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Abstract: Using the skeletal structure and muscle distribution of the hind limbs of a jumping kangaroo
as inspiration, a bionic jumping leg was designed with pneumatic artificial muscles (PAMs) as
actuators. Referring to the position of biarticular muscles in kangaroos, we constructed a bionic joint
using biarticular and monoarticular muscle arrangements. At the same time, the problem of the
joint rotation angle limitations caused by PAM shrinkage was solved, and the range of motion of the
bionic joint was improved. Based on the output force model of the PAM, we established a dynamic
model of the bionic leg using the Lagrange method. In view of the coupling problem caused by the
arrangement of the biarticular muscle, an extended state observer was used for decoupling. The
system was decoupled into two single-input and single-output systems, and angle tracking control
was carried out using active disturbance rejection control (ADRC). The simulation and experimental
results showed that the ADRC algorithm had a better decoupling effect and shorter adjustment time
than PID control. The jumping experiments showed that the bionic leg could jump with a horizontal
displacement of 320 mm and a vertical displacement of 150 mm.

Keywords: bionic leg jumping; active disturbance rejection control; position control; decoupling
control

1. Introduction

Jumping allows creatures to cross obstacles several times higher than themselves and
avoid risks [1]. Developing a robotic system that can simulate biological structures and
functions and extend the motion of traditional robots is an important research goal. Based
on an understanding of biological hopping mechanisms, bionic jumping robots simulate the
efficient and stable biological hopping process using bionic design principles and improve
the hopping ability of robots [2].

Traditional bionic hopping robots adopt motor, hydraulic, pneumatic, and other driv-
ing methods [3–6]. Pneumatic artificial muscles were invented by the American doctor
Joseph L. McKibben in the 1950s to assist patients with hand paralysis. Their working prin-
ciple is very simple: the circumferential stress of a pressurized inner tube is transformed
into an axial contraction force by means of a double-helix braided sheath whose geometry
corresponds to a network of identical pantographs [7]. Pneumatic artificial muscles change
their shape from a given equilibrium position to another equilibrium position under con-
tinuous stimulation, just like natural muscle tissue under chemical or electrical stimulation.
This phenomenon, which is consistent with Katchalsky’s theory [8] that the first tendency
of the material to expand is counterbalanced by retractile forces, distinguishes them from
other pneumatic actuators, such as fluid cylinders, because at a constant pressure, the
cylinder moves until it comes to a stop, although friction slows it down. Because of this
special working principle, their advantages over conventional actuators such as motors
and pneumatic pistons stand out:
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• High power/weight ratio: the power/weight ratio of pneumatic McKibben artificial
muscles can be 500 W/kg~2 kW/kg, which surpasses the ratio of electric motors that
is in the order of 100 W/Kg [9].

• Flexibility and compliance: non-pressurized PAMs show the same flexibility as a
bladder but become rigid and maintain reasonable flexibility when pressurized.

• Safety and environmental protection: the main driving mechanism of pneumatic
artificial muscles is pressurized air or inert gas. Therefore, compared with other
electrical, thermal, or chemical equipment, they are safer and more environmentally
friendly [10].

The above advantages of pneumatic artificial muscles have gradually been applied to
bionic jumping robots and bionic joints. The bionic hopping robots driven by pneumatic
artificial muscles that have been developed in the past decade are shown in Table 1. Bionic
robots mainly adopt a monoarticular muscle arrangement. A leopard-like jumping robot
adopted a lever arrangement of pneumatic artificial muscles acting directly on its joints [11].
Andrikopoulos [12] attached pneumatic artificial muscles to joint pulleys by wire to form
bionic joints and conducted joint position control analysis. Since the maximum contraction
rate of pneumatic artificial muscles is between 25% and 30%, the motion range of a single-
degree-of-freedom joint of pneumatic muscle and the jumping performance of bionic robots
are limited. Monoarticular muscles are muscles that act on a single joint, meaning that their
contraction only affects the movement of one joint; biarticular muscles span two joints,
affecting both joints when the muscle contracts [13]. Jun [14] attached pneumatic artificial
muscles to double joints using a slider–crank structure to design a frog-like jumping
robot with improved jumping performance. Yamamoto [15] developed a single-push
hopping robot that imitated the human musculoskeletal system. The knee joint and hip
joint comprised an antagonistic monoarticular muscle arrangement and biarticular muscle
arrangement, respectively.

Table 1. Bionic jumping robots driven by pneumatic artificial muscles.

Name Mass Bionic
Prototype

Jumping
Height Highlights

Musculoskeletal
quadruped robot [16] 6.0 kg Quadruped

mammals 0.254 m
Torque-Angle

Relationship Control
System

One-Legged Jumping
Robot [17] 9.3 kg Human 0.1 m Antagonistic, multi-joint

muscles

Athlete Robot [18] 10 kg Human 0.5 m Stiffness planning and
soft landing

Mowgli [13] 3 kg Human 0.4 m Soft landing

Scholars have conducted several studies on the position control of PAM-driven bionic
joints. Hao [19] used active disturbance rejection control to determine the angle of antago-
nistic pneumatic artificial muscle joints. Compared with PID control, the steady-state error
was reduced by 83% and the response time was reduced by 29%. Ugurlu et al. [20,21] used
the dissipation theory to design a stable force feedback controller for each PAM unit that
could cope with the inherent nonlinearity of PAMs. They used an antagonistic arrangement
of PAMs to form joints, incorporating force control of the PAMs and complete tracking
control of the joint position. Zhang [22] simplified the pneumatic artificial muscle output
force model into a three-element model and used the Kalman filter to actively compensate
for the errors in the model. The single-degree-of-freedom platform experiment verified
that compared with nonlinear PID control, the tracking error was reduced by more than
96%. Zhu [23] used a neural network compensation PID control algorithm to control the
position and stiffness of bionic quadruped robot joints and obtained good position-control
results under finite stiffness.
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Research into the construction of a single bionic joint and the control of its position
using antagonism has yielded good results. However, the fact that PAM shrinkage limits
the range of bionic joint rotation remains a problem. Using the skeletal structure and
muscle distribution of the hind limb of a jumping kangaroo as a reference, we designed a
bionic jumping leg incorporating PAMs as actuators. Considering the limitation of PAM
contraction rates, the bionic leg was constructed with a biarticular muscle arrangement and
a monoarticular muscle arrangement to improve its joint motion range. The dynamic model
of the bionic leg was constructed using the Lagrange method. Considering the problem of
joint angle coupling caused by the biarticular muscle of the bionic leg, an extended state
observer was used for decoupling, and a decoupling controller based on active disturbance
rejection was designed to control the joint angle of the two-degrees-of-freedom bionic
leg. We verified the performance of the algorithm using a simulation and experiment; we
conducted the jump experiment to investigate the joint angle change based on centroid
trajectory planning.

2. Design of Bionic Leg Driven by Pneumatic Artificial Muscles
2.1. Physiological Structure and Muscle Distribution of Kangaroos

Kangaroos move at high speeds by using their hind legs to jump instead of run,
demonstrating the strongest jumping performance of any mammal. Adult kangaroos can
jump up to 2 m at a low speed, and at a high speed they can jump a horizontal distance of up
to 6~7 m, with a jump speed of up to 60 km/h and a vertical jump height of up to 4 m. The
jumping power of a kangaroo is mainly provided by the hind limbs. By dissecting 52 adult
kangaroos, Hopwood [24] found that the thigh length accounted for 23% of the total length
of the leg, the calf length accounted for 46%, and the foot accounted for 31%. The main
muscles of the hind limbs of a kangaroo are shown in Figure 1 [25,26]. The hip extensors
include the biceps femoris (BF), the femorococcygeus (FC), and the semitendinosus (ST);
the knee extensor muscles include the vastus lateralis (VL), the rectus femoris (RF), and the
sartorius (SAR); and the ankle extensor muscles include the medial and lateral heads of the
gastrocnemius (GAS), the plantaris (PL), and the flexor digitorum longus (FDL).
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Figure 1. Schematic drawing of the left hind limb of a kangaroo [27].

2.2. Structure Design

We referred to the skeletal structure and muscle distribution of a kangaroo, specifically
the location of the gastrocnemius muscle, to determine the location of the antagonistic pneu-
matic artificial muscles. The two-degree-of-freedom bionic leg driven by monoarticular
and biarticular muscles is shown in Figure 2. It contains two rotating joints, the knee joint
and the ankle joint, with a sensor fixed on each, and two PAMs. PAM 1, a monoarticular
muscle, is articulated with the bionic leg and the knee joint. PAM 2, a biarticular muscle, is
articulated with the knee joint and the ankle joint.
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Figure 2. Bionic leg driven by biarticular PAM and monoarticular PAM.

2.3. Analysis of Bionic Leg Joint

A sketch of the bionic legs driven by PAMs is shown in Figure 3: ls is the length
of the tibial connecting rod; lki and lai represent the distance between the joints and the
PAMs; lp1 and lp2 represent the total length of the pneumatic muscles and connectors; and
θ1 and θ2 represent the angles of the knee and ankle, respectively.
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As shown in Figure 3a, the bionic leg incorporated a mixed driving arrangement of
monoarticular and biarticular muscles. According to the geometric relationship, the angle
of the knee joint and ankle joint is:

θ1 = arccos

(
l2
k1 + l2

k3 − l2
p1

2lk1lk3

)
(1)

θ2 = arccos

 (ls + lk2 cos θ1)
(

l2
x + l2

a2 − l2
p2

)
2l2

xla2
−

lk2 sin θ1

√(
2l2

a2 + 2l2
p2 − l2

x

)
l2
x −

(
l2
a2 − l2

p2

)2

2l2
xla2

 (2)

where lx =
√

l2
k2 + l2

s + 2lk2ls cos θ1.
For comparison, both joints were constructed with the same parameters, and the

pneumatic artificial muscle was arranged in a single joint. The mechanism diagram is
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shown in Figure 3b. The knee angle was the same as in Equation (1), and the ankle joint
angle was:

θ21 = arccos

(
l2
s + l2

a2 − l2
k2 − l2

p2

2lsla2

)
(3)

The parameters of the bionic legs are shown in Table 2. Substituting the parameters
into Equations (1)–(3), the variation range of the knee and ankle joint angles can be obtained.
The bionic leg with only the monoarticular PAM had a knee joint range of 97.6◦~129◦ and
an ankle joint range of 70.3◦~123.4◦. The bionic leg with the biarticular PAMs had a knee
joint range of 97.6◦~129◦ and an ankle joint range of 30.5◦~123.4◦. Compared with the
single-joint bionic leg, the ankle joint motion range increased by 39.8◦.

Table 2. Parameters and muscle length range of bionic leg.

Parameter Value Parameter Value

lk1/mm 64 la2/mm 55
lk2/mm 55 lp1/mm 277~307
lk3/mm 263 lp2/mm 380~433
ls/mm 438

3. Biomimetic Leg Dynamics
3.1. Force Model of Pneumatic Artificial Muscle

The mechanical properties of a PAM are very similar to those of a biological muscle,
with the characteristics of nonlinearity and hysteresis. The authors of [28] proposed a static
mechanical model of a PAM:

F(ε, p) = k1(p)− k2(p)ε + k3(p) exp(−µε) (4)

where F(ε, p) is the tension generated by PAM contraction; ki(p) is the undetermined
pressure function; ki(p) = ki1 + ki2 p, ki1, and ki2 are the fitting parameters; ε is the PAM
contraction rate; ε = L0−L

L0
, L0 is the original length of the PAM; L is the actual length of

the PAM contraction; and µ is the nonlinear attenuation coefficient of shrinkage.
In this paper, we used this method to establish the dynamic model of a bionic leg with

double-joint PAMs.

3.2. Dynamics of Bionic Leg

The force analysis of the bionic legs is shown in Figure 4. The joint connecting rod
rotates around the rotation center under the combined action of the PAM output forces
Fp1 and Fp2 and the spring force Fspr. The knee joint torque and ankle joint torque are
calculated as follows: {

τk = Fp1r1 − Fp2r2

τa = Fp2r3 − Fsprr4
(5)

The Lagrange method was used to model the dynamics of the bionic legs with two
joints, ignoring the influence of pneumatic artificial muscle contraction on the centroid of
the connecting rod:

M(θ)
..
θ + C(θ,

.
θ) + G(θ) = τ (6)

where, θ,
.
θ, and

..
θ are the angle, angular velocity, and angular acceleration of the joints,

respectively; M(θ) is the inertia matrix; C
(

θ,
.
θ
)

is the centrifugal force and Coriolis force;
G(θ) is the gravity term; and τ is the torque of the ankle joint and knee joint.

M(θ) =

[
(m1 + m2)l12 + m1l22 + 2m2l1l2 cos(θ2) m2l22 + m2l1l2 cos(θ2)

m2l22 + m2l1l2 cos(θ2) m2l2(l1 + l2) cos(θ2)

]
(7)
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C(θ,
.
θ) =

[
C1
C2

]
=

 −m2l12 sin(θ2)
.
θ2

2 − 2m2l12 sin(θ2)
.
θ1

.
θ2

m2l12 sin(θ2)
.
θ1

2

 (8)

G(θ) =

[
G1
G2

]
=

[
(m1 + m2)gl1 cos(θ1) + m2gl2 cos(θ1 + θ2)

m2gl2 cos(θ1 + θ2)

]
(9)

The equation can be rewritten as follows:

..
θ = −M−1(θ)C(θ,

.
θ)−M−1(θ)G(θ) + M−1τ (10)

The relationship between the bionic leg joint angle and the pneumatic muscle force is
as follows:

..
θ = −M−1(θ)(

[
C1
C2

]
−
[

G1
G2

]
+

[
0

Fsprr4

]
+

[
r1 r2
0 r3

][
Fp1
Fp2

]
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4. Simulation of Joint Position Control with ADRC

Active disturbance rejection control does not depend on the control object model, and
it performs real-time estimation and compensation for internal and external disturbances
during system operation, demonstrating robustness and dynamism. The active disturbance
rejection control algorithm consists of a tracking differentiator (TD), an extended state
observer (ESO), and a nonlinear state error feedback (NLSEF) controller [29].

4.1. Joint Position Control of Bionic Leg

The position control system of the bi-joint bionic leg with ADRC is shown in Figure 5.
In the ADRC process, the part outside the system control input is regarded as the “dy-
namic coupling” section, and the model error and external disturbances are regarded as
system disturbances. Real-time observation and compensation are carried out through the
extended state observer, so that the bionic leg joint coupling system is transformed into
two independent joint control systems.

When yi = θi and ui = pi, according to Formula (4) and Formula (11), the relationship
between the joint angle and air pressure can be written as follows:{ ..

y1(t) = p1
[
y1(t).

.
y1(t), y2(t),

.
y2(t), u2

]
+ w1 + b1u1

..
y2(t) = p2

[
y1(t).

.
y1(t), y2(t),

.
y2(t)

]
+ w2 + b2u2

(12)

where bi is the gain coefficient for control, p(∗) is the nonlinear functions of the system
states and the coupling term, wi is the external disturbances in the loop, ui is the input of
the system, and yi is the output of the system.
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Figure 5. Schematic diagram of the position control of the bionic leg with ADRC.

Taking the amount other than the system loop input as the total disturbance of the
system, Equation (12) can be rewritten as:{ ..

y1 = f1 + b1u1
..
y2 = f2 + b2u2

(13)

We considered loop i in Formula (13) and designed an active disturbance rejection
controller.

The tracking differentiator (TD) was constructed by setting the value as the input:
f h = f han(v1,i − vi, v2,i, r0,i, hi)

v1,i = v1,i + hiv2,i

v2,i = v2,i + h f h

(14)

According to the output signal, the extended state observer (ESO) was constructed to
track and estimate the internal state and disturbance of the system in real time:

e = z1,i − yi, f e = f al(e, 0.5, δ), f e1 = f al(e, 0.25, δ)

z1,i = z1,i + hi(z2,i − β01,ie)

z2,i = z2,i + hi(z3,i − β02,i f e + b0,iui)

z3,i = z3,i + hi(−β03,i f e1)

(15)

When the performance of the extended state observer is sufficient, z1,i, z2,i, and z3,i
can effectively estimate the state variables of the system, xi,i, x2,i, and x3,i, and the nonlinear
state error feedback (NLSEF) is used for the feedback control of the system:

e1 = v1,i − z1,i, e2 = v2,i − z2,i

u0 = f han(e1, ce2, r, h1,i)

u = u0−z3
b0,i

(16)

where, c, r, h1,i is the controller gain and b0,i is the compensation factor.
The function expressions f han(x1, x2, r, h) and f al(e, α, δ) are as follows:

f al(e, α, δ) =

 |a|αsign(e), |e|> δ

e
δ1−α ,

∣∣∣e∣∣∣≤ δ
(17)
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f han(x1, x2, r, h)



d = rh

d0 = hd

y = x1 + hx2

a1 =
√

d2 + 8r|y|

a =

 x2 +
a0−d

2 sign(y),
∣∣∣y∣∣∣> d0

x2 +
y
h ,
∣∣y∣∣≤ d0

f han = −
{

rsign(a), |a|> d

r a
d ,
∣∣a∣∣≤ d

(18)

4.2. Position Control Simulation of the Bionic Leg

The centroid of the bionic leg needs a certain initial velocity at the moment of departure
for the leg to take off and reach a certain jump height. We interpolated the centroid
motion trajectory of the bionic jumping robot in the takeoff stage using a variable quintic
polynomial [30]. The joint angle was kept unchanged after leaving the ground. The
corresponding joint angle variation curve was obtained from the relationship between the
joint and the centroid.

A 3D model of the bionic leg was established in ADAMS software, and the controller
was built using Simulink to simulate the tracking and control of the knee and ankle
joint angles. The ADAMS–MATLAB co-simulation model was constructed using the co-
simulation plug-in and is shown in Figure 6. ADRC and PID control were used to track the
angle of the bionic leg joint, and the effects of the two control algorithms were studied.
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4.2. Position Control Simulation of the Bionic Leg 
The centroid of the bionic leg needs a certain initial velocity at the moment of depar-

ture for the leg to take off and reach a certain jump height. We interpolated the centroid 
motion trajectory of the bionic jumping robot in the takeoff stage using a variable quintic 
polynomial [30]. The joint angle was kept unchanged after leaving the ground. The corre-
sponding joint angle variation curve was obtained from the relationship between the joint 
and the centroid. 

A 3D model of the bionic leg was established in ADAMS software, and the controller 
was built using Simulink to simulate the tracking and control of the knee and ankle joint 
angles. The ADAMS–MATLAB co-simulation model was constructed using the co-simu-
lation plug-in and is shown in Figure 6. ADRC and PID control were used to track the 
angle of the bionic leg joint, and the effects of the two control algorithms were studied. 

control system
ADAMS simulation 
plug-in module in 

simulink

3D model of bionic 
leg in ADAMS

 
Figure 6. ADAMS–MATLAB co-simulation model. Figure 6. ADAMS–MATLAB co-simulation model.

The simulation results are shown in Figures 7 and 8. Figure 7 presents the joint position
tracking simulation results of the ADRC decoupling control algorithm and the PID control
algorithm. Figure 8 presents the joint position error of the two control algorithms.

The simulation results show that ADRC and PID control are highly effective for double-
joint angle control. The control accuracy of the ADRC decoupling control algorithm for
the knee joint and ankle joint was 0.10◦ and 0.38◦ and the control accuracy of PID control
for the knee joint and ankle joint was 0.51◦ and 1.37◦, respectively. The ADRC decoupling
algorithm had a better decoupling effect.
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Figure 7. Simulation results of joint angle tracking control.
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Figure 8. Joint angle tracking error.

5. Experiment
5.1. Experimental System

The experimental system is shown in Figure 9. The experimental system included
an air compressor; a mist separator regulator (AWM20-02BCG); a proportional pressure
regulator (Festo VPPM-10L-L-1-G18-0L10H); a biarticular bionic leg model driven by
PAMs (Festo pneumatic artificial muscles with lengths of 280 mm and 160 mm); and a
multifunctional I/O device (NI USB-6212). The bionic leg was composed of 3D-printing
resin and a carbon-fiber tube. The controller was designed using MATLAB/Simulink. The
multifunctional I/O device collected the voltage signal of the angle sensor in real time, and
the proportional pressure regulator controlled the output pressure of the PAMs.
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Figure 9. Bionic leg experimental platform.

5.2. Position Control Experiment for Biarticular Bionic Leg

The joint angle tracking control experiment was conducted according to the joint tra-
jectory planning curve. The experimental results are shown in Figures 10 and 11. Figure 10
presents the experimental results of the bionic leg joint position trajectory tracking, and
Figure 11 presents the position tracking error of the bionic leg joint.
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Figure 10. Experimental results of bionic leg joint angle control.
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Figure 11. Experimental error of bionic leg joint angle control.
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As can be seen from the angle tracking experiment, due to the equipment responses
and the hysteresis and creep of the pneumatic artificial muscles, the tracking performance
had a certain degree of error, and the above problems were not considered in the simulation.
There was a strong tremor when switching from the take-off phase to a constant joint angle.
The maximum error amplitudes of the knee joint and ankle joint angles with ADRC were
2.64◦ and 12.46◦. The maximum tracking errors of the PID control algorithm for the knee
joint and ankle joint angles were 5.14◦ and 20.23◦. The stability time for ADRC was 0.544 s,
and the stability time for the PID control algorithm was 0.83 s. The experimental results
show that the ADRC decoupling control of the double-joint bionic leg position was faster
and more effective than the PID control algorithm.

5.3. Bionic Leg Jumping Experiment

The jumping experiment results for joint angle control using ADRC are shown in
Figure 12. Figure 12a displays the initial state of the bionic leg; in Figure 12b, the bionic leg
joints move according to the planned trajectory; in Figure 12c, the centroid of the bionic leg
reaches the maximum speed for completion of the departure, and the joint angle remains
unchanged; in Figure 12d, the bionic leg reaches the highest position, and the maximum
displacement in the vertical direction is 150 mm; in Figure 12e, the bionic leg begins to fall
freely; and in Figure 12f, the foot of the bionic leg reaches the ground, and the horizontal
displacement is 320 mm.
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6. Discussion and Conclusions

In order to meet the requirements of agility, adaptability, and operability for jumping
robots, researchers seek inspiration from animal mechanisms, imitating biological structures
and actions. As an actuator with a bio-like muscle contraction process, a pneumatic artificial
muscle can easily imitate biological mechanisms. The high power/mass ratio of pneumatic
artificial muscles cannot be ignored. Compared with bionic legs driven by other actuators,
bionic jumping legs driven by pneumatic artificial muscles can theoretically achieve a
higher energy density and lighter weight. The rubber endobiliary of pneumatic artificial
muscles ensures that the bionic leg has a certain degree of flexibility and impact resistance
similar to that of a biological tendon to alleviate the landing. Furthermore, the safety of the
gas required for pneumatic artificial muscles has certain advantages for applications in com-
plex environments (battlefield reconnaissance, archaeological exploration, anti-terrorism
operations, etc.) and human–computer interaction scenarios. However, the nonlinearity,
creep, and hysteresis of pneumatic artificial muscles make their application challenging.
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In this paper, inspired by the hind limbs of a jumping kangaroo, pneumatic artificial
muscles were used as actuators in the design of a bionic jumping leg. The pneumatic
artificial muscles were arranged according to the location of the gastrocnemius muscle
in the kangaroo, and the range of ankle joint angle motion was improved by using the
characteristics of double-joint muscles (transferring part of the motion to the next joint).

With the goal of coupling the bionic joints using double-joint muscles, we reduced the
coupling term to the total disturbance by applying an extended state observation, so that
the system was decoupled into two single-input and single-output systems, and carried
out position control based on active disturbance rejection. The simulation and experiment
showed that the decoupling control method based on ADRC was more effective and had a
shorter adjustment time than PID control. In the experiment, the control effects decreased
as a result of the hysteresis and creep effects of the pneumatic artificial muscles. We
generated a jump curve using quintic variable interpolation polynomial programming.
Under the control of the mechanism, the horizontal jump was 320 mm and the vertical
jump was 150 mm.
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