Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = bendiocarb

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1997 KiB  
Article
Insecticide Resistance Status of Aedes aegypti Adults and Larvae in Nouakchott, Mauritania
by Mohamed Haidy Massa, Mohamed Aly Ould Lemrabott, Nicolas Gomez, Ali Ould Mohamed Salem Boukhary and Sébastien Briolant
Insects 2025, 16(3), 288; https://doi.org/10.3390/insects16030288 - 11 Mar 2025
Cited by 1 | Viewed by 1343
Abstract
Aedes aegypti mosquitoes are established throughout Nouakchott, Mauritania, where its insecticide resistance status is unknown and dengue has become endemo-epidemic since 2014. Eggs were collected using ovitraps at 12 sites in five districts of Nouakchott, in August 2024. Adult females and larvae of [...] Read more.
Aedes aegypti mosquitoes are established throughout Nouakchott, Mauritania, where its insecticide resistance status is unknown and dengue has become endemo-epidemic since 2014. Eggs were collected using ovitraps at 12 sites in five districts of Nouakchott, in August 2024. Adult females and larvae of the F1 generation were used for bioassays. Permethrin, deltamethrin, bendiocarb, and malathion were evaluated at discriminating concentrations. Larval assays were carried out at seven concentrations with Bacillus thuriengensis var israelensis (Bti) and temephos. The presence of knockdown resistance (kdr) mutations known to be associated with pyrethroid resistance was assessed by polymerase chain reaction and amplicons sequencing. Adults showed high levels of resistance to all insecticides tested. Larvae were susceptible to Bti (LD50 < 50 µg/L) and temephos (LD50% = 6.8 ± 0.7 µg/L). Only three kdr point mutations, S989P, V1016G, and F1534C, were found. The tri-locus genotypes SP/VG/FC were significantly associated with pyrethroid survival while only the tri-locus genotypes PP/GG/FF showed significant association with deltamethrin resistance. Given their level of insecticide resistance, there is an urgent need to control Ae. aegypti populations by several methods, including the use of biological larvicides, physical elimination of peridomestic breeding sites, water drainage, and public education to prevent arbovirus transmission. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 3822 KiB  
Article
Cross-Resistance to Pyrethroids and Neonicotinoids in Malaria Vectors from Vegetable Farms in the Northern Benin
by Massioudou Koto Yérima Gounou Boukari, Innocent Djègbè, Ghislain T. Tepa-Yotto, Donald Hessou-Djossou, Genevieve Tchigossou, Eric Tossou, Michel Lontsi-Demano, Danahé Adanzounon, Adam Gbankoto, Luc Djogbénou and Rousseau Djouaka
Trop. Med. Infect. Dis. 2024, 9(12), 305; https://doi.org/10.3390/tropicalmed9120305 - 12 Dec 2024
Viewed by 1290
Abstract
Agricultural pesticides may play a crucial role in the selection of resistance in field populations of mosquito vectors. This study aimed to determine the susceptibility level of An. gambiae s.l. to pyrethroids and neonicotinoids in vegetable farms in northern Benin, in West Africa, [...] Read more.
Agricultural pesticides may play a crucial role in the selection of resistance in field populations of mosquito vectors. This study aimed to determine the susceptibility level of An. gambiae s.l. to pyrethroids and neonicotinoids in vegetable farms in northern Benin, in West Africa, and the underlying insecticide resistance mechanisms. A survey on agricultural practices was carried out on 85 market gardeners chosen randomly in Malanville and Parakou. Anopheles gambiae s.l. larvae were collected, reared to adult stages, and identified to species level. Susceptibility was tested with impregnated papers (WHO bioassays) or CDC bottles according to the insecticides. Synergists (PBO, DEM, and DEF) were used to screen resistance mechanisms. Allelic frequencies of the kdr (L1014F), kdr (L1014S), N1575Y, and ace-1R G119S mutations were determined in mosquitoes using Taqman PCR. Fertilizers and pesticides were the agrochemicals most used with a rate of 97.78% and 100%, respectively, in Malanville and Parakou. Anopheles coluzzii was the predominant species in Malanville, while An. gambiae was the only species found in Parakou. Bioassays revealed a high resistance of An. gambiae s.l. to pyrethroids and DDT, while a susceptibility to bendiocarb, pyrimiphos-methyl, malathion, and clothianidin was recorded. Resistance to acetamiprid was suspected in mosquitoes from both localities. A lower resistance level was observed when mosquitoes were pre-treated with synergists, then exposed to insecticides. The kdr L1014F mutation was observed in both locations at moderate frequencies (0.50 in Malanville and 0.55 in Parakou). The allelic frequencies of N1575Y and G119S were low in both study sites. This study confirmed the resistance of An. gambiae s.l. to insecticides used in agriculture and public health. It reveals a susceptibility of vectors to bendiocarb, pyrimiphos-methyl, malathion, and clothianidin, thus indicating that these insecticides can be used as an alternative in Benin to control malaria vectors. Full article
Show Figures

Figure 1

13 pages, 1313 KiB  
Article
Insecticide Resistance and Target-Site Mutations kdr, N1575Y, and Ace-1 in Anopheles gambiae s.l. Populations in a Low-Malaria-Transmission Zone in the Sudanian Region of Senegal
by Assiyatou Gueye, El Hadji Malick Ngom, Baye Bado Ndoye, Mamadou Lamine Dione, Babacar Diouf, El Hadji Ndiaye, Faty Amadou Sy, Marième Guèye, Makhtar Niang, Diawo Diallo, Mawlouth Diallo and Ibrahima Dia
Genes 2024, 15(10), 1331; https://doi.org/10.3390/genes15101331 - 16 Oct 2024
Viewed by 1609
Abstract
Background/Objectives: Significant progress in malaria control has been achieved through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), raising hopes for malaria elimination. However, emerging insecticide resistance threatens these gains. This study assessed the susceptibility of Anopheles gambiae s.l. populations to public health [...] Read more.
Background/Objectives: Significant progress in malaria control has been achieved through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), raising hopes for malaria elimination. However, emerging insecticide resistance threatens these gains. This study assessed the susceptibility of Anopheles gambiae s.l. populations to public health insecticides, examined the frequencies of kdr, Ace-1, and N1575Y mutations, and explored their associations with phenotypic resistance in Dielmo and Ndiop, Senegal. Methods: Anopheles larvae collected between September and December 2022 were reared to adulthood. Adult mosquitoes were exposed to discriminating concentrations of various insecticides following WHO guidelines. Knockdown times (KDT50 and KDT95) for pyrethroids were calculated using the Probit model. RT-qPCR detected target-site mutations (kdr: L1014F and L1014S, Ace-1, N1575Y) and assessed correlations with phenotypic resistance. Species-specific PCR identified species within the An. gambiae complex. Results/Conclusions: The populations of Dielmo and Ndiop showed susceptibility to pirimiphos-methyl and bendiocarb, with no Ace-1 mutation detected. Resistance to DDT and pyrethroids was observed. The knockdown times indicated that alphacypermethrin and lambdacyhalothrin were more effective than permethrin and deltamethrin. The L1014F allele was widespread, while L1014S was absent in Ndiop and low in Dielmo. The N1575Y mutation occurred only in populations with L1014F. The L1014S mutation was significantly associated with resistance to lambdacyhalothrin in both villages and to deltamethrin in Ndiop. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

22 pages, 24990 KiB  
Article
Functional Validation of Endogenous Redox Partner Cytochrome P450 Reductase Reveals the Key P450s CYP6P9a/-b as Broad Substrate Metabolizers Conferring Cross-Resistance to Different Insecticide Classes in Anopheles funestus
by Sulaiman S. Ibrahim, Mersimine F. M. Kouamo, Abdullahi Muhammad, Helen Irving, Jacob M. Riveron, Magellan Tchouakui and Charles S. Wondji
Int. J. Mol. Sci. 2024, 25(15), 8092; https://doi.org/10.3390/ijms25158092 - 25 Jul 2024
Cited by 3 | Viewed by 1704
Abstract
The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus [...] Read more.
The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

11 pages, 1236 KiB  
Brief Report
Insecticide Resistance in Aedes aegypti Mosquitoes: Possible Detection of kdr F1534C, S989P, and V1016G Triple Mutation in Benin, West Africa
by Tatchémè Filémon Tokponnon, Razaki Ossè, Sare Dabou Zoulkifilou, Gbenouga Amos, Houessinon Festus, Gounou Idayath, Aboubakar Sidick, Louisa A. Messenger and Martin Akogbeto
Insects 2024, 15(4), 295; https://doi.org/10.3390/insects15040295 - 22 Apr 2024
Cited by 6 | Viewed by 4020
Abstract
Epidemics of arboviruses in general, and dengue fever in particular, are an increasing threat in areas where Aedes (Ae.) aegypti is present. The effectiveness of chemical control of Ae. aegypti is jeopardized by the increasing frequency of insecticide resistance. The aim of this [...] Read more.
Epidemics of arboviruses in general, and dengue fever in particular, are an increasing threat in areas where Aedes (Ae.) aegypti is present. The effectiveness of chemical control of Ae. aegypti is jeopardized by the increasing frequency of insecticide resistance. The aim of this study was to determine the susceptibility status of Ae. aegypti to public health insecticides and assess the underlying mechanisms driving insecticide resistance. Ae. aegypti eggs were collected in two study sites in the vicinity of houses for two weeks using gravid Aedes traps (GATs). After rearing the mosquitoes to adulthood, female Ae. aegypti were exposed to diagnostic doses of permethrin, deltamethrin and bendiocarb, using Centers for Disease Control and Prevention (CDC) bottle bioassays. Unexposed, un-engorged female Ae. aegypti were tested individually for mixed-function oxidase (MFO), glutathione-S-transferase (GST) and α and β esterase activities. Finally, allele-specific PCR (AS-PCR) was used to detect possible kdr mutations (F1534C, S989P, and V1016G) in the voltage-gated sodium channel gene in insecticide-exposed Ae. aegypti. Most traps were oviposition positive; 93.2% and 97% of traps contained Ae. aegypti eggs in the 10ème arrondissement of Cotonou and in Godomey-Togoudo, respectively. Insecticide bioassays detected resistance to permethrin and deltamethrin in both study sites and complete susceptibility to bendiocarb. By comparison to the insecticide-susceptible Rockefeller strain, field Ae. aegypti populations had significantly higher levels of GSTs and significantly lower levels of α and β esterases; there was no significant difference between levels of MFOs. AS-PCR genotyping revealed the possible presence of 3 kdr mutations (F1534C, S989P, and V1016G) at high frequencies; 80.9% (228/282) of the Ae. aegypti tested had at least 1 mutation, while the simultaneous presence of all 3 kdr mutations was identified in 13 resistant individuals. Study findings demonstrated phenotypic pyrethroid resistance, the over-expression of key detoxification enzymes, and the possible presence of several kdr mutations in Ae. aegypti populations, emphasizing the urgent need to implement vector control strategies targeting arbovirus vector species in Benin. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

13 pages, 3233 KiB  
Article
Resistance to Pyrethroids in the Malaria Vector Anopheles albimanus in Two Important Villages in the Soconusco Region of Chiapas, Mexico, 2022
by Francisco Solis-Santoyo, Cuauhtémoc Villarreal-Treviño, Alma D. López-Solis, Lilia González-Cerón, José Cruz Rodríguez-Ramos, Farah Z. Vera-Maloof, Rogelio Danis-Lozano and Rosa Patricia Penilla-Navarro
Int. J. Environ. Res. Public Health 2023, 20(5), 4258; https://doi.org/10.3390/ijerph20054258 - 27 Feb 2023
Cited by 1 | Viewed by 2431
Abstract
Chiapas State comprises the largest malaria foci from Mexico, and 57% of the autochthonous cases in 2021, all with Plasmodium vivax infections, were reported in this State. Southern Chiapas is at constant risk of cases imported due to migratory human flow. Since chemical [...] Read more.
Chiapas State comprises the largest malaria foci from Mexico, and 57% of the autochthonous cases in 2021, all with Plasmodium vivax infections, were reported in this State. Southern Chiapas is at constant risk of cases imported due to migratory human flow. Since chemical control of vector mosquitoes is the main entomological action implemented for the prevention and control of vector-borne diseases, this work aimed to investigate the susceptibility of Anopheles albimanus to insecticides. To this end, mosquitoes were collected in cattle in two villages in southern Chiapas in July–August 2022. Two methods were used to evaluate the susceptibility: the WHO tube bioassay and the CDC bottle bioassay. For the latter, diagnostic concentrations were calculated. The enzymatic resistance mechanisms were also analyzed. CDC diagnostic concentrations were obtained; 0.7 μg/mL deltamethrin, 12 μg/mL permethrin, 14.4 μg/mL malathion, and 2 μg/mL chlorpyrifos. Mosquitoes from Cosalapa and La Victoria were susceptible to organophosphates and to bendiocarb, but resistant to pyrethroids, with mortalities between 89% and 70% (WHO), and 88% and 78% (CDC), for deltamethrin and permethrin, respectively. High esterase levels are suggested as the resistance mechanism involved in the metabolism of pyrethroids in mosquitoes from both villages. Mosquitoes from La Victoria might also involve cytochrome P450. Therefore, organophosphates and carbamates are suggested to currently control An. albimanus. Its use might reduce the frequency of resistance genes to pyrethroids and vector abundance and may impede the transmission of malaria parasites. Full article
(This article belongs to the Special Issue Epidemiology, Surveillance, and Control of Frontier Malaria)
Show Figures

Figure 1

12 pages, 1270 KiB  
Article
Insecticide Susceptibility Status of Anopheles and Aedes Mosquitoes in Malaria and Dengue Endemic Areas, Thai–Myanmar Border
by Kanchon Pusawang, Jetsumon Sattabongkot, Jassada Saingamsook, Daibin Zhong, Guiyun Yan, Pradya Somboon, Somsakul Pop Wongpalee, Liwang Cui, Atiporn Saeung and Patchara Sriwichai
Insects 2022, 13(11), 1035; https://doi.org/10.3390/insects13111035 - 9 Nov 2022
Cited by 1 | Viewed by 3715
Abstract
The occurrence and spread of insecticide resistance has had a negative effect on the efficacy of insecticide–based tools and is distributed worldwide, including the Greater Mekong Subregion (GMS). This study aims to determine the insecticide susceptibility of malaria and dengue vectors in malaria [...] Read more.
The occurrence and spread of insecticide resistance has had a negative effect on the efficacy of insecticide–based tools and is distributed worldwide, including the Greater Mekong Subregion (GMS). This study aims to determine the insecticide susceptibility of malaria and dengue vectors in malaria and dengue hotspots on the Thai–Myanmar border. Mosquito larvae and pupae were obtained from water sources from December 2019 to April 2020 in Tha Song Yang District, Tak province, western Thailand. WHO bioassay susceptibility tests were conducted with three classes of insecticides to evaluate the knockdown and mortality rates of Anopheles and Aedes aegypti female adults. V1016G and F1534C kdr mutations in the voltage-gated sodium channel of Ae. aegypti were identified using a multiplex PCR. A total of 5764 female mosquitoes were bioassayed in this study, including Anopheles spp. (92.63%) and F1 Ae. aegypti (7.37%). After 24 h of observation, An. minimus s.l. (n = 3885) and An. maculatus s.l. (n = 1138) in Suan Oi (SO) and Tala Oka (TO) were susceptible to pyrethroids, organophosphates and carbamates (except bendiocarb) with 98–100% mortality (MR). Resistance to bendiocarb was detected with a mortality rate of 88.80%, 88.77%, and 89.92% for An. minimus s.l. (n = 125, 125) and An. maculatus s.l. (n = 66), respectively. The first generation of Ae. aegypti adult females were suspected of resistance to deltamethrin (n = 225, MR = 96.89%) and confirmed resistance to permethrin (n = 200, MR = 20.00%). V1016G and F1534C mutations were detected in three genotypes, heterozygote and homozygote forms. The correlation between the kdr alleles and deltamethrin resistance was significant. In conclusion, bendiocarb resistance was found in primary malaria vectors, An. minimus s.l. and An. maculatus s.l. F1 Ae. aegypti population was pyrethroids-resistant, associated with kdr alleles. Therefore, molecular analysis should be conducted to gain insights into the mechanism of insecticide resistance. Routine malaria vector control programmes, such as fogging implementation in hotspot villages to induce Aedes resistance available in peri–domestic sites, are questionable. Full article
Show Figures

Figure 1

13 pages, 1451 KiB  
Article
Bendiocarb and Malathion Resistance in Two Major Malaria Vector Populations in Cameroon Is Associated with High Frequency of the G119S Mutation (Ace-1) and Overexpression of Detoxification Genes
by Idriss Nasser Ngangue-Siewe, Paulette Ndjeunia-Mbiakop, Nelly Armanda Kala-Chouakeu, Roland Bamou, Abdou Talipouo, Landre Djamouko-Djonkam, John Vontas, Konstantinos Mavridis, Jeannette Tombi, Timoléon Tchuinkam, Jean Arthur Mbida-Mbida and Christophe Antonio-Nkondjio
Pathogens 2022, 11(8), 824; https://doi.org/10.3390/pathogens11080824 - 23 Jul 2022
Cited by 7 | Viewed by 2773
Abstract
The spread of pyrethroid resistance in malaria vectors is a major threat affecting the performance of current control measures. However, there is still not enough information on the resistance profile of mosquitoes to carbamates and organophosphates which could be used as alternatives. The [...] Read more.
The spread of pyrethroid resistance in malaria vectors is a major threat affecting the performance of current control measures. However, there is still not enough information on the resistance profile of mosquitoes to carbamates and organophosphates which could be used as alternatives. The present study assessed the resistance profile of Anopheles gambiae s.l. to bendiocarb and malathion, at the phenotypic and molecular levels, in different eco-epidemiological settings in Cameroon. Anopheles gambiae s.l. mosquitoes were collected from four eco-epidemiological settings across the country and their susceptibility level to bendiocarb and malathion was determined using WHO tubes bioassays. The ace-1 target site G119S mutation was screened by PCR. Reverse Transcription quantitative PCR 3-plex TaqMan assays were used to quantify the level of expression of eight genes associated with metabolic resistance. Resistance to malathion and/or bendiocarb was recorded in all study sites except in mosquitoes collected in Kaélé and Njombé. The Ace-1 (G119S) mutation was detected in high frequencies (>40%) in Kékem and Santchou. Both An. gambiae and An. coluzzii were detected carrying this mutation. The cytochrome P450s gene Cyp6p3 associated with carbamate resistance and the glutathione S-transferase gene Gste2 associated with organophosphate resistance were found to be overexpressed. Genes associated with pyrethroid (Cyp6m2, Cyp9k1, Cyp6p3) and organochlorine (Gste2, Cyp6z1, Cyp6m2) and cuticle resistance (Cyp4g16) were also overexpressed. The rapid spread of resistance to organophosphates and carbamates could seriously compromise future control strategies based on IRS. It is therefore becoming important to assess the magnitude of bendiocarb and malathion resistance countrywide. Full article
(This article belongs to the Collection Immunological Responses and Immune Defense Mechanism)
Show Figures

Figure 1

13 pages, 3837 KiB  
Article
Analyses of Insecticide Resistance Genes in Aedes aegypti and Aedes albopictus Mosquito Populations from Cameroon
by Borel Djiappi-Tchamen, Mariette Stella Nana-Ndjangwo, Konstantinos Mavridis, Abdou Talipouo, Elysée Nchoutpouen, Idene Makoudjou, Roland Bamou, Audrey Marie Paul Mayi, Parfait Awono-Ambene, Timoléon Tchuinkam, John Vontas and Christophe Antonio-Nkondjio
Genes 2021, 12(6), 828; https://doi.org/10.3390/genes12060828 - 28 May 2021
Cited by 27 | Viewed by 5848
Abstract
The emergence of insecticide resistance in Aedes mosquitoes could pose major challenges for arboviral-borne disease control. In this paper, insecticide susceptibility level and resistance mechanisms were assessed in Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) from urban settings of Cameroon. The [...] Read more.
The emergence of insecticide resistance in Aedes mosquitoes could pose major challenges for arboviral-borne disease control. In this paper, insecticide susceptibility level and resistance mechanisms were assessed in Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) from urban settings of Cameroon. The F1 progeny of Aedes aegypti and Aedes albopictus collected in Douala, Yaoundé and Dschang from August to December 2020 was tested using WHO tube assays with four insecticides: deltamethrin 0.05%, permethrin 0.75%, DDT 4% and bendiocarb 0.1%. TaqMan, qPCR and RT-qPCR assays were used to detect kdr mutations and the expression profiles of eight detoxification genes. Aedes aegypti mosquitoes from Douala were found to be resistant to DDT, permethrin and deltamethrin. Three kdr mutations, F1534C, V1016G and V1016I were detected in Aedes aegypti populations from Douala and Dschang. The kdr allele F1534C was predominant (90%) in Aedes aegypti and was detected for the first time in Aedes albopictus (2.08%). P450s genes, Cyp9J28 (2.23–7.03 folds), Cyp9M6 (1.49–2.59 folds), Cyp9J32 (1.29–3.75 folds) and GSTD4 (1.34–55.3 folds) were found overexpressed in the Douala and Yaoundé Aedes aegypti populations. The emergence of insecticide resistance in Aedes aegypti and Aedes albopictus calls for alternative strategies towards the control and prevention of arboviral vector-borne diseases in Cameroon. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2770 KiB  
Article
Physiological, Developmental, and Biomarker Responses of Zebrafish Embryos to Sub-Lethal Exposure of Bendiocarb
by Gyöngyi Gazsi, Zsolt Czimmerer, Bence Ivánovics, Izabella Roberta Berta, Béla Urbányi, Zsolt Csenki-Bakos and András Ács
Water 2021, 13(2), 204; https://doi.org/10.3390/w13020204 - 16 Jan 2021
Cited by 15 | Viewed by 3921
Abstract
Bendiocarb is a broad-spectrum insecticide recommended for malaria control by the World Health Organization (WHO). Still, bendiocarb poses a toxic risk to populations of nontargeted aquatic organisms. Thus, our study was aimed to evaluate the sub-lethal effects of bendiocarb exposure on zebrafish ( [...] Read more.
Bendiocarb is a broad-spectrum insecticide recommended for malaria control by the World Health Organization (WHO). Still, bendiocarb poses a toxic risk to populations of nontargeted aquatic organisms. Thus, our study was aimed to evaluate the sub-lethal effects of bendiocarb exposure on zebrafish (Danio rerio) embryos by assessing of physiological, developmental, and biochemical parameters. Bendiocarb-induced adverse effects on embryonic development, larval growth, heart rate, changes in phase II detoxifying enzyme glutathione-S-transferase (GST) activity, oxidative stress-related enzyme activities (superoxide dismutase (SOD), catalase (CAT)), and the damage-linked biomarker lipid peroxidation (LPO) in early life stage zebrafish were investigated. Our results highlight that the selected nonlethal concentrations (96 h median lethal concentration in this study was 32.52 mg/L−1) of bendiocarb inflicted adverse effects resulting in embryo deformities (96 h EC50 = 2.30 mg L−1), reduced body- and notochord length (above 0.75 and 0.39 mg L−1 bendiocarb concentrations at 96 hpf, respectively), oxidative stress, and altered heart rate (above 0.4 mg L−1 at 48 hpf) in the studied model system. Full article
(This article belongs to the Special Issue Applied Ecology Research for Water Quality Management)
Show Figures

Figure 1

17 pages, 2614 KiB  
Article
Insecticide Resistance Profiling of Anopheles coluzzii and Anopheles gambiae Populations in the Southern Senegal: Role of Target Sites and Metabolic Resistance Mechanisms
by Oumou. K. Gueye, Magellan Tchouakui, Abdoulaye K. Dia, Mouhamed B. Faye, Amblat A. Ahmed, Murielle J. Wondji, Daniel N. Nguiffo, Leon. M. J. Mugenzi, Frederic Tripet, Lassana Konaté, Abdoulaye Diabate, Ibrahima Dia, Oumar Gaye, Ousmane Faye, El Hadji A. Niang and Charles S. Wondji
Genes 2020, 11(12), 1403; https://doi.org/10.3390/genes11121403 - 25 Nov 2020
Cited by 21 | Viewed by 4360
Abstract
The emergence and spread of insecticide resistance among the main malaria vectors is threatening the effectiveness of vector control interventions in Senegal. The main drivers of this resistance in the Anopheles gambiae complex (e.g., An. gambiae and Anopheles coluzzii) remains poorly characterized [...] Read more.
The emergence and spread of insecticide resistance among the main malaria vectors is threatening the effectiveness of vector control interventions in Senegal. The main drivers of this resistance in the Anopheles gambiae complex (e.g., An. gambiae and Anopheles coluzzii) remains poorly characterized in Senegal. Here we characterized the main target site and metabolic resistances mechanisms among the An. gambiae and An. coluzzii populations from their sympatric and allopatric or predominance area in Senegal. Larvae and pupae of An. gambiae s.l. were collected, reared to adulthood, and then used for insecticides susceptibility and synergist assays using the WHO (World Health Organisation) test kits for adult mosquitoes. The TaqMan method was used for the molecular characterization of the main target site insecticide resistance mechanisms (Vgsc-1014F, Vgsc-1014S, N1575Y and G119S). A RT-qPCR (Reverse Transcriptase-quantitative Polymerase Chaine Reaction) was performed to estimate the level of genes expression belonging to the CYP450 (Cytochrome P450) family. Plasmodium infection rate was investigated using TaqMan method. High levels of resistance to pyrethroids and DDT and full susceptibility to organophosphates and carbamates where observed in all three sites, excepted a probable resistance to bendiocarb in Kedougou. The L1014F, L1014S, and N1575Y mutations were found in both species. Pre-exposure to the PBO (Piperonyl butoxide) synergist induced a partial recovery of susceptibility to permethrin and full recovery to deltamethrin. Subsequent analysis of the level of genes expression, revealed that the CYP6Z1 and CYP6Z2 genes were over-expressed in wild-resistant mosquitoes compared to the reference susceptible strain (Kisumu), suggesting that both the metabolic resistance and target site mutation involving kdr mutations are likely implicated in this pyrethroid resistance. The presence of both target-site and metabolic resistance mechanisms in highly pyrethroid-resistant populations of An. gambiae s.l. from Senegal threatens the effectiveness and the sustainability of the pyrethroid-based tools and interventions currently deployed in the country. The Kdr-west mutation is widely widespread in An. coluzzii sympatric population. PBO or Duo nets and IRS (Indoor Residual Spraying) with organophosphates could be used as an alternative measure to sustain malaria control in the study area. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

9 pages, 1254 KiB  
Article
Monitoring Insecticide Susceptibility in Aedes Aegypti Populations from the Two Biggest Cities, Ouagadougou and Bobo-Dioulasso, in Burkina Faso: Implication of Metabolic Resistance
by Moussa Namountougou, Dieudonné Diloma Soma, Mahamoudou Balboné, Didier Alexandre Kaboré, Mahamadi Kientega, Aristide Hien, Ahmed Coulibaly, Parfait Eric Ouattara, Benson Georges Meda, Samuel Drabo, Lassane Koala, Charles Nignan, Thérèse Kagoné, Abdoulaye Diabaté, Florence Fournet, Olivier Gnankiné and Roch Kounbobr Dabiré
Trop. Med. Infect. Dis. 2020, 5(2), 84; https://doi.org/10.3390/tropicalmed5020084 - 27 May 2020
Cited by 18 | Viewed by 4772
Abstract
In West Africa, Aedes aegypti remains the major vector of dengue virus. Since 2013, dengue fever has been reemerging in Burkina Faso with annual outbreaks, thus becoming a major public health problem. Its control relies on vector control, which is unfortunately facing the [...] Read more.
In West Africa, Aedes aegypti remains the major vector of dengue virus. Since 2013, dengue fever has been reemerging in Burkina Faso with annual outbreaks, thus becoming a major public health problem. Its control relies on vector control, which is unfortunately facing the problem of insecticide resistance. At the time of this study, although data on phenotypic resistance were available, information related to the metabolic resistance in Aedes populations from Burkina Faso remained very scarce. Here, we assessed the phenotypic and the metabolic resistance of Ae. aegypti populations sampled from the two main urban areas (Ouagadougou and Bobo-Dioulasso) of Burkina Faso. Insecticide susceptibility bioassays to chlorpyriphos-methyl 0.4%, bendiocarb 0.1% and deltamethrin 0.05% were performed on natural populations of Ae. aegypti using the WHO protocol. The activity of enzymes involved in the rapid detoxification of insecticides, especially non-specific esterases, oxidases (cytochrome P450) and glutathione-S-transferases, was measured on individual mosquitos. The mortality rates for deltamethrin 0.05% were low and ranged from 20.72% to 89.62% in the Bobo-Dioulasso and Ouagadougou sites, respectively. When bendiocarb 0.1% was tested, the mortality rates ranged from 7.73% to 71.23%. Interestingly, in the two urban areas, mosquitoes were found to be fully susceptible to chlorpyriphos-methyl 0.4%. Elevated activity of non-specific esterases and glutathione-S-transferases was reported, suggesting multiple resistance mechanisms involved in Ae. aegypti populations from Bobo-Dioulasso and Ouagadougou (including cytochrome P450). This update to the insecticide resistance status within Ae. aegypti populations in the two biggest cities is important to better plan dengue vectors control in the country and provides valuable information for improving vector control strategies in Burkina Faso, West Africa. Full article
(This article belongs to the Special Issue Epidemiology of Dengue: Past, Present and Future (Volume II))
Show Figures

Figure 1

15 pages, 1461 KiB  
Article
Exploring the Mechanisms of Multiple Insecticide Resistance in a Highly Plasmodium-Infected Malaria Vector Anopheles funestus Sensu Stricto from Sahel of Northern Nigeria
by Sulaiman S. Ibrahim, Muhammad M. Mukhtar, Helen Irving, Jacob M. Riveron, Amen N. Fadel, Williams Tchapga, Jack Hearn, Abdullahi Muhammad, Faruk Sarkinfada and Charles S. Wondji
Genes 2020, 11(4), 454; https://doi.org/10.3390/genes11040454 - 22 Apr 2020
Cited by 10 | Viewed by 4875
Abstract
The Nigerian Government is scaling up the distribution of insecticide-treated bed nets for malaria control, but the lack of surveillance data, especially in the Sudan/Sahel region of the country, may hinder targeting priority populations. Here, the vectorial role and insecticide resistance profile of [...] Read more.
The Nigerian Government is scaling up the distribution of insecticide-treated bed nets for malaria control, but the lack of surveillance data, especially in the Sudan/Sahel region of the country, may hinder targeting priority populations. Here, the vectorial role and insecticide resistance profile of a population of a major malaria vector Anopheles funestus sensu stricto from Sahel of Nigeria was characterised. An. funestus s.s. was the only vector found, with a high human blood index (100%) and a biting rate of 5.3/person/night. High Plasmodium falciparum infection was discovered (sporozoite rate = 54.55%). The population is resistant to permethrin (mortality = 48.30%, LT50 = 65.76 min), deltamethrin, DDT (dichlorodiphenyltrichloroethane) and bendiocarb, with mortalities of 29.44%, 56.34% and 54.05%, respectively. Cone-bioassays established loss of efficacy of the pyrethroid-only long-lasting insecticidal nets (LLINs); but 100% recovery of susceptibility was obtained for piperonylbutoxide (PBO)-containing PermaNet®3.0. Synergist bioassays with PBO and diethyl maleate recovered susceptibility, implicating CYP450s (permethrin mortality = 78.73%, χ2 = 22.33, P < 0.0001) and GSTs (DDT mortality = 81.44%, χ2 = 19.12, P < 0.0001). A high frequency of 119F GSTe2 mutation (0.84) was observed (OR = 16, χ2 = 3.40, P = 0.05), suggesting the preeminent role of metabolic resistance. These findings highlight challenges associated with deployment of LLINs and indoor residual spraying (IRS) in Nigeria. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 6523 KiB  
Article
Impact of Pesticide Type and Emulsion Fat Content on the Bioaccessibility of Pesticides in Natural Products
by Ruojie Zhang, Zipei Zhang, Ruyi Li, Yunbing Tan, Shanshan Lv and David Julian McClements
Molecules 2020, 25(6), 1466; https://doi.org/10.3390/molecules25061466 - 24 Mar 2020
Cited by 14 | Viewed by 3737
Abstract
There is interest in incorporating nanoemulsions into certain foods and beverages, including dips, dressings, drinks, spreads, and sauces, due to their potentially beneficial attributes. In particular, excipient nanoemulsions can enhance the bioavailability of nutraceuticals in fruit- and vegetable-containing products consumed with them. There [...] Read more.
There is interest in incorporating nanoemulsions into certain foods and beverages, including dips, dressings, drinks, spreads, and sauces, due to their potentially beneficial attributes. In particular, excipient nanoemulsions can enhance the bioavailability of nutraceuticals in fruit- and vegetable-containing products consumed with them. There is, however, potential for them to also raise the bioavailability of undesirable substances found in these products, such as pesticides. In this research, we studied the impact of excipient nanoemulsions on the bioaccessibility of pesticide-treated tomatoes. We hypothesized that the propensity for nanoemulsions to raise pesticide bioaccessibility would depend on the polarity of the pesticide molecules. Bendiocarb, parathion, and chlorpyrifos were therefore selected because they have Log P values of 1.7, 3.8, and 5.3, respectively. Nanoemulsions with different oil contents (0%, 4%, and 8%) were fabricated to study their impact on pesticide uptake. In the absence of oil, the bioaccessibility increased with increasing pesticide polarity (decreasing Log P): bendiocarb (92.9%) > parathion (16.4%) > chlorpyrifos (2.8%). Bendiocarb bioaccessibility did not depend on the oil content of the nanoemulsions, which was attributed to its relatively high water-solubility. Conversely, the bioaccessibility of the more hydrophobic pesticides (parathion and chlorpyrifos) increased with increasing oil content. For instance, for chlorpyrifos, the bioaccessibility was 2.8%, 47.0%, and 70.7% at 0%, 4%, and 8% oil content, respectively. Our findings have repercussions for the utilization of nanoemulsions as excipient foods in products that may have high levels of undesirable non-polar substances, such as pesticides. Full article
Show Figures

Graphical abstract

15 pages, 1035 KiB  
Article
Menthol Increases Bendiocarb Efficacy Through Activation of Octopamine Receptors and Protein Kinase A
by Milena Jankowska, Justyna Wiśniewska, Łukasz Fałtynowicz, Bruno Lapied and Maria Stankiewicz
Molecules 2019, 24(20), 3775; https://doi.org/10.3390/molecules24203775 - 20 Oct 2019
Cited by 16 | Viewed by 4149
Abstract
Great effort is put into seeking a new and effective strategies to control insect pests. One of them is to combine natural products with chemical insecticides to increase their effectiveness. In the study presented, menthol which is an essential oil component was evaluated [...] Read more.
Great effort is put into seeking a new and effective strategies to control insect pests. One of them is to combine natural products with chemical insecticides to increase their effectiveness. In the study presented, menthol which is an essential oil component was evaluated on its ability to increase the efficiency of bendiocarb, carbamate insecticide. A multi-approach study was conducted using biochemical method (to measure acetylcholinesterase enzyme activity), electrophysiological technique (microelectrode recordings in DUM neurons in situ), and confocal microscopy (for calcium imaging). In the electrophysiological experiments, menthol caused hyperpolarization, which was blocked by an octopamine receptor antagonist (phentolamine) and an inhibitor of protein kinase A (H-89). It also raised the intracellular calcium level. The effect of bendiocarb was potentiated by menthol and this phenomenon was abolished by phentolamine and H-89 but not by protein kinase C inhibitor (bisindolylmaleimide IX). The results indicate that menthol increases carbamate insecticide efficiency by acting on octopamine receptors and triggering protein kinase A phosphorylation pathway. Full article
(This article belongs to the Special Issue Essential Oils in Weed Control and Food Preservation)
Show Figures

Graphical abstract

Back to TopTop