Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (839)

Search Parameters:
Keywords = batteries’ state of health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2796 KB  
Article
A GBRT-Based State-of-Health Estimation Method for Lithium-Ion Batteries
by Chun Chang, Yedong He, Yutong Wu, Yuanzhong Xu and Jiuchun Jiang
Energies 2026, 19(3), 659; https://doi.org/10.3390/en19030659 - 27 Jan 2026
Viewed by 30
Abstract
Lithium-ion batteries are widely applied in transportation, communication, and other fields. Nevertheless, during prolonged cycling operation, internal electrochemical reactions inevitably lead to the degradation of the state-of-health (SOH). To ensure the reliability and safety of lithium-ion batteries, accurate SOH estimation is of critical [...] Read more.
Lithium-ion batteries are widely applied in transportation, communication, and other fields. Nevertheless, during prolonged cycling operation, internal electrochemical reactions inevitably lead to the degradation of the state-of-health (SOH). To ensure the reliability and safety of lithium-ion batteries, accurate SOH estimation is of critical importance. Nevertheless, under practical operating conditions, obtaining fully recorded charge–discharge data is often impractical. Motivated by the practical charging behaviors of lithium-ion batteries, this paper proposes a practical SOH estimation method based on incremental capacity analysis, dynamic time warping (DTW), and gradient-boosting regression trees (GBRTs). Three health indicators—interval incremental capacity features, local capacity–voltage curve similarity, and segmented voltage curve similarity—are extracted. The proposed method requires only 0.13 V and 0.07 V voltage windows on the Oxford and CALCE datasets. The effectiveness of the proposed model is verified across both public datasets and laboratory test data. Experimental results demonstrate RMSE values of approximately 2.5% and 2.0%, respectively. Compared with mainstream SOH estimation algorithms, the proposed approach delivers comparable accuracy while achieving training time reductions of up to 57.6% and 91.9% relative to GPR and SVM, making it suitable for real-time battery management systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

24 pages, 848 KB  
Article
A Cost-Effectiveness Analysis of the Sentio Bone Conduction Hearing Implant System in the Australian Healthcare Setting
by Magnus Värendh, Ida Haggren, Helén Lagerkvist, Maria Åberg Håkansson and Jonas Hjelmgren
J. Mark. Access Health Policy 2026, 14(1), 8; https://doi.org/10.3390/jmahp14010008 - 27 Jan 2026
Viewed by 51
Abstract
Bone conduction hearing implant systems (BCHIs) are established treatments for patients with conductive or mixed hearing loss or single-sided deafness when conventional hearing aids are unsuitable. This study evaluated the cost-effectiveness of the active transcutaneous system Sentio versus a similar system, i.e., Osia [...] Read more.
Bone conduction hearing implant systems (BCHIs) are established treatments for patients with conductive or mixed hearing loss or single-sided deafness when conventional hearing aids are unsuitable. This study evaluated the cost-effectiveness of the active transcutaneous system Sentio versus a similar system, i.e., Osia in an Australian setting. Scenario analyses also compared Sentio to other systems, i.e., Ponto and Baha Attract. A Markov cohort model was adapted from a previously published source to reflect Australian practice, incorporating device acquisition, surgery, maintenance, battery replacement and adverse event management over a 15-year horizon from a healthcare perspective. Effectiveness inputs were derived from published evidence using a naïve indirect comparison. Extensive sensitivity analyses and external validation tested robustness. In the base case, Sentio was associated with lower costs and a small modelled incremental quality-adjusted life years (QALYs) gain versus Osia. Scenario analyses confirmed cost-effectiveness relative to Ponto and Baha Attract, with outcomes below the Australian willingness-to-pay threshold. Health state utility, device price and reimplantation assumptions were the most influential drivers, yet Sentio remained cost-effective in over 95% of simulations. These findings support Sentio as a clinically and economically efficient BCHI in Australia and highlight the need for direct utility and long-term durability data. Full article
Show Figures

Graphical abstract

12 pages, 1517 KB  
Article
High Volumetric Capacity Lithium Primary Battery via CuO and FeS2 All-Active-Material Cathodes
by Chen Cai, Byeongcheol Min and Gary M. Koenig
Energies 2026, 19(3), 615; https://doi.org/10.3390/en19030615 - 24 Jan 2026
Viewed by 201
Abstract
Low-voltage primary batteries broadly power small electronics used in health, biomedical, and wearable applications. These devices are generally more sensitive to volumetric capacity than gravimetric capacity. The current state-of-the-art button battery is Zn-Ag2O, where contributors that limit volumetric capacity include the [...] Read more.
Low-voltage primary batteries broadly power small electronics used in health, biomedical, and wearable applications. These devices are generally more sensitive to volumetric capacity than gravimetric capacity. The current state-of-the-art button battery is Zn-Ag2O, where contributors that limit volumetric capacity include the incorporation of inactive materials in the electrode microstructure such as gelling agents, binders, and conductive additives. Herein, cathode materials of CuO and FeS2 will be described for small form factor coin/button cells. When paired with Li metal anodes, the operating voltage is similar to Zn-Ag2O. The key innovation is that they will be processed into all-active-material (AAM) electrode architectures, where the electrodes will comprise only electroactive materials and pores that are filled with electrolyte during cell fabrication. The AAM architecture significantly enhanced electroactive material volume utilization, and thus volumetric capacity. FeS2 and CuO were processed into AAM electrodes under various processing conditions, and Li-FeS2 and Li-CuO primary batteries were fabricated and evaluated. At the cell level, volumetric capacity of 1300 mAh cm−3 was achieved, and in a button cell form factor 395/927, nearly 100 mAh was delivered, which compares favorably with commercially available options, which typically range from 27 to 55 mAh. Full article
Show Figures

Figure 1

38 pages, 2474 KB  
Review
A Comprehensive Review of Equivalent Circuit Models and Neural Network Models for Battery Management Systems
by Davide Pio Laudani, Davide Milillo, Michele Quercio, Francesco Riganti Fulginei and Lorenzo Sabino
Batteries 2026, 12(1), 37; https://doi.org/10.3390/batteries12010037 - 22 Jan 2026
Viewed by 138
Abstract
Lithium-ion batteries are the most widely used electrochemical energy storage technology due to their excellent performance. They play a crucial role in enabling the widespread adoption of sustainable transportation and renewable energy storage. Comprehensive battery monitoring, encompassing both performance and safety aspects, presents [...] Read more.
Lithium-ion batteries are the most widely used electrochemical energy storage technology due to their excellent performance. They play a crucial role in enabling the widespread adoption of sustainable transportation and renewable energy storage. Comprehensive battery monitoring, encompassing both performance and safety aspects, presents various challenges. Generally, this task is handled by a battery management system (BMS). Therefore, this paper provides a brief introduction to the key battery state parameters, such as the state of charge (SOC), state of health (SOH), and state of power (SOP). Subsequently, after a brief overview of BMS structural and software architectures, this work focuses on a detailed description of equivalent circuit models (ECMs) and artificial neural networks (ANNs), which represent part of the modeling approaches available in the literature, providing a characterization of the complex and nonlinear dynamics underlying lithium-ion batteries. These approaches are systematically evaluated, including hybrid methods to highlight their respective advantages, limitations, and suitability for different BMS functionalities. Full article
Show Figures

Figure 1

22 pages, 4138 KB  
Article
Mechanics of Lithium-Ion Batteries: Aging and Diagnostics
by Davide Clerici, Francesca Pistorio and Aurelio Somà
World Electr. Veh. J. 2026, 17(1), 55; https://doi.org/10.3390/wevj17010055 - 22 Jan 2026
Viewed by 161
Abstract
This work provides an overview of the mechanics of lithium-ion batteries, both from the aging and diagnostics perspective. Battery diagnostics based on mechanical measurements exploit the strong correlation between electrode lithiation and its deformation, resulting in macroscopic cell deformation. Macroscopic deformation is then [...] Read more.
This work provides an overview of the mechanics of lithium-ion batteries, both from the aging and diagnostics perspective. Battery diagnostics based on mechanical measurements exploit the strong correlation between electrode lithiation and its deformation, resulting in macroscopic cell deformation. Macroscopic deformation is then a proxy for lithium concentration, enabling estimation of state of charge (SOC) and degradation indicators such as loss of active material and lithium inventory. The results demonstrate that SOC estimation algorithms based on deformation measurements are more robust than voltage-based methods, which are sensitive to temperature and aging, requiring constant updates of the algorithm parameters. Moreover, the health of the battery can be assessed through the differential expansion method even under high-current operation, providing results consistent with the traditional differential voltage method but applicable to real-world industrial applications. Mechanics plays a crucial role also in battery degradation. This work presents the application of POLIDEMO, an advanced battery aging model that explicitly accounts for mechanical degradation phenomena, providing a physics-based framework describing the coupled electrochemical–mechanical aging processes in lithium-ion batteries. It enables the prediction of key degradation indicators, including capacity fade—capturing the characteristic knee-point behavior—and the irreversible battery thickness increase associated with long-term aging. The model is validated with multiple aging datasets, demonstrating that parameters calibrated under a single operating condition can accurately predict degradation across diverse aging scenarios. Full article
Show Figures

Figure 1

25 pages, 2287 KB  
Review
A Review of AI Applications in Lithium-Ion Batteries: From State-of-Health Estimations to Prognostics
by Tianqi Ding, Annette von Jouanne, Liang Dong, Xiang Fang, Tingke Fang, Pablo Rivas and Alex Yokochi
Energies 2026, 19(2), 562; https://doi.org/10.3390/en19020562 - 22 Jan 2026
Viewed by 85
Abstract
Battery management systems (BMSs) are integral components of electric vehicles (EVs), as they ensure the safe and efficient operation of lithium-ion batteries. State of health (SoH) estimation is one of the core functions of BMSs, providing an assessment of the current condition of [...] Read more.
Battery management systems (BMSs) are integral components of electric vehicles (EVs), as they ensure the safe and efficient operation of lithium-ion batteries. State of health (SoH) estimation is one of the core functions of BMSs, providing an assessment of the current condition of a battery, while prognostics aim to predict remaining useful life (RUL) as a function of the battery’s condition. An accurate SoH estimation allows proactive maintenance to prolong battery lifespan. Traditional SoH estimation methods can be broadly divided into experiment-based and model-based approaches. Experiment-based approaches rely on direct physical measurements, while model-driven approaches use physics-based or data-driven models. Although experiment-based methods can offer high accuracy, they are often impractical and costly for real-time applications. With recent advances in artificial intelligence (AI), deep learning models have emerged as powerful alternatives for SoH prediction. This paper offers an in-depth examination of AI-driven SoH prediction technologies, including their historical development, recent advancements, and practical applications, with particular emphasis on the implementation of widely used AI algorithms for SoH prediction. Key technical challenges associated with SoH prediction, such as computational complexity, data availability constraints, interpretability issues, and real-world deployment constraints, are discussed, along with possible solution strategies. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

19 pages, 1516 KB  
Article
Energy-Dynamics Sensing for Health-Responsive Virtual Synchronous Generator in Battery Energy Storage Systems
by Yingying Chen, Xinghu Liu and Yongfeng Fu
Batteries 2026, 12(1), 36; https://doi.org/10.3390/batteries12010036 - 21 Jan 2026
Viewed by 99
Abstract
Battery energy storage systems (BESSs) are increasingly required to provide grid-support services under weak-grid conditions, where the stability of virtual synchronous generator (VSG) control largely depends on the health status and dynamic characteristics of the battery unit. However, existing VSG strategies typically assume [...] Read more.
Battery energy storage systems (BESSs) are increasingly required to provide grid-support services under weak-grid conditions, where the stability of virtual synchronous generator (VSG) control largely depends on the health status and dynamic characteristics of the battery unit. However, existing VSG strategies typically assume fixed parameters and neglect the intrinsic coupling between battery aging, DC-link energy variations, and converter dynamic performance, resulting in reduced damping, degraded transient regulation, and accelerated lifetime degradation. This paper proposes a health-responsive VSG control strategy enabled by real-time energy-dynamics sensing. By reconstructing the DC-link energy state from voltage and current measurements, an intrinsic indicator of battery health and instantaneous power capability is established. This energy-dynamics indicator is then embedded into the VSG inertia and damping loops, allowing the control parameters to adapt to battery health evolution and operating conditions. The proposed method achieves coordinated enhancement of transient stability, weak-grid robustness, and lifetime management. Simulation studies on a multi-unit BESS demonstrate that the proposed strategy effectively suppresses low-frequency oscillations, accelerates transient convergence, and maintains stability across different aging stages. Full article
Show Figures

Figure 1

19 pages, 3222 KB  
Article
State of Health Estimation for Energy Storage Batteries Based on Multi-Condition Feature Extraction
by Wentao Tang, Xun Liu, Xiaohang Li, Jiangxue Shen, Zhiyuan Liao and Minming Gong
Batteries 2026, 12(1), 34; https://doi.org/10.3390/batteries12010034 - 21 Jan 2026
Viewed by 134
Abstract
In the field of energy transformation, the application of batteries is widening. To address the challenge of health state estimation of energy storage batteries with multiple operating conditions, this study analyzes the aging cycle operation data of lithium-ion batteries and develops a scheme [...] Read more.
In the field of energy transformation, the application of batteries is widening. To address the challenge of health state estimation of energy storage batteries with multiple operating conditions, this study analyzes the aging cycle operation data of lithium-ion batteries and develops a scheme to extract a number of raw features and their corresponding health status labels. Multidimensional candidate feature sets that capture aging information under different conditions are constructed. Subsequently, a three-stage feature selection strategy, including Pearson and Spearman correlation analysis, hierarchical redundancy elimination, and minimum redundancy maximum relevance, was applied to screen the candidate feature set of each condition, resulting in customized feature sets with condition adaptability. By analyzing the occurrence frequency and mean absolute correlation coefficient of each feature within the custom feature set, a comprehensive feature set with multi-condition adaptability was screened and determined. On this basis, by integrating temporal sequence information and operating condition information, a dual-path fusion estimation model with attention mechanism and condition modulation was established. The validation results of the lithium-ion battery multi-condition cycling aging dataset demonstrate that the model achieves accurate health state estimation, with mean absolute error and root mean square error of 0.8281% and 0.9835%, respectively. Finally, comparisons with other methods were conducted in terms of feature selection strategies and model estimation performance. The results demonstrate that the proposed approach achieves superior estimation accuracy and enhanced interpretability. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire: 2nd Edition)
Show Figures

Figure 1

15 pages, 2882 KB  
Article
Adopting Data-Driven Safety Management Strategy for Thermal Runaway Risks of Electric Vehicles: Insights from an Experimental Scenario
by Huxiao Shi, Yunli Xu, Jia Qiu, Yang Xu, Cuicui Zheng, Jie Geng, Davide Fissore and Micaela Demichela
Appl. Sci. 2026, 16(2), 996; https://doi.org/10.3390/app16020996 - 19 Jan 2026
Viewed by 116
Abstract
Thermal runaway (TR) of lithium-ion batteries (LIBs) represents a critical safety challenge in EV applications. This study explores the potential of data-driven safety management strategies for mitigating TR risks in EVs. To minimize the impact of external environmental factors on the degradation of [...] Read more.
Thermal runaway (TR) of lithium-ion batteries (LIBs) represents a critical safety challenge in EV applications. This study explores the potential of data-driven safety management strategies for mitigating TR risks in EVs. To minimize the impact of external environmental factors on the degradation of LIBs, experiments were conducted using an accelerating rate calorimeter (ARC). The intrinsic thermal behavior of six nickel–cobalt–manganese (NCM) cells at different states of health (SOH) and operating temperatures has been captured in created adiabatic conditions. Multiple sensors were deployed to monitor the temperature and electrochemical and environmental parameters throughout the degradation process until TR occurred. The results show that both the thermal and electrochemical stability of LIBs have been affected, exhibiting consistent thermal patterns and early electrochemical instability. Furthermore, even under adiabatic conditions, the degradation of LIBs show synergistic effects with environmental parameters such as chamber temperature and pressure. Correlation analysis further revealed the coupling relationships between the monitored parameters. Through calculating their correlation coefficients, the results indicate advantages of combining thermal, electrochemical, and environmental parameters as being to characterize the degradation of LIBs and enhance the identification of TR precursors. These findings stress the importance of considering the battery-environment system as a whole in safety management of EVs. They also provide insights into the development of data-driven safety management strategies, highlighting the potential for achievement and integration of anomaly detection, diagnosis, and prognostics functions in current EV management frameworks. Full article
(This article belongs to the Special Issue Safety and Risk Assessment in Industrial Systems)
Show Figures

Figure 1

23 pages, 5058 KB  
Article
Research on State of Health Assessment of Lithium-Ion Batteries Using Actual Measurement Data Based on Hybrid LSTM–Transformer Model
by Hanyu Zhang and Jifei Wang
Symmetry 2026, 18(1), 169; https://doi.org/10.3390/sym18010169 - 16 Jan 2026
Viewed by 239
Abstract
An accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safety and reliability of energy storage systems and electric vehicles. However, existing methods face challenges: physics-based models are computationally complex, traditional data-driven methods rely heavily [...] Read more.
An accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safety and reliability of energy storage systems and electric vehicles. However, existing methods face challenges: physics-based models are computationally complex, traditional data-driven methods rely heavily on manual feature engineering, and single models lack the ability to capture both local and global degradation patterns. To address these issues, this paper proposes a novel hybrid LSTM–Transformer model for LIB SOH estimation using actual measurement data. The model integrates Long Short-Term Memory (LSTM) networks to capture local temporal dependencies with the Trans-former architecture to model global degradation trends through self-attention mechanisms. Experimental validation was conducted using eight 18650 Nickel Cobalt Manganese (NCM) LIBs subjected to 750 charge–discharge cycles under room temperature conditions. Sixteen statistical features were extracted from voltage and current data during constant current–constant voltage (CC-CV) phases, with feature selection based on the Pearson correlation coefficient and maximum information coefficient analysis. The proposed LSTM–Transformer model demonstrated superior performance compared to the standalone LSTM and Transformer models, achieving a mean absolute error (MAE) as low as 0.001775, root mean square error (RMSE) of 0.002147, and mean absolute percentage error (MAPE) of 0.196% for individual batteries. Core features including cumulative charge (CC Q), charging time, and voltage slope during the constant current phase showed a strong correlation with the SOH (absolute PCC > 0.8). The hybrid model exhibited excellent generalization across different battery cells with consistent error distributions and nearly overlapping prediction curves with actual SOH trajectories. The symmetrical LSTM–Transformer hybrid architecture provides an accurate, robust, and generalizable solution for LIB SOH assessment, effectively overcoming the limitations of traditional methods while offering potential for real-time battery management system applications. This approach enables health feature learning without manual feature engineering, representing an advancement in data-driven battery health monitoring. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

34 pages, 10017 KB  
Article
U-H-Mamba: An Uncertainty-Aware Hierarchical State-Space Model for Lithium-Ion Battery Remaining Useful Life Prediction Using Hybrid Laboratory and Real-World Datasets
by Zhihong Wen, Xiangpeng Liu, Wenshu Niu, Hui Zhang and Yuhua Cheng
Energies 2026, 19(2), 414; https://doi.org/10.3390/en19020414 - 14 Jan 2026
Viewed by 236
Abstract
Accurate prognosis of the remaining useful life (RUL) for lithium-ion batteries is critical for mitigating range anxiety and ensuring the operational safety of electric vehicles. However, existing data-driven methods often struggle to maintain robustness when transferring from controlled laboratory conditions to complex, sensor-limited, [...] Read more.
Accurate prognosis of the remaining useful life (RUL) for lithium-ion batteries is critical for mitigating range anxiety and ensuring the operational safety of electric vehicles. However, existing data-driven methods often struggle to maintain robustness when transferring from controlled laboratory conditions to complex, sensor-limited, real-world environments. To bridge this gap, this study presents U-H-Mamba, a novel uncertainty-aware hierarchical framework trained on a massive hybrid repository comprising over 146,000 charge–discharge cycles from both laboratory benchmarks and operational electric vehicle datasets. The proposed architecture employs a two-level design to decouple degradation dynamics, where a Multi-scale Temporal Convolutional Network functions as the base encoder to extract fine-grained electrochemical fingerprints, including derived virtual impedance proxies, from high-frequency intra-cycle measurements. Subsequently, an enhanced Pressure-Aware Multi-Head Mamba decoder models the long-range inter-cycle degradation trajectories with linear computational complexity. To guarantee reliability in safety-critical applications, a hybrid uncertainty quantification mechanism integrating Monte Carlo Dropout with Inductive Conformal Prediction is implemented to generate calibrated confidence intervals. Extensive empirical evaluations demonstrate the framework’s superior performance, achieving a RMSE of 3.2 cycles on the NASA dataset and 5.4 cycles on the highly variable NDANEV dataset, thereby outperforming state-of-the-art baselines by 20–40%. Furthermore, SHAP-based interpretability analysis confirms that the model correctly identifies physics-informed pressure dynamics as critical degradation drivers, validating its zero-shot generalization capabilities. With high accuracy and linear scalability, the U-H-Mamba model offers a viable and physically interpretable solution for cloud-based prognostics in large-scale electric vehicle fleets. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

21 pages, 30287 KB  
Article
Online Estimation of Lithium-Ion Battery State of Charge Using Multilayer Perceptron Applied to an Instrumented Robot
by Kawe Monteiro de Souza, José Rodolfo Galvão, Jorge Augusto Pessatto Mondadori, Maria Bernadete de Morais França, Paulo Broniera Junior and Fernanda Cristina Corrêa
Batteries 2026, 12(1), 25; https://doi.org/10.3390/batteries12010025 - 10 Jan 2026
Viewed by 251
Abstract
Electric vehicles (EVs) rely on a battery pack as their primary energy source, making it a critical component for their operation. To guarantee safe and correct functioning, a Battery Management System (BMS) is employed, which uses variables such as State of Charge (SOC) [...] Read more.
Electric vehicles (EVs) rely on a battery pack as their primary energy source, making it a critical component for their operation. To guarantee safe and correct functioning, a Battery Management System (BMS) is employed, which uses variables such as State of Charge (SOC) to set charge/discharge limits and to monitor pack health. In this article, we propose a Multilayer Perceptron (MLP) network to estimate the SOC of a 14.8 V battery pack installed in a robotic vacuum cleaner. Both offline and online (real-time) tests were conducted under continuous load and with rest intervals. The MLP’s output is compared against two commonly used approaches: NARX (Nonlinear Autoregressive Exogenous) and CNN (Convolutional Neural Network). Performance is evaluated via statistical metrics, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), and we also assess computational cost using Operational Intensity. Finally, we map these results onto a Roofline Model to predict how the MLP would perform on an automotive-grade microcontroller unit (MCU). A generalization analysis is performed using Transfer Learning and optimization using MLP–Kalman. The best performers are the MLP–Kalman network, which achieved an RMSE of approximately 13% relative to the true SOC, and NARX, which achieved approximately 12%. The computational cost of both is very close, making it particularly suitable for use in BMS. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

20 pages, 3945 KB  
Article
Dual-Modal Mixture-of-KAN Network for Lithium-Ion Battery State-of-Health Estimation Using Early Charging Data
by Yun Wang, Ziyang Zhang and Fan Zhang
Energies 2026, 19(2), 335; https://doi.org/10.3390/en19020335 - 9 Jan 2026
Viewed by 276
Abstract
Accurate estimation of the state of health (SOH) of lithium-ion batteries is crucial for the safe operation of electric vehicles and energy storage systems. However, most existing methods rely on complete charging curves or manual feature engineering, making them difficult to adapt to [...] Read more.
Accurate estimation of the state of health (SOH) of lithium-ion batteries is crucial for the safe operation of electric vehicles and energy storage systems. However, most existing methods rely on complete charging curves or manual feature engineering, making them difficult to adapt to practical scenarios where only limited charging segments are available. To fully exploit degradation information from limited charging data, this paper proposes a dual-modal mixture of Kolmogorov–Arnold network (DM-MoKAN) for lithium-ion battery SOH estimation using only early-stage constant-current charging voltage data. The proposed method incorporates three synergistic modules: an image branch, a sequence branch, and a dual-modal fusion regression module. The image branch converts one-dimensional voltage sequences into two-dimensional Gramian Angular Difference Field (GADF) images and extracts spatial degradation features through a lightweight network integrating Ghost convolution and efficient channel attention (ECA). The sequence branch employs a patch-based Transformer encoder to directly model local patterns and long-range dependencies in the raw voltage sequence. The dual-modal fusion module concatenates features from both branches and feeds them into a MoKAN regression head composed of multiple KAN experts and a gating network for adaptive nonlinear mapping to SOH. Experimental results demonstrate that DM-MoKAN outperforms various baseline methods on both Oxford and NASA datasets, achieving average RMSE/MAE of 0.28%/0.19% and 0.89%/0.71%, respectively. Ablation experiments further verify the effective contributions of the dual-modal fusion strategy, ECA attention mechanism, and MoKAN regression head to estimation performance improvement. Full article
Show Figures

Figure 1

31 pages, 13729 KB  
Article
Stage-Wise SOH Prediction Using an Improved Random Forest Regression Algorithm
by Wei Xiao, Jun Jia, Wensheng Gao, Haibo Li, Hong Xu, Weidong Zhong and Ke He
Electronics 2026, 15(2), 287; https://doi.org/10.3390/electronics15020287 - 8 Jan 2026
Viewed by 167
Abstract
In complex energy storage operating scenarios, batteries seldom undergo complete charge–discharge cycles required for periodic capacity calibration. Methods based on accelerated aging experiments can indicate possible aging paths; however, due to uncertainties like changing operating conditions, environmental variations, and manufacturing inconsistencies, the degradation [...] Read more.
In complex energy storage operating scenarios, batteries seldom undergo complete charge–discharge cycles required for periodic capacity calibration. Methods based on accelerated aging experiments can indicate possible aging paths; however, due to uncertainties like changing operating conditions, environmental variations, and manufacturing inconsistencies, the degradation information obtained from such experiments may not be applicable to the entire lifecycle. To address this, we developed a stage-wise state-of-health (SOH) prediction approach that combined offline training with online updating. During the offline training phase, multiple single-cell experiments were conducted under various combinations of depth of discharge (DOD) and C-rate. Multi-dimensional health features (HFs) were extracted, and an accelerated aging probability pAA was defined. Based on the correlation statistics between HFs, kHF, the SOH, and pAA, all cells in the dataset were divided into general early, middle, and late aging stages. For each stage, cells were further classified by their longevity (long, medium, and short), and multiple models were trained offline for each category. The results show that models trained on cells following similar aging paths achieve significantly better performance than a model trained on all data combined. Meanwhile, HF optimization was performed via a three-step process: an initial screening based on expert knowledge, a second screening using Spearman correlation coefficients, and an automatic feature importance ranking using a random forest regression (RFR) model. The proposed method is innovative in the following ways: (1) The stage-wise multi-model strategy significantly improves the SOH prediction accuracy across the entire lifecycle, maintaining the mean absolute percentage error (MAPE) within 1%. (2) The improved model provides uncertainty quantification, issuing a warning signal at least 50 cycles before the onset of accelerated aging. (3) The analysis of feature importance from the model outputs allows the indirect identification of the primary aging mechanisms at different stages. (4) The model is robust against missing or low-quality HFs. If certain features cannot be obtained or are of poor quality, the prediction process does not fail. Full article
Show Figures

Figure 1

68 pages, 2705 KB  
Systematic Review
A Systematic Review of Computational and Data-Driven Approaches for Energy-Efficient Battery Management in Electrified Vehicles
by Milos Poliak, Damian Frej, Piotr Łagowski and Justyna Jaśkiewicz
Appl. Sci. 2026, 16(2), 618; https://doi.org/10.3390/app16020618 - 7 Jan 2026
Viewed by 338
Abstract
The dynamic growth of the electrified vehicle (xEV) market, including both electric and hybrid vehicles, has increased the demand for advanced Battery Management Systems (BMS). From an energy-systems perspective, xEV batteries act as distributed energy storage units that strongly interact with power grids, [...] Read more.
The dynamic growth of the electrified vehicle (xEV) market, including both electric and hybrid vehicles, has increased the demand for advanced Battery Management Systems (BMS). From an energy-systems perspective, xEV batteries act as distributed energy storage units that strongly interact with power grids, renewable generation, and charging infrastructure, making their efficient control a key element of low-carbon energy systems. Traditional BMS methods face challenges in accurately estimating key battery states and parameters, especially under dynamic operating conditions. This review systematically analyzes the progress in applying artificial intelligence, machine learning, and other advanced computational and data-driven algorithms to improve the performance of xEV battery management with a particular focus on energy efficiency, safe utilization of stored electrochemical energy, and the interaction between vehicles and the power system. The literature analysis covers key research trends from 2020 to 2025. This review covers a wide range of applications, including State of Charge (SOC) estimation, State of Health (SOH) prediction, and thermal management. We examine the use of various methods, such as deep learning, neural networks, genetic algorithms, regression, and also filtering algorithms, to solve these complex problems. This review also classifies the research by geographical distribution and document types, providing insight into the global landscape of this rapidly evolving field. By explicitly linking BMS functions with energy-system indicators such as charging load profiles, peak-load reduction, self-consumption of photovoltaic generation, and lifetime-aware energy use, this synthesis of contemporary research serves as a valuable resource for scientists and engineers who wish to understand the latest achievements and future directions in data-driven battery management and its role in modern energy systems. Full article
Show Figures

Figure 1

Back to TopTop