. In Proceedings of the 5th International Symposium on Biomechanics in Sports; Tsarouchas, L., Terauds, J., Gowitzke, B.A., Holt, L.E., Eds.; Olympic Sports Center of Athens: Athens, Greece, 1987; pp. 212–226. Available online: https://ojs.ub.uni-konstanz.de/cpa/article/view/2334 (accessed on 20 May 2022).
- dos Santos, S.G.; Detanico, D.; Cunha dos Reis, D. Magnitudes de impacto e cinemática dos membros inferiores no arremesso em suspensão no handebol. Rev. Bras. Cineantropom. Desempenho Hum. 2009, 11, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Wagner, H.; Pfusterschmied, J.; von Duvillard, S.P.; Müller, E. Performance and kinematics of various throwing techniques in team-handball. J. Sport Sci. Med. 2011, 10, 73–80. [Google Scholar]
- Lindner, M.; Kotschwar, A.; Zsoldos, R.R.; Groesel, M.; Peham, C. The jump shot—A biomechanical analysis focused on lateral ankle ligaments. J. Biomech. 2012, 45, 202–206. [Google Scholar] [CrossRef]
- Izquierdo, M.; Hakkinen, K.; Gonzalez-Badillo, J.J.; Ibanez, J.; Gorostiaga, E.M. Effects of long-term training specificity on maximal strength and power of the upper and lower extremities in athletes from different sports. Eur. J. Appl. Physiol. 2002, 87, 264–271. [Google Scholar] [CrossRef]
- Panoutsakopoulos, V.; Papachatzis, N.; Kollias, I.A. Sport specificity background affects the principal component structure of vertical squat jump performance of young adult female athletes. J. Sport Health Sci. 2014, 3, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited: An overview of some recommended measures of effect size. Trends. Sport Sci. 2014, 21, 19–25. [Google Scholar]
- Cejudo, A.; Sainz De Baranda, P.; Ayala, F.; Santonja, F. Perfil de flexibilidad de la extremidad inferior en jugadores senior de balonmano. Cuad. Psicol. Deporte 2014, 14, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Diez, M.; Castillo, D.; Raya-Gonzalez, J.; Sanchez-Diaz, S.; Soto-Celix, M.; Rendo-Urteaga, T.; Lago-Rondriguez, A. Comparison of multidirectional jump performance and lower limb passive range of motion profile between soccer and basketball young players. PLoS ONE 2021, 16, e0245277. [Google Scholar] [CrossRef] [PubMed]
- González-Ravé, J.M.; Juárez, D.; Rubio-Arias, J.A.; Clemente-Suarez, V.J.; Martinez-Valencia, M.A.; Abian-Vicen, J. Isokinetic leg strength and power in elite handball players. J. Hum. Kinet. 2014, 41, 227–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cejudo, A. Lower extremity flexibility profile in basketball players: Gender differences and injury risk identification. Int. J. Environ. Res. Public Health 2021, 18, 11956. [Google Scholar] [CrossRef]
- de Sousa Fernandes, M.V.; Carvalho, S.R.; dos Santos Costa, W.; De Avelar, I.S.; de Almeida Pires Oliveira, D.A.; Mota Venâncio, P.E.; Soares, V. Effects of neuromuscular exercises on q-angle, knee joint stability and ankle mobility of handball athletes. Man. Ther. Posturology Rehabil. J. 2019, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Skandalis, V.; Hatzimanouil, D.; Stavropoulos, N.; Dalamitros, A.; Sykaras, E.; Mavrommatis, G. Anthropometric and range of motion evaluation of the lower limbs’ joints as factors for symmetry assessment at high level handball players prior to their return to play after an injury in lower limbs. J. Phys. Educ. Sports Manag. 2020, 7, 39–51. [Google Scholar] [CrossRef]
- Bradley, P.S.; Portas, M.D. The relationship between preseason range of motion and muscle strain injury in elite soccer players. J. Strength Cond. Res. 2007, 21, 1155–1159. [Google Scholar] [CrossRef] [Green Version]
- Baggett, B.D.; Young, G. Ankle joint dorsiflexion. Establishment of a normal range. J. Am. Podiatr. Med. Assoc. 1993, 83, 251–254. [Google Scholar] [CrossRef]
- Kotzamanidou, M.C.; Panoutsakopoulos, V.; Manavis, K. Ankle joint range of motion of female handball players in different knee joint flexion angles. Gynaika Athlīsī 2013, 9, 15–21. [Google Scholar]
- Rousanoglou, E.; Noutsos, K.; Bayios, I.; Boudolos, K. Ground reaction forces and throwing performance in elite and novice players in two types of handball shot. J. Hum. Kinet. 2014, 40, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.J.; Crowell, H.P., III; Davis, I.M. Lower extremity stiffness: Implications for performance and injury. Clin. Biomech. 2003, 18, 511–517. [Google Scholar] [CrossRef]
- Maloney, S.J.; Fletcher, I.M.; Richards, J. A comparison of methods to determine bilateral asymmetries in vertical leg stiffness. J Sports Sci. 2016, 34, 829–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cejudo, A.; de Baranda, P.S.; Ayala, F.; Santonja, F. Test-retest reliability of seven common clinical tests for assessing lower extremity muscle flexibility in futsal and handball players. Phys. Ther. Sport 2015, 16, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Boone, D.C.; Azen, S.P. Normal range of motion of joints in male subjects. J. Bone Jt. Surg. Am. 1979, 61, 756–759. [Google Scholar] [CrossRef]
- Mitchell, B.; Bressel, E.; McNair, P.J.; Bressel, M.E. Effect of pelvic, hip, and knee position on ankle joint range of motion. Phys. Ther. Sport 2008, 9, 202–208. [Google Scholar] [CrossRef]
- Baumbach, S.F.; Brumann, M.; Binder, J.; Mutschler, W.; Regauer, M.; Polzeret, H. The influence of knee position on ankle dorsiflexion—A biometric study. BMC Musculoskelet. Disord. 2014, 15, 246. [Google Scholar] [CrossRef]
- Wang, H.-K.; Chen, C.-H.; Shiang, T.-Y.; Jan, M.-H.; Lin, K.-H. Risk-factor analysis of high school basketball–player ankle injuries: A prospective controlled cohort study evaluating postural sway, ankle strength, and flexibility. Arch. Phys. Med. Rehabil. 2006, 87, 821–825. [Google Scholar] [CrossRef]
- Kapandji, I.A. The Physiology of the Joints. Volume 2: The Lower Limb; Churchill Livingstone: New York, NY, USA, 1987. [Google Scholar]
- Hornsby, T.M.; Nicholson, G.G.; Gossman, M.R.; Culpepper, M. Effect of inherent muscle length on isometric plantar flexion torque in healthy women. Phys. Τher. 1987, 67, 1191–1197. [Google Scholar] [CrossRef] [Green Version]
- De Monte, G.; Arampatzis, A.; Stogiannari, C.; Karamanidis, K. In vivo motion transmission in the inactive gastrocnemius medialis muscle–tendon unit during ankle and knee joint rotation. J. Electromyogr. Kinesiol. 2006, 16, 413–422. [Google Scholar] [CrossRef]
- Farrag, A.; Almusallam, M.; Almulhim, N.; Alzahrani, E.; Alowa, Z.; Elsayed, W. The effect of knee angle and subject position on plantar flexors isokinetic performance and muscular activity. Isokinet. Exerc. Sci. 2021; 1–9, in press. [Google Scholar] [CrossRef]
- Huijing, P.A.; Yaman, A.; Ozturk, C.; Yucesoy, C.A. Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles. Surg. Radiol. Anat. 2011, 33, 869–879. [Google Scholar] [CrossRef] [Green Version]
- Simoneau, E.; Martin, A.; Van Hoecke, J. Effects of joint angle and age on ankle dorsi- and plantar-flexor strength. J. Electromyogr. Kinesiol. 2007, 17, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.J.; Hoogkamer, J.E.; Bobbert, M.F.; Huijing, P.A. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur. J. Appl. Physiol. 1990, 61, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Buchecker, M.; von Duvillard, S.; Müller, E. Kinematic description of elite vs. low level players in team-handball jump throw. J. Sports Sci. Med. 2010, 9, 760–765. [Google Scholar]
- Van den Tillar, R.; Ettema, G. Is there a proximal-to-distal sequence in overarm throwing in team-handball? J. Sports Sci. 2009, 27, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Shibayama, A.; Takeshita, D.; Hay, D.C.; Fukashiro, S. A comparison of the mechanical effect of arm swing and countermovement on the lower extremities in vertical jumping. Hum. Mov. Sci. 2008, 27, 636–648. [Google Scholar] [CrossRef]
- Giatsis, G.; Panoutsakopoulos, V.; Kollias, I.A. Biomechanical differences of arm swing countermovement jumps on sand and rigid surface performed by elite beach volleyball players. J. Sports Sci. 2018, 36, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, H.; Nagano, A.; Hay, D.C.; Kanehisa, H. The effects of ankle restriction on the multijoint coordination of vertical jumping. J. Appl. Biomech. 2013, 29, 468–473. [Google Scholar] [CrossRef] [Green Version]
- Godinho, I.; Pinheiro, B.N.; Junior, L.D.S.; Lucas, G.C.; Cavalcante, J.F.; Monteiro, G.M.; Uchoa, P.A.G. Effect of reduced ankle mobility on jumping performance in young athletes. Motricidade 2019, 15, 46–51. [Google Scholar] [CrossRef]
- Papaiakovou, G.; Nikodelis, T.; Panoutsakopoulos, V.; Kollias, I. Effects of initial posture upon vertical squat jump dynamic and kinematic characteristics of subjects with limited ankle joint dorsi flexion. J. Hum. Mov. Stud. 2003, 44, 311–322. [Google Scholar]
- Stotz, A.; Maghames, E.; Mason, J.; Groll, A.; Zech, A. Maximum isometric torque at individually-adjusted joint angles exceeds eccentric and concentric torque in lower extremity joint actions. BMC Sports Sci. Med. Rehabil. 2022, 14, 13. [Google Scholar] [CrossRef]
- Landin, D.; Thompson, M.; Reid, M. Knee and ankle joint angles influence the plantarflexion torque of the gastrocnemius. J. Clin. Med. Res. 2015, 7, 602–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akl, A.-R.; Hassan, I.; Hassan, A.; Bishop, P. Relationship between kinematic variables of jump throwing and ball velocity in elite handball players. Appl. Sci. 2019, 9, 3423. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, S.G.; Detanico, D.; dos Reis, D.C. Magnitude of lower limb impact and kinematics in the handball jump throw. Rev. Bras. Cineantropometria Desempenho Hum. 2009, 11, 326–333. [Google Scholar] [CrossRef]
- Koga, H.; Nakamae, A.; Shima, Y.; Iwasa, J.; Myklebust, G.; Engebretsen, L.; Bahr, R.; Krosshaug, T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010, 38, 2218–2225. [Google Scholar] [CrossRef]
- Olsen, O.E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am. J. Sports Med. 2004, 32, 1002–1012. [Google Scholar] [CrossRef]
- Achenbach, L.; Krutsch, V.; Weber, J.; Nerlich, M.; ·Luig, P.; Loose, O.; Angele, P.; Krutsch, W. Neuromuscular exercises prevent severe knee injury in adolescent team handball players. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1901–1908. [Google Scholar] [CrossRef]
- Hermassi, S.; Laudner, K.; Schwesig, R. Playing level and position differences in body characteristics and physical fitness performance among male team handball players. Front. Bioeng. Biotechnol. 2019, 7, 149. [Google Scholar] [CrossRef]
- McGhie, D.; Østerås, S.; Ettema, G.; Paulsen, G.; Sandbakk, Ø. Strength determinants of jump height in the jump throw movement in women handball players. J. Strength Cond. Res. 2020, 34, 2937–2946. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Rojas, F.J.; Gómez-Martínez, F.; García-Ramos, A. Vertical jump performance is affected by the velocity and depth of the countermovement. Sports Biomech. 2019, 20, 1015–1030. [Google Scholar] [CrossRef]
θKNEE = 0° | θKNEE = 40° | θKNEE = 90° | |
---|---|---|---|
ROM Measurement | Mean ± SD | Mean ± SD | Mean ± SD |
TAS | |||
ACT (deg) | 52.7 ± 11.7 | 56.2 ± 9.6 | 63.4 ± 18.0 |
PAS (deg) | 69.0 ± 10.9 * | 74.2 ± 13.4 * | 79.3 ± 13.2 * |
NTS | |||
ACT (deg) | 59.4 ± 6.3 | 65.4 ± 10.0 # | 70.4 ± 10.5 |
PAS (deg) | 65.3 ± 9.7 | 78.0 ± 12.6 *,a | 76.8 ± 13.5 a |
Parameter | Arm Swing | SQJ | CMJ | Countermovement Effect | Arm Swing Effect | Interaction | |||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | p | ηp2 | p | ηp2 | p | ηp2 | ||
hJUMP | NAS | 27.3 ± 3.9 | 30.0 ± 4.5 | 0.001 | 0.215 | 0.010 | 0.141 | 0.183 | 0.040 |
(cm) | AS | 29.0 ± 3.6 a | 35.3 ± 5.8 a,c | ||||||
FzMAX | NAS | 2.3 ± 0.2 | 2.5 ± 0.3 | 0.030 | 0.103 | 0.449 | 0.013 | 0.958 | 0.000 |
(N/kg) | AS | 2.3 ± 0.3 | 2.5 ± 0.2 | ||||||
RFDMAX | NAS | 8.2 ± 2.4 | 11.6 ± 4.1 c | 0.073 | 0.071 | 0.818 | 0.001 | 0.078 | 0.069 |
(kN/s) | AS | 10.1 ± 2.8 | 10.1 ± 3.3 | ||||||
PMAX | NAS | 27.1 ± 5.2 | 26.7 ± 5.7 | 0.107 | 0.058 | 0.014 | 0.130 | 0.064 | 0.076 |
(W/kg) | AS | 28.3 ± 6.3 | 34.4 ± 6.8 a,c | ||||||
SDOWN | NAS | 0.0 ± 0.0 | −19.6 ± 4.2 a | <0.001 | 0.872 | 0.969 | 0.000 | 0.311 | 0.023 |
(% body height) | AS | 0.0 ± 0.0 | −18.6 ± 4.1 a | ||||||
SUP | NAS | 28.2 ± 2.1 | 31.0 ± 4.1 | 0.013 | 0.133 | 0.229 | 0.033 | 0.991 | 0.000 |
(% body height) | AS | 29.5 ± 4.0 | 32.3 ± 4.5 | ||||||
tC | NAS | 510 ± 114 | 626 ± 76 c | <0.001 | 0.356 | 0.804 | 0.001 | 0.586 | 0.007 |
(ms) | AS | 489 ± 103 | 577 ± 77 c | ||||||
tUP | NAS | 100 ± 0 | 52 ± 3 c | <0.001 | 0.559 | 0.735 | 0.003 | 0.881 | 0.001 |
(%tC) | AS | 100 ± 0 | 53 ± 3 c | ||||||
tFz | NAS | 67 ± 11 | 50 ± 7 c | 0.477 | 0.012 | 0.075 | 0.070 | <0.001 | 0.253 |
(%tC) | AS | 60 ± 15 | 71 ± 16 a,c | ||||||
tP | NAS | 78 ± 5 | 82 ± 2 c | <0.001 | 0.377 | 0.614 | 0.006 | 0.440 | 0.014 |
(%tC) | AS | 76 ± 4 | 83 ± 3 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panoutsakopoulos, V.; Kotzamanidou, M.C.; Giannakos, A.K.; Kollias, I.A. Relationship of Vertical Jump Performance and Ankle Joint Range of Motion: Effect of Knee Joint Angle and Handedness in Young Adult Handball Players. Sports 2022, 10, 86. https://doi.org/10.3390/sports10060086
Panoutsakopoulos V, Kotzamanidou MC, Giannakos AK, Kollias IA. Relationship of Vertical Jump Performance and Ankle Joint Range of Motion: Effect of Knee Joint Angle and Handedness in Young Adult Handball Players. Sports. 2022; 10(6):86. https://doi.org/10.3390/sports10060086
Chicago/Turabian StylePanoutsakopoulos, Vassilios, Mariana C. Kotzamanidou, Athanasios K. Giannakos, and Iraklis A. Kollias. 2022. "Relationship of Vertical Jump Performance and Ankle Joint Range of Motion: Effect of Knee Joint Angle and Handedness in Young Adult Handball Players" Sports 10, no. 6: 86. https://doi.org/10.3390/sports10060086
APA StylePanoutsakopoulos, V., Kotzamanidou, M. C., Giannakos, A. K., & Kollias, I. A. (2022). Relationship of Vertical Jump Performance and Ankle Joint Range of Motion: Effect of Knee Joint Angle and Handedness in Young Adult Handball Players. Sports, 10(6), 86. https://doi.org/10.3390/sports10060086