Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = bass transcription

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3536 KiB  
Article
Molecular Characterization and Nutritional Regulation of Two Fatty Acid Elongase (elovl8) Genes in Chinese Perch (Siniperca chuatsi)
by Yu He, Zhengyong Wen, Luo Zhou, Wanhong Zeng, Panita Prathomya, Tilin Yi and Qiong Shi
Biomolecules 2025, 15(4), 567; https://doi.org/10.3390/biom15040567 - 11 Apr 2025
Viewed by 685
Abstract
Proteins for elongation of very long-chain fatty acids (ELOVLs) are critical for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), and they are one group of the rate-limiting enzymes responsible for the initial condensation reaction within the fatty acid elongation. Elovl8 is a [...] Read more.
Proteins for elongation of very long-chain fatty acids (ELOVLs) are critical for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), and they are one group of the rate-limiting enzymes responsible for the initial condensation reaction within the fatty acid elongation. Elovl8 is a newly identified member of the ELOVL protein family, and its evolutionary and functional characterizations are still rarely reported. Here, we identified two elovl8 paralogues (named Scelovl8 and Scelovl8b) from Chinese perch (Siniperca chuatsi), and then their molecular and evolutionary characteristics, as well as potential roles involved in LC-PUFA biosynthesis, were examined. The ORFs of both Scelovl8a and Scelovl8b genes were 810 bp and 789 bp in length, encoding proteins of 270 and 263 amino acids, respectively. Multiple protein sequence comparisons indicated that elovl8 genes were highly conserved in teleosts, showing similar structural function domains. Meanwhile, phylogenetic analysis showed that the elovl8 gene family was clustered into two subclades of elovl8a and elovl8b, and Scelovl8a and Scelovl8b shared close relationships with banded archerfish elovl8a and striped bass elovl8b, respectively. Genetic synteny and gene structure analyses further confirmed that elovl8b is more conserved in comparison to elovl8a in teleosts. In addition, Scelovl8a was found to be highly expressed in the liver, while Scelovl8b was most abundant in the gills. Long-term food deprivation and refeeding are verified to regulate the transcription of Scelovl8a and Scelovl8b, and intraperitoneal injection of fish oil (FO) and vegetable oil (VO) significantly modified their gene expression as well. In summary, our results in this study indicate that elovl8 genes were conservatively unique to teleosts, and both elovl8 genes might be involved in the endogenous biosynthesis of LC-PUFAs in Chinese perch. These findings not only expand our knowledge on the evolutionary and functional characteristics of both elovl8 genes but also lay a solid basis for investigating regulatory mechanisms of LC-PUFA biosynthesis in various teleosts. Full article
(This article belongs to the Special Issue Vertebrate Comparative Genomics)
Show Figures

Figure 1

13 pages, 2089 KiB  
Article
Immunological Responses and Protection in the Largemouth Bass (Microterus salmoides) Immunized with Inactivated Vaccine Against Largemouth Bass Ranavirus (LMBRaV)
by Tao Yang, Jiale Zhai, Chenyang Li, Lingbing Zeng, Yiqun Li, Wenzhi Liu, Yan Meng, Yuding Fan, Zhenyu Huang, Yong Zhou and Nan Jiang
Animals 2025, 15(6), 803; https://doi.org/10.3390/ani15060803 - 12 Mar 2025
Viewed by 600
Abstract
The largemouth bass ranavirus (LMBRaV) caused significant mortality and economic loss in the largemouth bass aquaculture industry around the world, including China. Vaccination is an efficient method for virus defense. In this study, an inactivated LMBRaV vaccine was prepared, and the prevention effect [...] Read more.
The largemouth bass ranavirus (LMBRaV) caused significant mortality and economic loss in the largemouth bass aquaculture industry around the world, including China. Vaccination is an efficient method for virus defense. In this study, an inactivated LMBRaV vaccine was prepared, and the prevention effect as well as the immune responses were analyzed after the primary and the secondary immunization. Compared to the control group, the counts of leucocytes and erythrocytes increased and peaked at day 14 after the primary immunization, and the proportions of leucocytes, including lymphocytes, monocytes, and neutrophils, were also up-regulation after the primary immunization. Serum neutralizing antibody titers increased and peaked (1:128) at day 28 after the primary immunization. Following the secondary immunization, antibody titers were increased to a higher level (1:512) at 28 days after the secondary immunization. Quantitative real-time PCR analysis demonstrated varying degrees of up-regulation of mhc II, igM, il-1β, and cd8α transcriptions in the head kidney, which showed that innate and adaptive immune responses were both induced after the primary and the secondary immunization. After challenge with LMBRaV, the relative percent survival rates (RPS) for primary and secondary immunization with inactivated LMBRaV vaccine were determined to be 62.92% and 95.51%, respectively. Therefore, this study suggests that utilizing an inactivated LMBRaV vaccine could induce efficient immune responses and antibody, which might provide a potential efficient countermeasure for LMBRaV prevention. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

9 pages, 1781 KiB  
Communication
Fish Brain Cell Lines Can Be Infected with Adenoviral Vectors and Support Transgene Expression—An In Vitro Approach
by Alberto Cuesta and Yulema Valero
Int. J. Mol. Sci. 2024, 25(24), 13357; https://doi.org/10.3390/ijms252413357 - 12 Dec 2024
Cited by 2 | Viewed by 1152
Abstract
Host–pathogen interactions and the design of vaccines for aquaculture fish viruses are challenging and call for innovative approaches. This study explores the potential of adenoviral (Ad) vectors Ad5 and chimeric Ad5/40 as gene delivery tools for fish brain cells susceptible to neurotropic viruses. [...] Read more.
Host–pathogen interactions and the design of vaccines for aquaculture fish viruses are challenging and call for innovative approaches. This study explores the potential of adenoviral (Ad) vectors Ad5 and chimeric Ad5/40 as gene delivery tools for fish brain cells susceptible to neurotropic viruses. For this purpose, European sea bass (Dicentrarchus labrax) DLB-1 and gilthead seabream (Sparus aurata) SaB-1 brain cell lines were infected with Ad5 or Ad5/40 vectors expressing GFP, and we evaluated their capacity for infection by fluorescence microscopy and flow cytometry, as well as their antiviral innate immune response by the transcription of gene markers (irf3 and mx). We found that both vectors are able to infect DLB-1 and SaB-1 brain cell lines to similar levels, as demonstrated by fluorescence microscopy and flow cytometry, though the infection efficiency was low. In addition, infection with Ad vectors regulated the transcription of genes related to the interferon-mediated antiviral immune response. Our results indicate that the Ad5/40 vector achieves better infection and consistent cellular distribution. These findings suggest that these vectors may offer targeted gene delivery and local immune responses. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

19 pages, 5207 KiB  
Article
Characteristic Muscle Quality Parameters of Male Largemouth Bass (Micropterus salmoides) Distinguished from Female and Physiological Variations Revealed by Transcriptome Profiling
by Qingchun Wang, Siqi Lu, Yifan Tao, Jixiang Hua, Yan Zhuge, Wenhua Chen and Jun Qiang
Biology 2024, 13(12), 1029; https://doi.org/10.3390/biology13121029 - 8 Dec 2024
Cited by 3 | Viewed by 1562
Abstract
Male largemouth bass (Micropterus salmoides) are often overlooked because females grow faster. We explored the value of male largemouth bass by comparing muscle nutrition, texture, and transcriptomes between males and females. Females grew faster than males (p < 0.05) because [...] Read more.
Male largemouth bass (Micropterus salmoides) are often overlooked because females grow faster. We explored the value of male largemouth bass by comparing muscle nutrition, texture, and transcriptomes between males and females. Females grew faster than males (p < 0.05) because of lipid accumulation. Male fish muscles had higher contents of serine, valine, methionine, arginine, nervonic acid, and α-linolenic acid (p < 0.05), and female fish muscles had higher contents of aspartic acid, glycine, cysteine, leucine, palmitic acid, docosahexaenoic acid, and 11,14,17-eicosatrienoic acid (p < 0.05). Male muscles had a higher concentration of collagen fibers and greater shear force, indicative of a chewier texture. Male muscles had a lighter color, suggesting that they were less susceptible to oxidation and deterioration. Transcriptomic analyses revealed upregulation of lpl, sadb, dgat2, bhmt, tecrb, and hsd3b7, encoding components of amino acid and fatty acid metabolism; and upregulation of akt2, src, and kras, encoding crucial regulators of cellular immunity and homeostasis, in male muscles. Immunity-related pathways, including apoptosis, ErbB signaling, and cellular senescence, were enriched in male fish muscles, indicating heightened immune function. The muscles of male fish have a unique profile and distinctive advantages in terms of nutrition, flavor, texture, and transcriptional regulation. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

18 pages, 3237 KiB  
Article
Transcriptome Profiling Unveils the Mechanisms of Inflammation, Apoptosis, and Fibrosis in the Liver of Juvenile Largemouth Bass Micropterus salmoides Fed High-Starch Diets
by Xifeng Liu, Hongkang Liu, Kangwei Wang, Chuanjie Qin, Yuanfa He, Li Luo, Shimei Lin and Yongjun Chen
Animals 2024, 14(23), 3394; https://doi.org/10.3390/ani14233394 - 25 Nov 2024
Cited by 1 | Viewed by 1086
Abstract
The aim of this study was to explain the mechanism underlying the liver injury of juvenile largemouth bass Micropterus salmoides in response to high-starch diet intake. Three diets were formulated with different starch levels, being abbreviated as treatment LS (low starch, 8.13% starch), [...] Read more.
The aim of this study was to explain the mechanism underlying the liver injury of juvenile largemouth bass Micropterus salmoides in response to high-starch diet intake. Three diets were formulated with different starch levels, being abbreviated as treatment LS (low starch, 8.13% starch), MS (medium starch, 14.1% starch), and HS (high starch, 20.1% starch), respectively. Fish were fed with their respective diets to apparent satiation for 56 days. The results showed that growth retardation of the HS fish was associated with the reduction in feed intake rather than feed utilization. Histological evaluation of the livers showed that vacuolization was the most prevalent characteristic in the MS fish, while ballooning degeneration, apoptosis, fibrosis, and inflammation were observed in the HS fish. Transcriptome profiling suggested that liver inflammation was mediated by Tlr signal transduction, which activated the Pi3k/Akt/Nfκb signaling axis to promote the release of proinflammatory factors including Il-8 and Ip-10. Hepatocyte apoptosis was mediated by the extrinsic pathway through death receptors including Fas and Tnfr, which coordinately activated the Fadd/caspase-8 death signaling axis. An autonomous inhibition program was identified to counteract the apoptosis signal, and the PI3K/Akt signaling pathway might play an important role in this process through regulating the expression of iap and diablo. Liver fibrosis was mediated through the Tgf-β and Hh signaling pathways. Upon secretion, Tgf-β1/3 bound to TgfβrI/II complex on the liver cell membrane, which induced the phosphorylation of downstream Smad2/3. When Hh interacted with the membrane receptor Ptc, Smo was activated to initiate signaling, driving the activation of Gli. The activation of both Smad2/3 and Gli promoted their nuclear translocation thereby regulating the transcription of target genes, which resulted in the activation and proliferation of HSCs. The activated HSCs constantly expressed colla1 and ctgf, which facilitated substantial accumulation of ECM. It should be noted that the molecular mechanism of liver injury in this study was speculated from the transcriptome data thus further experimental verification is warranted for this speculation. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

12 pages, 2597 KiB  
Article
Identification and Characterization of Germ Cell Genes Vasa and Nanos-2 in the Ovary and Testis of White Crappie (Pomoxis annularis) and the Ovary of Black Crappie (P. nigromaculatus)
by Sujan Bhattarai, Nilima N. Renukdas, Anita M. Kelly, Amit Kumar Sinha, Sanjay Joshi and Dayan A. Perera
Fishes 2024, 9(10), 394; https://doi.org/10.3390/fishes9100394 - 30 Sep 2024
Viewed by 1346
Abstract
The vasa gene, encoding an ATP-dependent RNA helicase, and the nanos-2 gene, an RNA-binding protein, are essential for germ cell origination, migration, maintenance, and development in vertebrates and invertebrates. The expression levels of the vasa and nanos-2 genes have not yet been investigated [...] Read more.
The vasa gene, encoding an ATP-dependent RNA helicase, and the nanos-2 gene, an RNA-binding protein, are essential for germ cell origination, migration, maintenance, and development in vertebrates and invertebrates. The expression levels of the vasa and nanos-2 genes have not yet been investigated or reported in crappie species. These two genes were partially sequenced and characterized, and their expression patterns were analyzed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) according to age and sex. The vasa sequences of white crappie (WC) females and males showed significant similarity with the vasa homologs of largemouth bass (Micropterus salmoides; 93.1–93.98%) and smallmouth bass (M. dolomieu; 91.95–92.77%), indicating its conserved nature within the Family Centrarchidae. The vasa sequence of black crappie (BC) females showed significant similarity with the vasa homologs of white crappie (91.67%), largemouth bass (96.10%), smallmouth bass (96.10%), spotted scat (Scatophagus argus; 97.37%), mandarin fish (Siniperca chutasi; 96.15%), Japanese sea bass (Lateolabrax japonicus; 94.87%), lumpfish (Cyclopterus lumpus; 91.95%), southern bluefin tuna (Thunnus maccoyii; 94.74%), large yellow croaker (Larimichthys crocea; 92.21%), and Nile tilapia (Oreochromis niloticus; 92.21%). The nanos-2 sequences of WC females, WC males, and BC females showed significant similarity with the nanos-2 of largemouth bass (92.92–96.36%), smallmouth bass (92.92–96.36%), and mandarin fish (92.66–94.34%). The expression of vasa in BC females was significantly higher at age-2 than at age-1, while WC males and females presented no significant age-related differences. Neither species had a significant difference in nanos-2 gene expression with age. The expression levels of vasa and nanos-2 were significantly higher in WC males than females. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

13 pages, 1434 KiB  
Article
Efficiently Substituting Dietary Fish Meal with Terrestrial Compound Protein Enhances Growth, Health, and Protein Synthesis in Largemouth Bass
by Fang Chen, Zhirong Ding, Zeliang Su, Junfeng Guan, Chao Xu, Shuqi Wang, Yuanyou Li and Dizhi Xie
Animals 2024, 14(15), 2196; https://doi.org/10.3390/ani14152196 - 28 Jul 2024
Cited by 1 | Viewed by 1609
Abstract
Inappropriate substitution of dietary fishmeal (FM) can adversely affect the growth, health, and metabolism of carnivorous fish species. To effectively reduce the amount of dietary FM in carnivorous largemouth bass (Micropterus salmoides), a terrestrial compound protein (Cpro) with chicken meal, bone [...] Read more.
Inappropriate substitution of dietary fishmeal (FM) can adversely affect the growth, health, and metabolism of carnivorous fish species. To effectively reduce the amount of dietary FM in carnivorous largemouth bass (Micropterus salmoides), a terrestrial compound protein (Cpro) with chicken meal, bone meal, and black soldier fly protein was used to formulate four isoproteic (52%) and isolipidic (12%) diets, namely T1 (36% FM), T2 (30% FM), T3 (24% FM), and T4 (18% FM), for feeding juveniles (initial weight: ~12 g) for 81 days. Results indicated that the growth performance, feed efficiency, and morphological indicators, as well as muscle texture and edible quality of fish, did not differ significantly among the four groups. However, the muscle protein contents and ATP/AMP ratio of fish in the T4 group were significantly increased in comparison with those of fish in the T1 group, while the opposite was true for muscle glycogen. Compared with the T1 group, high serum total amino acid and MDA contents, as well as low AST activities, were observed in the T3 and T4 groups, and relatively high intestinal trypsin and lipase activities were found in the T2–T4 groups. The transcripts of intestinal proinflammatory cytokines (il-1β, il-6, and tnf-α) were downregulated in the T2–T4 groups compared with T1 group, while the expression of anti-inflammatory cytokines (il-10) and tight junction (zo-1 and occludin) showed the reverse trend. The mRNA expression of positive regulators related to protein synthesis (sirt1, pgc1-α, pi3k, and akt) were significantly upregulated in the muscle of fish fed diets T3 and T4, while their negative regulators (4e-bp1) mRNA levels were downregulated. The results indicate that the dietary FM of largemouth bass could be effectively reduced to at least 18% by the Cpro, which is beneficial to health, digestion, and protein synthesis for maintaining accelerated growth. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 1324 KiB  
Article
Comparative Analysis of Immune Gene Transcription in Sea Bream (Sparus aurata) Challenged with RGNNV or RGNNV/SJNNV Betanodaviruses
by Juan Gemez-Mata, Patricia Moreno, Daniel Alvarez-Torres, Esther Garcia-Rosado, Julia Bejar and M. Carmen Alonso
Pathogens 2024, 13(6), 478; https://doi.org/10.3390/pathogens13060478 - 4 Jun 2024
Cited by 1 | Viewed by 1163
Abstract
Gilthead sea bream and European sea bass display different resistance–susceptibility patterns during infection with different nervous necrosis virus (NNV) species, which may derive from differences in the triggered immune response. Based on this premise, we analysed the transcription of several selected immune-related genes [...] Read more.
Gilthead sea bream and European sea bass display different resistance–susceptibility patterns during infection with different nervous necrosis virus (NNV) species, which may derive from differences in the triggered immune response. Based on this premise, we analysed the transcription of several selected immune-related genes in sea bream experimentally infected with NNV isolates obtained from sea bass (DlNNV, RGNNV) or sea bream (SaNNV, RGNNV/SJNNV). Viral replication only occurred in SaNNV-inoculated fish; therefore, the differences between the immune response elicited by both viruses may be the key to understanding the mechanism behind the inhibition of DlNNV replication. Principal component analysis clustered samples according to the viral isolate from 1 day post infection onwards and evidenced differences in the immune response against both viruses, even though no mortalities or symptoms were recorded. The response against DlNNV is characterized by higher rtp3 transcription early after the infection, longer-lasting il-10 transcription and stronger induction of casp1 and hsp70. These genes should be targets for future studies in order to elucidate their role in hampering NNV replication in sea bream, which is essential for developing effective prophylactic measures. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

16 pages, 2207 KiB  
Article
Effects of Five Dietary Carbohydrate Sources on Growth, Glucose Metabolism, Antioxidant Capacity and Immunity of Largemouth Bass (Micropterus salmoides)
by Pengcheng Qian, Yan Liu, Hao Zhang, Penghui Zhang, Yuanyuan Xie and Chenglong Wu
Animals 2024, 14(10), 1492; https://doi.org/10.3390/ani14101492 - 17 May 2024
Viewed by 1869
Abstract
This study investigated the effects of glucose (GLU), tapioca starch (TS), gelatinized tapioca starch (GTS), potato starch (PS) and gelatinized potato starch (GPS) on growth and physiological responses in juvenile largemouth bass Micropterus salmoides. After 8 weeks, fish fed with starch diets [...] Read more.
This study investigated the effects of glucose (GLU), tapioca starch (TS), gelatinized tapioca starch (GTS), potato starch (PS) and gelatinized potato starch (GPS) on growth and physiological responses in juvenile largemouth bass Micropterus salmoides. After 8 weeks, fish fed with starch diets had better weight gain and growth rates. Counts of red blood cells and monocytes were increased in the PS and GPS groups, compared to GLU group. Contents of serum triglyceride and total cholesterol were markedly elevated in the TS, PS and GPS groups. There were lower levels of serum glucose, insulin and cholecystokinin, and higher agouti-related peptide contents in the PS group compared to GLU group. PS and GPS could enhance glycolysis and TCA cycle by increasing their enzyme activities and transcriptional levels. Additionally, starch sources markedly heightened mRNA levels of key genes involved in the respiratory electron transport chain. Additionally, elevated mRNA levels of key antioxidant genes were shown in the TS and GTS groups. Moreover, TS and PS could promote immunity by upregulating transcriptional levels of the complement system, lysozyme and hepcidin. Taken together, starch exhibited better growth via increasing glycolysis and TCA cycle compared with GLU, and PS could improve antioxidant and immune capacities in largemouth bass. Full article
Show Figures

Figure 1

16 pages, 2818 KiB  
Article
Synthetic Antimicrobial Peptides Fail to Induce Leucocyte Innate Immune Functions but Elicit Opposing Transcriptomic Profiles in European Sea Bass and Gilthead Seabream
by Laura Cervera, Elena Chaves-Pozo and Alberto Cuesta
Mar. Drugs 2024, 22(2), 86; https://doi.org/10.3390/md22020086 - 14 Feb 2024
Cited by 4 | Viewed by 2342
Abstract
Antimicrobial peptides (AMPs) are promising molecules in diverse fields, including aquaculture. AMPs possess lytic effects on a wide range of pathogens, resulting in a potential replacement for traditional antimicrobials in aquaculture. In addition, they also have modulatory effects on host immune responses. Thus, [...] Read more.
Antimicrobial peptides (AMPs) are promising molecules in diverse fields, including aquaculture. AMPs possess lytic effects on a wide range of pathogens, resulting in a potential replacement for traditional antimicrobials in aquaculture. In addition, they also have modulatory effects on host immune responses. Thus, the objective of this work was to evaluate the immunomodulatory capability of three known synthetic AMPs derived from European sea bass, NK-lysin (Nkl), hepcidin (Hamp), and dicentracin (Dic), in head-kidney cell suspensions from European sea bass and gilthead seabream. The tested peptides were neither cytotoxic for European sea bass nor gilthead seabream cells and failed to modulate the respiratory burst and phagocytosis activities. However, they modified the pattern of transcription of immune-related genes differently in both species. Peptides were able to promote the expression of marker genes for anti-inflammatory (il10), antiviral (mx, irf3), cell-mediated cytotoxicity (nccrp1, gzmb), and antibody responses (ighm) in European sea bass, with the Nkl peptide being the most effective. Contrary to this, the effects of those peptides on gilthead seabream mainly resulted in the suppression of immune responses. To conclude, European sea bass-derived peptides can be postulated as potential tools for immunostimulation in European sea bass fish farms, but more efforts are required for their universal use in other species. Full article
(This article belongs to the Special Issue Marine Drugs Research in Spain 2nd Edition)
Show Figures

Figure 1

12 pages, 8351 KiB  
Article
Transcriptomic Comparison of Liver Tissue across Different Largemouth Bass (Micropterus salmoides) Strains
by Fan Zhou, Xuelin Zhang, Gaohua Yao, Xiaoming Chen, Ming Qi, Qin Zhou, Ningyu Zhu, Qinghui Meng, Yu Zhang and Xueyan Ding
Fishes 2023, 8(11), 558; https://doi.org/10.3390/fishes8110558 - 19 Nov 2023
Cited by 2 | Viewed by 1523
Abstract
Over the past few years, China has become a hotspot for the domestication of the commercially valuable largemouth bass (Micropterus salmoides). Although the food preference of this fish has been studied, little is known about the genes regulating its growth. Population [...] Read more.
Over the past few years, China has become a hotspot for the domestication of the commercially valuable largemouth bass (Micropterus salmoides). Although the food preference of this fish has been studied, little is known about the genes regulating its growth. Population breeding was performed using two indigenous strains (QT1 and QT2), with the results showing that the organ/body ratio, abdominal fat rate and the body weight gain of QT1 and QT2 were higher than for the offspring YL1 and Y3 which are extensively cultured in China. Subsequent RNA sequencing (RNA-Seq) allowed for the identification of potential genes and pathways involved in growth performance. Overall, the transcriptome analysis generated 89,056 transcripts and 42,529 Unigenes. A PCA revealed significant differences between QT1 and the other three strains, while the other three strains did not show much difference. A KEGG enrichment analysis of differentially expressed genes showed that steroid biosynthesis was the most enriched pathway among the four strains. These pathways could be related to the growth of largemouth bass. In addition, a co-expression network analysis suggested a strong interaction between liver steroid biosynthesis and the genes for photosynthesis, secondary metabolism and stress response. Taken together, the above results can provide new insights into the liver metabolism of different strains of largemouth bass during culture and provide references for the subsequent domestication and breeding programs of largemouth bass. Full article
(This article belongs to the Special Issue Immune Response in Fish)
Show Figures

Figure 1

16 pages, 13071 KiB  
Article
Comparative Transcriptomic Analysis of Largemouth Bass (Micropterus salmoides) Livers Reveals Response Mechanisms to High Temperatures
by Fan Zhou, Ming Qi, Jiapeng Li, Yuanfei Huang, Xiaoming Chen, Wei Liu, Gaohua Yao, Qinghui Meng, Tianlun Zheng, Zhanqi Wang and Xueyan Ding
Genes 2023, 14(11), 2096; https://doi.org/10.3390/genes14112096 - 17 Nov 2023
Cited by 10 | Viewed by 2087
Abstract
High temperatures are considered one of the most significant limitations to subtropical fishery production. Largemouth bass (Micropterus salmoides) is an economically important freshwater species grown in subtropical areas, which are extremely sensitive to heat stress (HS). However, comprehensive transcriptomic data for [...] Read more.
High temperatures are considered one of the most significant limitations to subtropical fishery production. Largemouth bass (Micropterus salmoides) is an economically important freshwater species grown in subtropical areas, which are extremely sensitive to heat stress (HS). However, comprehensive transcriptomic data for the livers of largemouth bass in response to HS are still lacking. In this study, a comparative transcriptomic analysis was performed to investigate the gene expression profiles of the livers of largemouth bass under HS treatment. As a result, 6114 significantly differentially expressed genes (DEGs), which included 2645 up-regulated and 3469 down-regulated genes, were identified in response to HS. Bioinformatics analyses demonstrated that the ‘ECM-receptor interaction’ pathway was one of the most dramatically changed pathways in response to HS, and eight DEGs assigned to this pathway were taken as hub genes. Furthermore, the expression of these eight hub genes was determined by quantitative reverse transcription PCR, and all of them showed a significant change at the transcriptional level, suggesting a crucial role of the ‘ECM-receptor interaction’ pathway in the response of largemouth bass to HS. These findings may improve our understanding of the molecular mechanisms underlying the response of largemouth bass to HS. Full article
(This article belongs to the Special Issue Genetics and Genomics Applied to Aquatic Animal Science)
Show Figures

Figure 1

24 pages, 5688 KiB  
Article
The bZIP Transcription Factor Family Orchestrates the Molecular Response to Nitrite Stress in the Largemouth Bass Spleen
by Yan Sun, Yi Huang, Ying Wang, Yanqun Wang, Guiying Hao, Changwei Jiang and Zhiqiu Huang
Fishes 2023, 8(11), 540; https://doi.org/10.3390/fishes8110540 - 1 Nov 2023
Cited by 2 | Viewed by 1815
Abstract
Nitrite toxicity poses a significant threat to aquatic organisms, including largemouth bass (LMB) and Micropterus salmoides. This study aimed to elucidate the role of bZIP transcription factors in mediating the molecular responses to nitrite stress in the LMB spleen. We identified 120 [...] Read more.
Nitrite toxicity poses a significant threat to aquatic organisms, including largemouth bass (LMB) and Micropterus salmoides. This study aimed to elucidate the role of bZIP transcription factors in mediating the molecular responses to nitrite stress in the LMB spleen. We identified 120 bZIP genes in the LMB genome using bioinformatics analysis and divided them into 11 subgroups based on phylogenetic relationships. Under nitrite stress, the bZIP_XI subgroup was upregulated, suggesting the activation of the stress response in the LMB spleen. Cellular pathway analysis revealed enrichment of pathways related to stress response, DNA repair, apoptosis, and autophagy. Co-expression network analysis highlighted bZIP_XI members such as msabZIP_49, msabZIP_12, msabZIP_39, and msabZIP_116 as potential key regulators. These transcription factors likely modulated the expression of stress-related genes like VCAM1, POLE3, and BMP1. Conserved binding motifs in the promoters of these genes may support regulation by bZIP_XI. Furthermore, bZIP_XI members correlated with immune cell infiltration in the spleen, potentially regulating immune-related genes like BCL2L1 and SELE. Homologs of bZIP_XI in other fish species exhibited similar expression patterns under stress. Overall, this study implicates the bZIP transcription factor family, notably the bZIP_XI subgroup, in orchestrating the molecular response of the LMB spleen to nitrite toxicity by regulating stress response pathways and immune function. These findings provide insights into nitrite stress adaptation in fish. Full article
Show Figures

Figure 1

25 pages, 421 KiB  
Article
Live Yeast (Saccharomyces cerevisiae var. boulardii) Supplementation in a European Sea Bass (Dicentrarchus labrax) Diet: Effects on the Growth and Immune Response Parameters
by Anna Perdichizzi, Martina Meola, Letteria Caccamo, Gabriella Caruso, Francesco Gai and Giulia Maricchiolo
Animals 2023, 13(21), 3383; https://doi.org/10.3390/ani13213383 - 31 Oct 2023
Cited by 5 | Viewed by 3360
Abstract
The present study has been aimed at evaluating the effects of the dietary inclusion of the live yeasts, Saccharomyces cerevisiae var. boulardii (LSB) administered at increasing concentrations (0, 100, and 300 mg kg−1 of feed, here referred to as LSB 0, 100, [...] Read more.
The present study has been aimed at evaluating the effects of the dietary inclusion of the live yeasts, Saccharomyces cerevisiae var. boulardii (LSB) administered at increasing concentrations (0, 100, and 300 mg kg−1 of feed, here referred to as LSB 0, 100, 300) for 90 days, on the health conditions of European sea bass. The main zootechnical parameters, histological and morphological analyses, innate immunity response parameters (intestinal cytokine expression, lysozyme content, spontaneous hemolytic and hemagglutinating activities, antibacterial activities, and peroxidase activity) were measured as fish welfare parameters. LSB did not impair either growth parameters or the morphometric indexes. LSB down-regulated interleukin-1β transcription in the distal gut of fish treated with 5.4 × 105 CFU g−1 (LSB100) for 21 days. The interleukin-6 mRNA level decreased significantly in the proximal gut for both doses of yeast, after 21 days of feeding; the gene expression of interleukin-6 was significantly lower in the sea bass fed 10.81 × 105 CFU g−1 (LSB300) probiotic. The levels of TNF-α mRNA were not influenced by probiotic supplementation. Increases, although not significant, in the hematological and immunological parameters were also recorded. The data collected in the present study suggests that an LSB-supplemented diet acts on the gut immune system of sea bass by modulating the expression of the key inflammatory genes. Full article
14 pages, 2808 KiB  
Article
Effects of LPS, Poly (I:C) and Edwardsiella tarda on the Expression Patterns of IL-17 Family Members and Their Receptors in Spotted Sea Bass (Lateolabrax maculatus)
by Shuai Wan, Zhaosheng Sun, Chang Zhang, Tingshuang Pan, Shuya Yuan, Yuxi Chen, Jun Zou and Qian Gao
Fishes 2023, 8(8), 405; https://doi.org/10.3390/fishes8080405 - 4 Aug 2023
Cited by 3 | Viewed by 1652
Abstract
In fish, the immune system plays a crucial role in defending against pathogen-induced infections. The interleukin 17 (IL-17) family, which is a well-studied class of cytokines, serves as a key component of the immune response against external pathogens. In this research, four IL-17 [...] Read more.
In fish, the immune system plays a crucial role in defending against pathogen-induced infections. The interleukin 17 (IL-17) family, which is a well-studied class of cytokines, serves as a key component of the immune response against external pathogens. In this research, four IL-17 ligands (IL-17A/F1, IL-17B, IL-17C and IL-17D) and one receptor (IL-17RB) genes were identified from spotted sea bass (Lateolabrax maculatus). Alignment analysis showed that the C-terminal region of IL-17 ligands in spotted sea bass was highly conserved. The expression of the IL-17 ligand and receptor genes differed in unstimulated tissues. To investigate the impact of various factors on the immune response of spotted sea bass, we assessed the effect of lipopolysaccharide (LPS), polyinosinic–polycytidylic acid [poly (I:C)] and Edwardsiella tarda treatment on the IL-17 ligands and receptor responses. Our results reveal that the expression of the IL-17 ligand and receptor transcripts is modulated by LPS, poly (I:C) and E. tarda, indicating their significant role in the immune system. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

Back to TopTop