Contractile Work of the Soleus and Biarticular Mechanisms of the Gastrocnemii Muscles Increase the Net Ankle Mechanical Work at High Walking Speeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Kinematics and Electromyographic Activity Measurements
2.3. Measurement of AT Length and Quantification of AT Force and Strain Energy
2.4. Mechanical Power and Work at the Ankle and Knee Joint
2.5. Statistics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AT | Achilles tendon |
ATF power/work/moment | Power, work, or moment of the AT at the ankle joint |
EMG | Electromyographic activity |
Sol | Soleus |
GM | Gastrocnemius medialis |
GL | Gastrocnemius lateralis |
TA | Tibialis anterior |
MVC | Maximum voluntary isometric contraction |
GM-MTG | Gastrocnemius medialis muscle–tendon junction |
MTU | Muscle–tendon unit |
PCSA | Physiological cross-section area |
First energy-transfer mechanism | Phase T1 |
First joint-coupling mechanism | Phase C1 |
Second energy-transfer mechanism | Phase T2 |
Second joint-coupling mechanism | Phase C2 |
References
- Nilsson, J.; Thorstensson, A. Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds. Acta Physiol. Scand. 1987, 129, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Mademli, L.; Arampatzis, A. Lower safety factor for old adults during walking at preferred velocity. Age 2014, 36, 1359–1365. [Google Scholar] [CrossRef]
- Martin, P.E.; Rothstein, D.E.; Larish, D.D. Effects of age and physical activity status on the speed-aerobic demand relationship of walking. J. Appl. Physiol. 1992, 73, 200–206. [Google Scholar] [CrossRef]
- Novacheck, T.F. The biomechanics of running. Gait Posture 1998, 7, 77–95. [Google Scholar] [CrossRef]
- Farris, D.J.; Sawicki, G.S. The mechanics and energetics of human walking and running: A joint level perspective. J. R. Soc. Interface 2012, 9, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Lai, A.; Lichtwark, G.A.; Schache, A.G.; Lin, Y.C.; Brown, N.A.; Pandy, M.G. In vivo behavior of the human soleus muscle with increasing walking and running speeds. J. Appl. Physiol. 2015, 118, 1266–1275. [Google Scholar] [CrossRef] [Green Version]
- Neptune, R.R.; Sasaki, K.; Kautz, S.A. The effect of walking speed on muscle function and mechanical energetics. Gait Posture 2008, 28, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregoire, L.; Veeger, H.; Huijing, P.; van Ingen Schenau, G. Role of mono-and biarticular muscles in explosive movements. Int. J. Sport. Med. 1984, 5, 301–305. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Mackay, M.; Schinkelshoek, D.; Huijing, P.; van Ingen Schenau, G. Biomechanical analysis of drop and countermovement jumps. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 54, 566–573. [Google Scholar] [CrossRef] [PubMed]
- van Ingen Schenau, G.v.; Bobbert, M.; Rozendal, R. The unique action of bi-articular muscles in complex movements. J. Anat. 1987, 155, 1. [Google Scholar]
- Cleland, J. On the actions of muscles passing over more than one joint. J. Anat. Physiol. 1867, 1, 85. [Google Scholar]
- Schenau, G.J.V.I. From rotation to translation: Constraints on multi-joint movements and the unique action of bi-articular muscles. Hum. Mov. Sci. 1989, 8, 301–337. [Google Scholar] [CrossRef]
- Biewener, A.A. Locomotion as an emergent property of muscle contractile dynamics. J. Exp. Biol. 2016, 219, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Carrier, D.R.; Gregersen, C.S.; Silverton, N.A. Dynamic gearing in running dogs. J. Exp. Biol. 1998, 201, 3185–3195. [Google Scholar] [CrossRef] [PubMed]
- Prilutsky, B.I.; Herzog, W.; Leonard, T. Transfer of mechanical energy between ankle and knee joints by gastrocnemius and plantaris muscles during cat locomotion. J. Biomech. 1996, 29, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Junius, K.; Moltedo, M.; Cherelle, P.; Rodriguez-Guerrero, C.; Vanderborght, B.; Lefeber, D. Biarticular elements as a contributor to energy efficiency: Biomechanical review and application in bio-inspired robotics. Bioinspiration Biomim. 2017, 12, 061001. [Google Scholar] [CrossRef]
- Zarrugh, M.; Todd, F.; Ralston, H. Optimization of energy expenditure during level walking. Eur. J. Appl. Physiol. Occup. Physiol. 1974, 33, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, G.; Kaneko, M. Mechanical work and efficiency in level walking and running. J. Physiol. 1977, 268, 467–481. [Google Scholar] [CrossRef]
- Browning, R.C.; Baker, E.A.; Herron, J.A.; Kram, R. Effects of obesity and sex on the energetic cost and preferred speed of walking. J. Appl. Physiol. 2006, 100, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Ralston, H.J. Energy-speed relation and optimal speed during level walking. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 1958, 17, 277–283. [Google Scholar] [CrossRef]
- Margaria, R.; Cerretelli, P.; Aghemo, P.; Sassi, G. Energy cost of running. J. Appl. Physiol. 1963, 18, 367–370. [Google Scholar] [CrossRef]
- Hreljac, A. Preferred and energetically optimal gait transition speeds in human locomotion. Med. Sci. Sport. Exerc. 1993, 25, 1158–1162. [Google Scholar] [CrossRef]
- Minetti, A.; Ardigo, L.; Saibene, F. The transition between walking and running in humans: Metabolic and mechanical aspects at different gradients. Acta Physiol. Scand. 1994, 150, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Noble, B.J.; Metz, K.F.; Pandolf, K.B.; Bell, C.W.; Cafarelli, E.; Sime, W.E. Perceived exertion during walking and running. II. Med. Sci. Sport. 1973, 5, 116–120. [Google Scholar] [CrossRef]
- Prilutsky, B.I.; Gregor, R.J. Swing-and support-related muscle actions differentially trigger human walk–run and run–walk transitions. J. Exp. Biol. 2001, 204, 2277–2287. [Google Scholar] [CrossRef] [PubMed]
- Stenum, J.; Choi, J.T. Neuromuscular effort predicts walk–run transition speed in normal and adapted human gaits. J. Exp. Biol. 2016, 219, 2809–2813. [Google Scholar] [CrossRef] [Green Version]
- McDonald, K.A.; Cusumano, J.P.; Hieronymi, A.; Rubenson, J. Humans trade off whole-body energy cost to avoid overburdening muscles while walking. Proc. R. Soc. B 2022, 289, 20221189. [Google Scholar] [CrossRef]
- Farris, D.J.; Sawicki, G.S. Human medial gastrocnemius force–velocity behavior shifts with locomotion speed and gait. Proc. Natl. Acad. Sci. USA 2012, 109, 977–982. [Google Scholar] [CrossRef] [Green Version]
- Biewener, A.A.; Roberts, T.J. Muscle and tendon contributions to force, work, and elastic energy savings: A comparative perspective. Exerc. Sport Sci. Rev. 2000, 28, 99–107. [Google Scholar]
- Neptune, R.R.; Sasaki, K. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. J. Exp. Biol. 2005, 208, 799–808. [Google Scholar] [CrossRef] [Green Version]
- de David, A.C.; Carpes, F.P.; Stefanyshyn, D. Effects of changing speed on knee and ankle joint load during walking and running. J. Sport. Sci. 2015, 33, 391–397. [Google Scholar] [CrossRef]
- Finni, T.; Komi, P.; Lukkariniemi, J. Achilles tendon loading during walking: Application of a novel optic fiber technique. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 77, 289–291. [Google Scholar] [CrossRef]
- Kharazi, M.; Bohm, S.; Theodorakis, C.; Mersmann, F.; Arampatzis, A. Quantifying mechanical loading and elastic strain energy of the human Achilles tendon during walking and running. Sci. Rep. 2021, 11, 5830. [Google Scholar] [CrossRef] [PubMed]
- Samson, M.M.; Crowe, A.; De Vreede, P.; Dessens, J.A.; Duursma, S.A.; Verhaar, H.J. Differences in gait parameters at a preferred walking speed in healthy subjects due to age, height and body weight. Aging Clin. Exp. Res. 2001, 13, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.T.; Hafer, J.F.; Wedge, R.D.; Boyer, K.A. Comparison of measurement protocols to estimate preferred walking speed between sites. Gait Posture 2020, 77, 171–174. [Google Scholar] [CrossRef]
- Thorstensson, A.; Roberthson, H. Adaptations to changing speed in human locomotion: Speed of transition between walking and running. Acta Physiol. Scand. 1987, 131, 211–214. [Google Scholar] [CrossRef]
- Dingwell, J.; Cusumano, J.P.; Cavanagh, P.; Sternad, D. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J. Biomech. Eng. 2001, 123, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Fellin, R.E.; Rose, W.C.; Royer, T.D.; Davis, I.S. Comparison of methods for kinematic identification of footstrike and toe-off during overground and treadmill running. J. Sci. Med. Sport 2010, 13, 646–650. [Google Scholar] [CrossRef] [Green Version]
- Alvim, F.; Cerqueira, L.; Netto, A.D.; Leite, G.; Muniz, A. Comparison of five kinematic-based identification methods of foot contact events during treadmill walking and running at different speeds. J. Appl. Biomech. 2015, 31, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Canny, J. A computational approach to edge detection. In Readings in Computer Vision; Elsevier: Amsterdam, The Netherlands, 1987; pp. 184–203. [Google Scholar]
- De Monte, G.; Arampatzis, A.; Stogiannari, C.; Karamanidis, K. In vivo motion transmission in the inactive gastrocnemius medialis muscle–tendon unit during ankle and knee joint rotation. J. Electromyogr. Kinesiol. 2006, 16, 413–422. [Google Scholar] [CrossRef]
- Lichtwark, G.A.; Wilson, A. In vivo mechanical properties of the human Achilles tendon during one-legged hopping. J. Exp. Biol. 2005, 208, 4715–4725. [Google Scholar] [CrossRef] [Green Version]
- Arampatzis, A.; Morey-Klapsing, G.; Karamanidis, K.; DeMonte, G.; Stafilidis, S.; Brüggemann, G.P. Differences between measured and resultant joint moments during isometric contractions at the ankle joint. J. Biomech. 2005, 38, 885–892. [Google Scholar] [CrossRef]
- Mademli, L.; Arampatzis, A.; Morey-Klapsing, G.; Brüggemann, G.P. Effect of ankle joint position and electrode placement on the estimation of the antagonistic moment during maximal plantarflexion. J. Electromyogr. Kinesiol. 2004, 14, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Maganaris, C.N.; Baltzopoulos, V.; Sargeant, A.J. Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: In vivo observations in man. J. Physiol. 1998, 510, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Arampatzis, A.; De Monte, G.; Karamanidis, K. Effect of joint rotation correction when measuring elongation of the gastrocnemius medialis tendon and aponeurosis. J. Electromyogr. Kinesiol. 2008, 18, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Schulze, F.; Mersmann, F.; Bohm, S.; Arampatzis, A. A wide number of trials is required to achieve acceptable reliability for measurement patellar tendon elongation in vivo. Gait Posture 2012, 35, 334–338. [Google Scholar] [CrossRef]
- Albracht, K.; Arampatzis, A.; Baltzopoulos, V. Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo. J. Biomech. 2008, 41, 2211–2218. [Google Scholar] [CrossRef]
- Buford, W.L.; Ivey, F.M.; Malone, J.D.; Patterson, R.M.; Pearce, G.; Nguyen, D.K.; Stewart, A.A. Muscle balance at the knee-moment arms for the normal knee and the ACL-minus knee. IEEE Trans. Rehabil. Eng. 1997, 5, 367–379. [Google Scholar] [CrossRef]
- Jacqmin-Gadda, H.; Sibillot, S.; Proust, C.; Molina, J.M.; Thiébaut, R. Robustness of the linear mixed model to misspecified error distribution. Comput. Stat. Data Anal. 2007, 51, 5142–5154. [Google Scholar] [CrossRef] [Green Version]
- Bobbert, M.F.; Huijing, P.A.; van Ingen Schenau, G.J. An estimation of power output and work done by the human triceps surae musle-tendon complex in jumping. J. Biomech. 1986, 19, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Mersmann, F.; Bohm, S.; Schroll, A.; Arampatzis, A. Validation of a simplified method for muscle volume assessment. J. Biomech. 2014, 47, 1348–1352. [Google Scholar] [CrossRef] [PubMed]
- Mersmann, F.; Bohm, S.; Schroll, A.; Boeth, H.; Duda, G.; Arampatzis, A. Muscle shape consistency and muscle volume prediction of thigh muscles. Scand. J. Med. Sci. Sport. 2015, 25, e208–e213. [Google Scholar] [CrossRef]
- Biewener, A.A.; Konieczynski, D.D.; Baudinette, R.V. In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies. J. Exp. Biol. 1998, 201, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Bohm, S.; Mersmann, F.; Santuz, A.; Schroll, A.; Arampatzis, A. Muscle-specific economy of force generation and efficiency of work production during human running. Elife 2021, 10, e67182. [Google Scholar] [CrossRef]
- Szaro, P.; Witkowski, G.; Śmigielski, R.; Krajewski, P.; Ciszek, B. Fascicles of the adult human Achilles tendon–an anatomical study. Ann. Anat. 2009, 191, 586–593. [Google Scholar] [CrossRef]
- Franz, J.R.; Slane, L.C.; Rasske, K.; Thelen, D.G. Non-uniform in vivo deformations of the human Achilles tendon during walking. Gait Posture 2015, 41, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Bojsen-Møller, J.; Schwartz, S.; Kalliokoski, K.K.; Finni, T.; Magnusson, S.P. Intermuscular force transmission between human plantarflexor muscles in vivo. J. Appl. Physiol. 2010, 109, 1608–1618. [Google Scholar] [CrossRef]
- Finni, T.; Cronin, N.; Mayfield, D.; Lichtwark, G.; Cresswell, A. Effects of muscle activation on shear between human soleus and gastrocnemius muscles. Scand. J. Med. Sci. Sport. 2017, 27, 26–34. [Google Scholar] [CrossRef]
- Huijing, P.A. Epimuscular myofascial force transmission: A historical review and implications for new research. International Society of Biomechanics Muybridge Award Lecture, Taipei, 2007. J. Biomech. 2009, 42, 9–21. [Google Scholar] [CrossRef]
- Kinugasa, R.; Oda, T.; Komatsu, T.; Edgerton, V.R.; Sinha, S. Interaponeurosis shear strain modulates behavior of myotendinous junction of the human triceps surae. Physiol. Rep. 2013, 1, e00147. [Google Scholar] [CrossRef] [PubMed]
- Maas, H.; Finni, T. Mechanical coupling between muscle-tendon units reduces peak stresses. Exerc. Sport Sci. Rev. 2018, 46, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.M.; Dick, T.J.; Wakeling, J.M. Structural and mechanical properties of the human Achilles tendon: Sex and strength effects. J. Biomech. 2015, 48, 3530–3533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obst, S.; Newsham-West, R.; Barrett, R. Changes in A chilles tendon mechanical properties following eccentric heel drop exercise are specific to the free tendon. Scand. J. Med. Sci. Sport. 2016, 26, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Ackermans, T.M.A.; Epro, G.; McCrum, C.; Oberländer, K.D.; Suhr, F.; Drost, M.R.; Meijer, K.; Karamanidis, K. Aging and the effects of a half marathon on Achilles tendon force–elongation relationship. Eur. J. Appl. Physiol. 2016, 116, 2281–2292. [Google Scholar] [CrossRef] [Green Version]
- Monte, A.; Tecchio, P.; Nardello, F.; Bachero-Mena, B.; Ardigò, L.P.; Zamparo, P. The interplay between gastrocnemius medialis force–length and force–velocity potentials, cumulative EMG activity and energy cost at speeds above and below the walk to run transition speed. Exp. Physiol. 2023, 108, 90–102. [Google Scholar] [CrossRef]
- Rubenson, J.; Pires, N.J.; Loi, H.O.; Pinniger, G.J.; Shannon, D.G. On the ascent: The soleus operating length is conserved to the ascending limb of the force–length curve across gait mechanics in humans. J. Exp. Biol. 2012, 215, 3539–3551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamard, R.; Aeles, J.; Kelp, N.Y.; Feigean, R.; Hug, F.; Dick, T.J. Does different activation between the medial and the lateral gastrocnemius during walking translate into different fascicle behavior? J. Exp. Biol. 2021, 224, jeb242626. [Google Scholar] [CrossRef]
- Hug, F.; Del Vecchio, A.; Avrillon, S.; Farina, D.; Tucker, K. Muscles from the same muscle group do not necessarily share common drive: Evidence from the human triceps surae. J. Appl. Physiol. 2021, 130, 342–354. [Google Scholar] [CrossRef]
Slow | Preferred | Transition | Maximum ) | |
---|---|---|---|---|
Stance time * | 863 ± 27 | 477 ± 09 | 363 ± 11 | |
Dorsiflexion time (ms) * | ||||
Plantar flexion time (ms) * | ||||
Swing time (ms) * | ||||
Step length * | ||||
Cadence (steps/s) * | ||||
Duty-factor * |
Slow | Preferred | Transition | Maximum ) | |
---|---|---|---|---|
AT strain (%) * | 0.3 | |||
AT force * | ||||
AT lever arm * | ||||
ATF moment * | ||||
Ankle ROM dorsiflexion * | ||||
Ankle ROM plantar flexion * |
Slow | Preferred | Transition | Maximum ) | |
---|---|---|---|---|
ATF work dorsiflexion * | ± 1.3 | ± 1.2 | ± 0.7 | |
ATF work plantar flexion * | ||||
ATF work net * | ||||
AT energy (stored/recoiled, J) * | ||||
Sol EMG * | ||||
GM EMG * | ||||
TA * |
Slow | Preferred | Transition | Maximum ) | ||
---|---|---|---|---|---|
Sol work Ankle | Negative (J) * | ||||
Positive * | |||||
* | |||||
Gastro work Ankle | Negative (J) * | ||||
Positive * | |||||
* | |||||
Gastro work Knee | Negative (J) * | ||||
Positive * | |||||
* | |||||
Gastro MTU work | Negative (J) | ||||
Positive (J) | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharazi, M.; Theodorakis, C.; Mersmann, F.; Bohm, S.; Arampatzis, A. Contractile Work of the Soleus and Biarticular Mechanisms of the Gastrocnemii Muscles Increase the Net Ankle Mechanical Work at High Walking Speeds. Biology 2023, 12, 872. https://doi.org/10.3390/biology12060872
Kharazi M, Theodorakis C, Mersmann F, Bohm S, Arampatzis A. Contractile Work of the Soleus and Biarticular Mechanisms of the Gastrocnemii Muscles Increase the Net Ankle Mechanical Work at High Walking Speeds. Biology. 2023; 12(6):872. https://doi.org/10.3390/biology12060872
Chicago/Turabian StyleKharazi, Mohamadreza, Christos Theodorakis, Falk Mersmann, Sebastian Bohm, and Adamantios Arampatzis. 2023. "Contractile Work of the Soleus and Biarticular Mechanisms of the Gastrocnemii Muscles Increase the Net Ankle Mechanical Work at High Walking Speeds" Biology 12, no. 6: 872. https://doi.org/10.3390/biology12060872
APA StyleKharazi, M., Theodorakis, C., Mersmann, F., Bohm, S., & Arampatzis, A. (2023). Contractile Work of the Soleus and Biarticular Mechanisms of the Gastrocnemii Muscles Increase the Net Ankle Mechanical Work at High Walking Speeds. Biology, 12(6), 872. https://doi.org/10.3390/biology12060872