Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = bean-maize intercrop

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1965 KiB  
Article
Socioeconomic Factors Influencing Crop Diversification Among Smallholder Farmers in Bergville, South Africa
by Busisiwe Vilakazi, Alfred O. Odindo, Mutondwa M. Phophi and Paramu L. Mafongoya
Agriculture 2025, 15(9), 914; https://doi.org/10.3390/agriculture15090914 - 22 Apr 2025
Viewed by 1334
Abstract
Crop diversification is a vital strategy for achieving sustainable agriculture and food security, yet adoption rates remain low. This study examined the socioeconomic factors influencing crop diversification among smallholder farmers. A two-stage sampling procedure was employed to elicit data from 161 farmers solely [...] Read more.
Crop diversification is a vital strategy for achieving sustainable agriculture and food security, yet adoption rates remain low. This study examined the socioeconomic factors influencing crop diversification among smallholder farmers. A two-stage sampling procedure was employed to elicit data from 161 farmers solely specializing in crop production. A structured questionnaire was used to collect data, analyzed using descriptive statistics. The multiple linear regression and multivariate probit regression models were applied to assess the socioeconomic factors influencing diversification. The results revealed that smallholders primarily focused on vegetable cultivation (87%), followed by cereals (56%) and legumes (43%). Education level, household size, market access, and the perceived benefits of diversification significantly (p < 0.05) influenced diversification decisions. Also, sources of irrigation water, age, marital status, and farm size were key factors in vegetable diversification, while farming experience, farm size, and perceived benefits influenced legume diversification. Only marital status and farming experience were positively linked to cereal crop diversification. Furthermore, 48.4% of farmers practice intercropping, integrating maize with pumpkins or sugar beans, while 33.5% still rely on monoculture, predominantly maize, due to limited resources. These findings highlight the need for policies and extension support to address socioeconomic barriers and encourage a wider adoption of crop diversification strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

13 pages, 251 KiB  
Article
Competitive Effects of Dwarf Bean Cultivars (Phaseoulus vulgaris L.) on Maize (Zea mays L.) Intercrop Productivity Influenced by Spatial Arrangements
by Donwell Kamalongo, Donald Siyeni, Pacsu Lukamba Simwaka, Amos Robert Ngwira, Geckem Dambo, Prisca Munene and Masautso Mphangamo
Agronomy 2025, 15(3), 613; https://doi.org/10.3390/agronomy15030613 - 28 Feb 2025
Viewed by 620
Abstract
Competitive effects and responses influenced by spatial arrangements and dwarf bean interactions were assessed in traditional maize/bean intercropping systems in northern Malawi at the Meru Experimental Research Station between the 2018/2019 and 2019/2020 growing seasons. A revised maize population with reduced plant spacing [...] Read more.
Competitive effects and responses influenced by spatial arrangements and dwarf bean interactions were assessed in traditional maize/bean intercropping systems in northern Malawi at the Meru Experimental Research Station between the 2018/2019 and 2019/2020 growing seasons. A revised maize population with reduced plant spacing as a response to crop intensification limited the inclusion of bean intercrops and, hence, reduced bean productivity. Increasing dwindling landholding per capita aggravated the need to identify suitable bean cultivars for intercropping. Five dwarf bean varieties bred for a sole cropping system were evaluated in four spatial intercropping arrangements with maize at two bean planting densities in a randomised complete block design (RCBD) replicated four times in an additive series. Interactions between companion crops were assessed with the land equivalent ratio (LER) and aggressivity (A). Crop yields were measured to ascertain crop interactions. The PLER showed significantly higher values for maize than bean intercrops. Across the two cropping seasons and at any bean sowing density, alternate-row intercropping showed statistically better land and resource use efficiencies than within-row intercropping. The A values for maize were higher than beans in the intercropping systems. In the intercropping system, maize and beans had positive and negative A values, respectively. In both growing seasons, LER and A values increased in alternate-row over within-row intercropping systems, demonstrating that maize/dwarf bean intercropping has the potential to improve productivity among smallholder farmers in Malawi. All bean cultivars performed well in intercropping arrangements in both seasons except for Mnyambitira, which performed inferiorly in within-row intercropping except for alternate-rows. At any bean sowing density, farmers can realise more benefits if the bean intercrops are spatially sown in alternate-row than within-row arrangements Full article
16 pages, 1540 KiB  
Article
The Effect of Cropping Systems on the Dispersal of Mycotoxigenic Fungi by Insects in Pre-Harvest Maize in Kenya
by Ginson M. Riungu, James Muthomi, Maina Wagacha, Wolfgang Buechs, Esther S. Philip and Torsten Meiners
Insects 2024, 15(12), 995; https://doi.org/10.3390/insects15120995 - 16 Dec 2024
Viewed by 1287
Abstract
Maize productivity has remained low and has worsened in the wake of a changing climate, resulting in new invasive pests, with pests that were earlier designated as minor becoming major and with pathogens being transported by pests and/or entering their feeding sites. A [...] Read more.
Maize productivity has remained low and has worsened in the wake of a changing climate, resulting in new invasive pests, with pests that were earlier designated as minor becoming major and with pathogens being transported by pests and/or entering their feeding sites. A study was conducted in 2021 in the Kisumu and Makueni counties, Kenya, to determine how different maize cropping systems affect insect diversity, insect damage to maize, and insects’ ability to spread mycotoxigenic fungi in pre-harvest maize. The field experiments used a randomized complete block design, with the four treatments being maize monocrop, maize intercropped with beans, maize–bean intercrop with the addition of Trichoderma harzianum at planting, and push–pull technology. The FAW, Spodoptera frugiperda (J.E Smith) (Lepidoptera: Noctuidae), was the most damaging pest in the two regions. The push–pull and the maize–bean intercropping technologies significantly reduced the maize foliage and ear damage caused by the FAW. Beetles passively spread mycotoxigenic Aspergillus spp. and Fusarium verticillioides on pre-harvest maize. Maize weevils, namely, Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae), and Carpophilus dimidiatus Fabricius, 1792 (Coleoptera: Nitidulidae), earwigs, namely, Forficula spp. L. (Dermaptera: Forficulidae), and carpenter ants, namely, Camponotus spp. L. (Hymenoptera: Formicidae) carried the highest number of spores on their exoskeletons. This study stresses the role of insects in the spread of fungi on pre-harvest maize and their possible control by intercropping and other cropping technologies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 6463 KiB  
Article
Faba Bean Extracts Allelopathically Inhibited Seed Germination and Promoted Seedling Growth of Maize
by Bo Li, Enqiang Zhou, Yao Zhou, Xuejun Wang and Kaihua Wang
Agronomy 2024, 14(12), 2857; https://doi.org/10.3390/agronomy14122857 - 29 Nov 2024
Cited by 1 | Viewed by 1061
Abstract
Allelopathic interactions between crops in an intercropping system can directly affect crop yields. Faba beans may release allelochemicals to the cropping system. However, the allelopathic effects in the faba bean–maize relay intercropping system are still unclear. Maize seeds and seedlings were treated with [...] Read more.
Allelopathic interactions between crops in an intercropping system can directly affect crop yields. Faba beans may release allelochemicals to the cropping system. However, the allelopathic effects in the faba bean–maize relay intercropping system are still unclear. Maize seeds and seedlings were treated with a 50 mL of 100 g L−1 faba bean leaf extract (L1), 150 g L−1 faba bean leaf extract (L2), 100 g L−1 faba bean stem extract (S1), or 150 g L−1 faba bean stem extract (S2) and sterile water (CK) to study the allelopathic effects of faba bean extracts on maize seed germination and seedling growth. The α-amylase activities, antioxidant enzyme activities, phytohormones and allelochemical content in maize seeds were determined to evaluate the allelopathic effects of faba bean extracts on maize seed germination. The agronomic traits, photosynthetic parameters and nutrient absorption characteristics of maize seedlings were determined to explore the allelopathic effects of faba bean extracts on maize seedling growth. High-concentration (150 g L−1) faba bean stem extracts released allelochemicals, such as 4-hydroxybenzoic acid, hydrocinnamic acid, trans-cinnamic acid, and benzoic acid. These allelochemicals entered the interior of maize seeds and increased the abscisic acid, salicylic acid and indole-3-acetic acid content in maize seeds but decreased the aminocyclopropane carboxylic acid in maize seeds. High-concentration (150 g L−1) faba bean stem extracts increased the superoxide dismutase and peroxidase activity and decreased the α-amylase activity in maize seeds at germination (36 h). Faba bean extracts released nitrogen, potassium and phosphorus and increased nitrogen content, phosphorus content, potassium content and photosynthesis of maize seedling. In summary, faba bean extracts released allelochemicals that inhibited the germination of maize seeds but released nutrients and promoted the growth and development of maize seedlings. The research results provide a basis for improving the Faba bean–maize relay strip intercropping. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

22 pages, 4584 KiB  
Article
Oviposition Preferences of the Fall Armyworm (Spodoptera frugiperda) (Lepidoptera: Noctuidae) in Response to Various Potential Repellent and Attractant Plants
by Kervin Can, Tsui-Ying Chang, Lekhnath Kafle and Wen-Hua Chen
Insects 2024, 15(11), 885; https://doi.org/10.3390/insects15110885 - 13 Nov 2024
Cited by 1 | Viewed by 2444
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a major polyphagous pest that mainly feeds on maize and other cash crops. Understanding S. frugiperda’s behavior on different host plants facilitates the development of effective integrated pest management (IPM) plans. Therefore, this study [...] Read more.
The fall armyworm (FAW), Spodoptera frugiperda, is a major polyphagous pest that mainly feeds on maize and other cash crops. Understanding S. frugiperda’s behavior on different host plants facilitates the development of effective integrated pest management (IPM) plans. Therefore, this study investigated the oviposition preferences of S. frugiperda females among different host plants using no-choice, two-choice, and multiple-choice bioassays. In no-choice bioassays, para grass, Urochloa mutica (Forssk.) (Poales: Poaceae); maize, Zea mays (L.) (Poales: Poaceae); and napier grass, Pennisetum purpureum (Schumach) (Poales: Poaceae) were identified as highly attractive, while sweet sorghum, Sorghum dochna (Forssk.) (Poales: Poaceae); sunhemp, Crotalaria juncea (L.) (Fabales:Fabacea); Egyptian clover, Trifolium alexandrinum (L.) (Fabales:Fabacea); desmodium, Desmodium uncinatum (Jacq.) (Fabales:Fabacea); natal grass, melinis repens (Zizka) (Poales: Poaceae); molasses grass, Melinis minutiflora (P.Beauv.) (Poales: Poaceae); and mung bean, Vigna radiata (R. wilczek) (Fabales: Fabaceae) exhibited reduced oviposition effects. Two-choice bioassays revealed different levels of attractiveness and repellency among different plant combinations. In multiple-choice bioassays, mimicking an intercropping scenario, differences in the number of eggs and egg mass were observed for M:S:D:W (maize, sunhemp, desmodium, and cage wall), S:D:M:W (sunhemp, desmodium, maize, and cage wall), and D:M:S:W (desmodium, maize, sunhemp, and cage wall). This study provides insights into the egg-laying preferences of S. frugiperda females among different host plants, valuable for the management of S. frugiperda. This encourages further research and further identification of novel repellent and attractant host plants, which will ultimately contribute to the development of sustainable and environmentally friendly crop production practices and techniques. Full article
Show Figures

Graphical abstract

15 pages, 2030 KiB  
Article
Effects of Maize–Lablab Intercropping and Lactic Acid Bacteria Additives on Forage Yield, Fermentation Quality and Profitability
by Dongsheng Li, Hongyang Ren, Linfeng Zheng, Yue Hou and Hongliang Wang
Fermentation 2024, 10(9), 477; https://doi.org/10.3390/fermentation10090477 - 14 Sep 2024
Cited by 4 | Viewed by 2201
Abstract
Intercropping systems and exogenous microorganism additives are recognized for their potential to influence silage fermentation and quality. This study aims to evaluate the impacts of maize–lablab bean intercropping and lactic acid bacteria (LAB) additives on silage yield, nutritional quality, and economic profitability. A [...] Read more.
Intercropping systems and exogenous microorganism additives are recognized for their potential to influence silage fermentation and quality. This study aims to evaluate the impacts of maize–lablab bean intercropping and lactic acid bacteria (LAB) additives on silage yield, nutritional quality, and economic profitability. A randomized block design was employed with two cropping patterns—maize monocrop (M) and maize–lablab intercrop (ML)—and five additive treatments: No additives (CK), and varying ratios of Lactobacillus Plantarum (LP) and Lactobacillus Buchneri (LB), T1 (100% LP), T2 (9LP:LB), T3 (8LP:2LB), and T4 (100% LB). The silage was analyzed and evaluated for its nutritional quality, fermentation quality, and fermentation effect after 90 days of fermentation. ML intercropping significantly enhanced the fresh matter yields by 8.59% and crude protein content by 8.73% compared to M. From the point of view of inoculation with different lactobacilli, the pH, AA, and NH3-N/TN were lower in the T2 and T3 treatments than in the other treatments, while LA was significantly higher. The V-score, which reflects the overall fermentation quality, was excellent across all treatments, with scores exceeding 80 points; the T2 treatment in ML silage achieved the highest score of 99.58. In addition, intercropping can increase the net income of farmers by 21.67%. In conclusion, maize–lablab intercropping combined with LAB inoculation, particularly with the T2 and T3 treatments, significantly enhances the silage quality and economic returns by reducing pH, increasing the LA content, and improving the CP levels. This study is the first to comprehensively analyze the synergistic effects of altering cropping systems and adding functional microorganisms on forage yield and fermentation quality, offering strategic insights for farms, especially mixed farms, to produce high-quality feed. We recommend adopting these methods to improve feed quality and maximize the profitability of silage production systems. Full article
(This article belongs to the Special Issue The Use of Lactobacillus in Forage Storage and Processing)
Show Figures

Figure 1

14 pages, 1654 KiB  
Review
Crop Rotation and Diversification in China: Enhancing Sustainable Agriculture and Resilience
by Yuzhu Zou, Zhenshan Liu, Yan Chen, Yin Wang and Shijing Feng
Agriculture 2024, 14(9), 1465; https://doi.org/10.3390/agriculture14091465 - 28 Aug 2024
Cited by 25 | Viewed by 8381
Abstract
Crop rotation and diversification (CRD) are crucial strategies in sustainable agriculture, offering multiple benefits to both farmers and the environment. By alternating crops or introducing diverse plant species, CRD practices improve soil fertility, reduce pest populations, and enhance nutrient availability. For example, legume-based [...] Read more.
Crop rotation and diversification (CRD) are crucial strategies in sustainable agriculture, offering multiple benefits to both farmers and the environment. By alternating crops or introducing diverse plant species, CRD practices improve soil fertility, reduce pest populations, and enhance nutrient availability. For example, legume-based rotations increase soil nitrogen levels through biological nitrogen fixation, reducing the need for synthetic fertilizers. Moreover, these practices promote more efficient water and nutrient use, reducing the reliance on synthetic fertilizers and minimizing the risk of pests and diseases. This review synthesizes findings from recent research on the role of CRD in enhancing sustainable agriculture and resilience, highlighting the potential contributions of these practices towards climate change mitigation and adaptation. Specific crop rotation systems, such as the cereal–legume rotation in temperate regions and the intercropping of maize with beans in tropical environments, are reviewed to provide a comprehensive understanding of their applicability in different agroecological contexts. The review also addresses the challenges related to implementing CRD practices, such as market demand and knowledge transfer, and suggests potential solutions to encourage broader adoption. Lastly, the potential environmental benefits, including carbon sequestration and reduced greenhouse gas emissions, are discussed, highlighting the role of CRD in building resilient agricultural systems. Collectively, this review paper emphasizes the importance of CRD methods as sustainable agricultural practices and provides key insights for researchers and farmers to effectively integrate these practices into farming systems. Full article
Show Figures

Figure 1

18 pages, 2118 KiB  
Article
Using Beerkan Procedure to Estimate Hydraulic Soil Properties under Long Term Agroecosystems Experiments
by Lorenzo Vergni, Grazia Tosi, Jennifer Bertuzzi, Giulia Rossi, Michela Farneselli, Giacomo Tosti, Francesco Tei, Alberto Agnelli and Francesca Todisco
Appl. Sci. 2024, 14(9), 3817; https://doi.org/10.3390/app14093817 - 30 Apr 2024
Cited by 2 | Viewed by 1235
Abstract
The BEST (Beerkan Estimation of Soil Transfer parameters) method was used to compare the hydraulic properties of the soils in two Long-term Agroecosystem Experiments (LTAEs) located at the FIELDLAB experimental site of the University of Perugia (central Italy). The LTAE “NewSmoca” consists of [...] Read more.
The BEST (Beerkan Estimation of Soil Transfer parameters) method was used to compare the hydraulic properties of the soils in two Long-term Agroecosystem Experiments (LTAEs) located at the FIELDLAB experimental site of the University of Perugia (central Italy). The LTAE “NewSmoca” consists of a biennial maize-durum wheat crop rotation under integrated low-input cropping systems with (i) inversion soil tillage (INT) or (ii) no-tillage (INT+) and (iii) under an organic cropping system with inversion soil tillage (ORG). ORG and INT+ involve the use of autumn-sown cover crops (before the maize cycle). Pure stand durum wheat was grown in INT and INT+, while a faba bean–wheat temporary intercropping was implemented in ORG. The LTAE “Crop Rotation” consists of different crop rotations and residue management, a continuous soft winter wheat and biennial rotations of soft winter wheat with maize or faba bean. Each rotation is combined with two modes of crop residue management: removal or burial. For INT+, despite the high-bulk density (>1.50 g/cm3), we found that conductivity, sorptivity and available water are comparable to those of INT, probably due to a more structured and efficient micropore system. ORG soils show the highest conductivity, sorptivity and available water content values, probably due to the recent spring tillage occurring in the wheat inter-row with the faba bean incorporation into the soil. For LTAE Rotation, the residue burial seems to influence the capacity-based indicators positively. However, the differences in the removal treatment are minor, and this could be due to the inversion soil tillage, which limits the progressive accumulation of organic matter. Full article
Show Figures

Figure 1

6 pages, 819 KiB  
Communication
Small Farm Holder Cropping Systems Influence Microbial Profiles in an Equatorial Rainforest Agroecosystem
by Christine Matindu, Nimalka M. Weerasuriya, Francis N. Muyekho, Irena F. Creed, R. Greg Thorn and Anthony W. Sifuna
Agronomy 2024, 14(4), 646; https://doi.org/10.3390/agronomy14040646 - 23 Mar 2024
Cited by 1 | Viewed by 1144
Abstract
The metabarcoding of prokaryotic and fungal (Ascomycota only) ribosomal DNA was used to describe the microbial communities in soils of a remnant equatorial rainforest, maize–bean intercrop, and sugarcane in western Kenya. Cropping systems influenced the microbial community composition and functional traits (energy source [...] Read more.
The metabarcoding of prokaryotic and fungal (Ascomycota only) ribosomal DNA was used to describe the microbial communities in soils of a remnant equatorial rainforest, maize–bean intercrop, and sugarcane in western Kenya. Cropping systems influenced the microbial community composition and functional traits (energy source and nutrient cycling) of bulk soil in each crop. Microbial richness and diversity tended to increase with cultivation intensity. The soil of the maize–bean intercrop had lower percentages and sugarcane had higher percentages of unique amplicon sequence variants of both bacteria and fungi compared to the remnant forest. Functional traits were altered by cultivation intensity. Compared to remnant forest soils, maize–bean intercrop soil had lower percentages of aerobic chemoheterotrophic bacteria and higher percentages of N-cycling bacteria, while sugarcane had higher percentages of aerobic chemoheterotrophic bacteria and lower percentages of N-cycling bacteria. In the face of increasing forest loss and pressures for agricultural productivity, this landscape provides a rich site for studying the impacts of cropping systems on soil health. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

22 pages, 4649 KiB  
Article
Genotype Combinations Drive Variability in the Microbiome Configuration of the Rhizosphere of Maize/Bean Intercropping System
by Giovanna Lanzavecchia, Giulia Frascarelli, Lorenzo Rocchetti, Elisa Bellucci, Elena Bitocchi, Valerio Di Vittori, Fabiano Sillo, Irene Ferraris, Giada Carta, Massimo Delledonne, Laura Nanni and Roberto Papa
Int. J. Mol. Sci. 2024, 25(2), 1288; https://doi.org/10.3390/ijms25021288 - 20 Jan 2024
Cited by 11 | Viewed by 2421
Abstract
In an intercropping system, the interplay between cereals and legumes, which is strongly driven by the complementarity of below-ground structures and their interactions with the soil microbiome, raises a fundamental query: Can different genotypes alter the configuration of the rhizosphere microbial communities? To [...] Read more.
In an intercropping system, the interplay between cereals and legumes, which is strongly driven by the complementarity of below-ground structures and their interactions with the soil microbiome, raises a fundamental query: Can different genotypes alter the configuration of the rhizosphere microbial communities? To address this issue, we conducted a field study, probing the effects of intercropping and diverse maize (Zea mays L.) and bean (Phaseolus vulgaris L., Phaseolus coccineus L.) genotype combinations. Through amplicon sequencing of bacterial 16S rRNA genes from rhizosphere samples, our results unveil that the intercropping condition alters the rhizosphere bacterial communities, but that the degree of this impact is substantially affected by specific genotype combinations. Overall, intercropping allows the recruitment of exclusive bacterial species and enhances community complexity. Nevertheless, combinations of maize and bean genotypes determine two distinct groups characterized by higher or lower bacterial community diversity and complexity, which are influenced by the specific bean line associated. Moreover, intercropped maize lines exhibit varying propensities in recruiting bacterial members with more responsive lines showing preferential interactions with specific microorganisms. Our study conclusively shows that genotype has an impact on the rhizosphere microbiome and that a careful selection of genotype combinations for both species involved is essential to achieve compatibility optimization in intercropping. Full article
Show Figures

Figure 1

23 pages, 3669 KiB  
Article
Effect of Legumes Intercropped with Maize on Biomass Yield and Subsequent Biogas Production
by Antonín Kintl, Igor Huňady, Tomáš Vítěz, Martin Brtnický, Julie Sobotková, Tereza Hammerschmiedt, Monika Vítězová, Jiří Holátko, Vladimír Smutný and Jakub Elbl
Agronomy 2023, 13(11), 2775; https://doi.org/10.3390/agronomy13112775 - 7 Nov 2023
Cited by 3 | Viewed by 1892
Abstract
The presented study deals with the use of legumes intercropped with maize for the production of biogas from silage. The main goal was to find out whether silages made from mixed cultures can be used in biogas production and how the use of [...] Read more.
The presented study deals with the use of legumes intercropped with maize for the production of biogas from silage. The main goal was to find out whether silages made from mixed cultures can be used in biogas production and how the use of such silages affects qualitative and quantitative parameters of the fermentation process compared with the pure maize silage. Variants prepared were pure cultures of maize, bean, lupin, and white sweet clover. In addition, mixed cultures were prepared of maize and individual legumes. Measured values showed that in terms of dry matter (DM) yield, mixed culture silages are almost of the same or even better quality than silage made from the maize monosubstrate. Compared with the maize monoculture silage, the presence of white lupine, white sweet clover, and broad bean in silages statistically significantly increased the content of DM, ash, and acid detergent fiber (by more than 5%). Bean and lupine in mixed silages with maize significantly increased the content of lipids (on average by more than 1.2%). Legumes in silages were significantly decreasing contents of neutral detergent fiber, crude protein, and starch. Production of biogas from silages of maize monosubstrates and mixed substrates of maize with white lupin, maize with white sweet clover, and maize with broad bean was directly proportional to the content of CAR and starch in these substrates. A perspective variant was the mixed substrate of maize and sweet clover from which biogas production was only 6% lower than that from conventional maize silage. The highest yield was recorded in the maize monosubstrate (0.923 m3/kgVS). Variants of mixed substrates had a yield ranging from 0.804 to 0.840 m3/kgVS. Full article
(This article belongs to the Special Issue Agricultural Biomass for Bioenergy and Bioproducts)
Show Figures

Figure 1

13 pages, 670 KiB  
Article
The Energy and Environmental Evaluation of Maize, Hemp and Faba Bean Multi-Crops
by Kęstutis Romaneckas, Austėja Švereikaitė, Rasa Kimbirauskienė, Aušra Sinkevičienė and Jovita Balandaitė
Agronomy 2023, 13(9), 2316; https://doi.org/10.3390/agronomy13092316 - 4 Sep 2023
Cited by 5 | Viewed by 1780
Abstract
Agriculture uses a lot of fuel, fertilizers, pesticides and other substances, while emitting large amounts of GHGs. It is important to optimize these inputs and outputs. One such way is by increasing crop biodiversity. For this reason, single crops and mixtures of maize, [...] Read more.
Agriculture uses a lot of fuel, fertilizers, pesticides and other substances, while emitting large amounts of GHGs. It is important to optimize these inputs and outputs. One such way is by increasing crop biodiversity. For this reason, single crops and mixtures of maize, hemp and faba bean as binary and ternary crops were investigated at the Experimental Station of Vytautas Magnus University, Lithuania. The results showed that consumption of diesel fuel was 31–46% higher than in single and 22–35% higher than in binary cultivations was found in a ternary crop. This had influence on the highest energy input of near twice higher than in maize and hemp single crops and maize+hemp binary crop, but similar with binary crops with faba bean. Despite this, the productivity of the ternary crop and, at the same time, the energy output were 2–5 times higher than in other treatments. This compensated for higher energy inputs and the energy efficiency ratio. In the ternary crop, energy productivity was from 1.1 to 2.8 times higher and net energy was 1.9–5.3 times higher than in other tested cultivations. The highest total GHG emissions were obtained in binary maize+hemp and maize+faba bean cultivations (1729.84 and 2067.33 CO2eq ha−1). Ternary cultivation with the highest energy inputs initiated average GHG emissions of 1541.90 kg ha−1 CO2eq. For higher efficiency, the ternary crop could be sown and harvested in one machine pass. Faba beans should be included in ternary crops, as their biomass makes up a significant part of the total biomass produced. We recommend reviewing the intercropped faba bean seeding rates, as faba bean seeds have a high energy input equivalent. Full article
(This article belongs to the Special Issue Agricultural Biomass for Bioenergy and Bioproducts)
Show Figures

Figure 1

19 pages, 1281 KiB  
Article
In-Field Rainwater Harvesting Tillage in Semi-Arid Ecosystems: I Maize–Bean Intercrop Performance and Productivity
by Weldemichael Tesfuhuney, Muthianzhele Ravuluma, Admire Rukudzo Dzvene, Zaid Bello, Fourie Andries, Sue Walker and Davide Cammarano
Plants 2023, 12(17), 3027; https://doi.org/10.3390/plants12173027 - 23 Aug 2023
Cited by 5 | Viewed by 1586
Abstract
The purpose of this study was to monitor and compare the growth and productivity of maize/beans sole and inter-cropping systems under conventional (CON) and in-field rainwater harvesting (IRWH) tillage practices. During the typical drought conditions of the 2018/19 growing season, seven homestead gardens [...] Read more.
The purpose of this study was to monitor and compare the growth and productivity of maize/beans sole and inter-cropping systems under conventional (CON) and in-field rainwater harvesting (IRWH) tillage practices. During the typical drought conditions of the 2018/19 growing season, seven homestead gardens of smallholder farmers (four in Paradys and three in Morago villages) in the Thaba Nchu rural communities of South Africa were selected for on-farm demonstration trials. Two tillage systems CON and IRWH as the main plot and three cropping systems as sub-treatment (sole maize and beans and intercropping) were used to measure crop growth and productivity parameters. The results showed that IRWH tillage had significantly higher above-ground dry matter for both sole maize (29%) and intercropped maize (27%) compared to CON treatments. The grain yield under both tillage systems showed that IRWH-Sole >> IRWH-Ic >> CON-Sole >> CON-Ic, with values ranging from 878.2 kg ha−1 to 618 kg ha−1 (p ≤ 0.05). The low harvest index values (0.21–0.38) could have been due to the effect of the drought during the growing season. The results of precipitation use efficiency (PUE) showed that the IRWH tillage was more effective at converting rainwater into maize biomass and grain yield compared to CON tillage. However, the different cropping systems did not show a consistent trend in PUE. During the growing season, the PUE for AGDM varied for different tillage and cropping system treatments in Morago and Paradys. For maize, it ranged between 10.01–6.07 and 9.93–7.67 kg ha−1, while for beans, it ranged between 7.36–3.95 and 7.07–3.89 kg ha−1 mm−1. The PUE for grain yield showed similar trends with the significantly highest values of PUE under IRWH tillage systems for the Morago sites, but there were no significant differences at the Paradys site in both tillage and cropping systems. There is a critical need, therefore, to devise alternative techniques to promote an increase in smallholders’ productivity based on an improved ability to capture and use resources more efficiently. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

24 pages, 2802 KiB  
Article
In-Field Rainwater Harvesting Tillage in Semi-Arid Ecosystems: II Maize–Bean Intercrop Water and Radiation Use Efficiency
by Weldemichael Tesfuhuney, Muthianzhele Ravuluma, Admire Rukudzo Dzvene, Zaid Bello, Fourie Andries, Sue Walker and Davide Cammarano
Plants 2023, 12(16), 2919; https://doi.org/10.3390/plants12162919 - 11 Aug 2023
Cited by 3 | Viewed by 1614
Abstract
The purpose of this study was to evaluate alternative management practices such as in-field rainwater harvesting (IRWH) and intercropping techniques through conducting on-farm demonstrations. Seven homestead gardens in Thaba Nchu rural communities in the central part of South Africa were selected as demonstration [...] Read more.
The purpose of this study was to evaluate alternative management practices such as in-field rainwater harvesting (IRWH) and intercropping techniques through conducting on-farm demonstrations. Seven homestead gardens in Thaba Nchu rural communities in the central part of South Africa were selected as demonstration trials. Two tillage systems, conventional (CON) and IRWH, as the main plot, and three cropping systems as sub-plot (sole maize and beans and intercropping) were used to measure water use and radiation use parameters. The water productivity (WP) of various treatments was positively related to the radiation use efficiency (RUE), and the degree of associations varied for different tillage systems. The water use in IRWH was higher by 15.1%, 8.3%, and 10.1% over the CON for sole maize and beans and intercropping, respectively. Similarly, the intercropping system showed water use advantages over the solely growing crops by 5% and 8% for maize and by 16% and 12% for beans under IRWH and CON tillage, respectively. Maximum RUE was found for sole maize and beans under IRWH, higher by 13% and 55% compared to the CON tillage, respectively. The RUE under IRWH tillage was estimated to be 0.65 and 0.39 g DM MJ−1 in sole maize and intercropping, respectively. However, in sole and intercropped beans, the RUE showed higher values of 1.02 g DM MJ−1 and 0.73 g DM MJ−1, respectively. WP and RUE were associated with water deficits and proportional to lower radiation use. This relationship indicates that the intercepted radiation by plants for photosynthesis is directly related to the transpiration rate until radiation saturation occurs. Therefore, the higher water deficit and lesser efficiency in using the radiation available during the season can be improved by practicing IRWH techniques. Furthermore, in semi-arid areas, to enhance the efficiency of water and radiation usage in intercropping management, it is crucial to adjust plant population and sowing dates based on water availability and the onset of rainfall. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

17 pages, 2876 KiB  
Article
Evaluation of the Processing of Multi-Crop Plants into Pelletized Biofuel and Its Use for Energy Conversion
by Rita Petlickaitė, Algirdas Jasinskas, Rolandas Domeika, Nerijus Pedišius, Egidijus Lemanas, Marius Praspaliauskas and Savelii Kukharets
Processes 2023, 11(2), 421; https://doi.org/10.3390/pr11020421 - 31 Jan 2023
Cited by 8 | Viewed by 2473
Abstract
Multi-crop plants (fibrous hemp, maize, and faba bean) can potentially be an alternative to wood biomass pellets, but there is no detailed knowledge to support the suitability of this biomass for solid biofuel production. The aim of this study is to analyze and [...] Read more.
Multi-crop plants (fibrous hemp, maize, and faba bean) can potentially be an alternative to wood biomass pellets, but there is no detailed knowledge to support the suitability of this biomass for solid biofuel production. The aim of this study is to analyze and justify the suitability of multi-crop plant biomass for the production of biofuel pellets and to assess the environmental impact of burning them. This paper presents studies of physical-mechanical, thermal, and chemical characteristics of biofuel pellets from multi-crop plants and emissions during their combustion under laboratory conditions. The main parameters of the produced pellets were determined according to international standards, which are detailed in the methodology part. The length of the produced pellets ranged from 17.6 to 26.6 mm, and the diameter was about 6 mm. The density of wet pellets varied from 1077.67 to 1249.78 kg m−3. The amount of ash in the pellets varied from 5.75% to 8.02%. Determined lower calorific value of all pellets was close to 17.1 MJ kg−1. The lowest CO and CxHy emissions were determined when burning MIX2-1 pellets (biomass of the binary crop); their values were 572 and 29 ppm, respectively. The lowest content of CO2 was determined when burning S-Mz pellets (mono crop biomass), and it was 3.5%. The lowest NOx emissions were also determined when burning the pellets of this sample, with a value of 124 ppm. Research results show that multi-crop plants are a suitable raw material for the production of solid biofuel, the burning of which does not cause negative consequences for the environment. Full article
Show Figures

Figure 1

Back to TopTop