error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = basement membrane extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1486 KB  
Review
Next-Generation Hydrogels for Biliary Organoid Engineering
by Andrea Marfoglia and Giovanni Sorrentino
Pharmaceuticals 2025, 18(12), 1781; https://doi.org/10.3390/ph18121781 - 23 Nov 2025
Viewed by 1009
Abstract
The biliary tree is a fundamental structural and functional component of the liver, lined with cholangiocytes which control bile flow and regulate bile homeostasis. In addition to their physiological roles, cholangiocytes are involved in pathological processes known as cholangiopathies. These biliary disorders significantly [...] Read more.
The biliary tree is a fundamental structural and functional component of the liver, lined with cholangiocytes which control bile flow and regulate bile homeostasis. In addition to their physiological roles, cholangiocytes are involved in pathological processes known as cholangiopathies. These biliary disorders significantly impair liver function, and their effects are often irreversible, making liver transplantation the only curative option. This substantial clinical burden highlights the need for innovative bioengineered strategies to study disease mechanisms and to restore or replace biliary tissue. In this framework, biliary organoids offer a robust platform to model liver diseases in vitro with physiological accuracy. Compared with traditional 2D or explant-based systems, organoids provide higher physiological relevance, patient specificity, and scalability, although challenges remain in standardization and clinical translation. Organoids are traditionally cultured within basement membrane extract (BME) matrices, which are commercially available under various names. While BME-based matrices support organoid growth and function, their undefined composition, variability, and animal origin limit reproducibility and clinical translation. These drawbacks have driven the development of alternative matrices based on engineered hydrogels. Hydrogels, whether of natural or synthetic origin, provide chemically defined and tunable environments that allow independent modulation of their biochemical and biophysical properties. Acting at the interface between materials science and biology, they enable the creation of microenvironments with precisely controlled cues. In this review, we summarize advances in biliary organoid bioengineering and discuss how hydrogel-based systems are shaping next-generation platforms for organoid growth, differentiation, and disease modeling toward more translationally relevant biliary models. Full article
(This article belongs to the Special Issue 2D and 3D Culture Systems: Current Trends and Biomedical Applications)
Show Figures

Figure 1

26 pages, 1268 KB  
Review
Epigenetic Mechanisms in Fabry Disease: A Thematic Analysis Linking Differential Methylation Profiles and Genetic Modifiers to Disease Phenotype
by Jatinder Singh, Paramala Santosh and Uma Ramaswami
Curr. Issues Mol. Biol. 2025, 47(10), 855; https://doi.org/10.3390/cimb47100855 - 16 Oct 2025
Viewed by 785
Abstract
Background/Objectives: Fabry disease is an X-linked lysosomal storage disorder. It is characterised by impaired metabolism of glycosphingolipids whose accumulation causes irreversible organ damage and life-threatening complications. Genotype–phenotype correlations have a limited scope in Fabry disease as the disorder presents with wide-ranging [...] Read more.
Background/Objectives: Fabry disease is an X-linked lysosomal storage disorder. It is characterised by impaired metabolism of glycosphingolipids whose accumulation causes irreversible organ damage and life-threatening complications. Genotype–phenotype correlations have a limited scope in Fabry disease as the disorder presents with wide-ranging clinical variability. In other X-linked disorders, epigenetic profiling has identified methylation patterns and disease modifiers that may explain clinical heterogeneity. In this narrative review and thematic analysis, the role of DNA methylation and epigenetics on the clinical phenotype in Fabry disease was investigated. Methods: Embase, PubMed, and PsycINFO were searched to identify literature on DNA methylation and epigenetics in Fabry disease. Based on the eligibility criteria, 20 articles were identified, and a thematic analysis was performed on the extracted data to identify themes. Results: Three themes emerged: (I) genetic modifiers, (II) methylation profiling, and (III) insights into X chromosome inactivation (XCI). The evidence synthesis revealed that telomere length, especially in early disease stages, bidirectional promoter (BDP) methylation by sphingolipids, epigenetic reader proteins, mitochondrial DNA haplogroups, and DNA methylation of the promoter region of the calcitonin receptor gene are potential genetic modifiers in Fabry disease. Methylation patterns also reveal episignatures in Fabry disease evolution and genes implicated in the maintenance of basement membranes. Studies on XCI further emphasise disease heterogeneity and draw attention to methodological issues in the assessment of XCI. Conclusions: This thematic review shows that DNA methylation and genetic modifiers are key factors modifying clinical variability in Fabry disease. More broadly, it underscores a crucial role for epigenetic processes in driving disease onset, progression, and severity in X-linked disorders. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

11 pages, 1507 KB  
Article
Peony Root Extract Controls AGE–RAGE Interaction, Suppresses AGE Formation, and Reduces Skin Dullness
by Kyoko Kanai, Kazal Boron Biswas, Asuka Hirasawa, Misaki Futamura, Kiyotaka Tanaka and Kotaro Sakamoto
Cosmetics 2025, 12(4), 163; https://doi.org/10.3390/cosmetics12040163 - 4 Aug 2025
Viewed by 3356
Abstract
Skin dullness contributes to a fatigued and aged appearance, often exceeding one’s biological age. It is a common dermatological concern influenced by aging and poor lifestyle habits, regardless of ethnicity or age. This study aimed to examine advanced glycation end products (AGEs) and [...] Read more.
Skin dullness contributes to a fatigued and aged appearance, often exceeding one’s biological age. It is a common dermatological concern influenced by aging and poor lifestyle habits, regardless of ethnicity or age. This study aimed to examine advanced glycation end products (AGEs) and their receptor (receptor for AGEs [RAGE]) as contributing factors to skin dullness. AGEs themselves have a yellowish hue, contributing to “yellow dullness.” Additionally, AGE–RAGE signaling promotes melanin production in melanocytes and impairs keratinocyte differentiation as a result of inflammation. Therefore, regulating the AGE–RAGE interaction may help reduce skin dullness. Through screening various natural ingredients, we found that peony root extract (PRE) inhibits AGE formation and blocks AGE–RAGE binding. Furthermore, the presence of PRE leads to the suppression of AGE-induced melanin production in melanocytes and the restoration of impaired keratinocyte differentiation in glycated basement membrane components. In a human clinical study, topical application of a 1% PRE-containing lotion for 2 weeks significantly reduced melanin content, with a trend toward decreased AGE accumulation and visible spots on the cheeks. These findings support the potential of PRE as a multifunctional cosmetic ingredient that comprehensively addresses skin dullness by modulating the AGE–RAGE interaction. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

18 pages, 6620 KB  
Review
Extracellular-Matrix-Mimetic Hydrogels by Using Nanomaterials
by Do Gyun Kim and Gi Doo Cha
Int. J. Mol. Sci. 2025, 26(11), 4987; https://doi.org/10.3390/ijms26114987 - 22 May 2025
Cited by 6 | Viewed by 3747
Abstract
Matrigel, a tumor-derived basement membrane extract, has been commercially used in the field of cell culture and tissue engineering due to its extracellular-matrix-mimetic (ECM-mimetic) properties. However, its batch-to-batch variability and limited mechanical tunability hinder reproducibility and clinical translation. To overcome these issues, synthetic [...] Read more.
Matrigel, a tumor-derived basement membrane extract, has been commercially used in the field of cell culture and tissue engineering due to its extracellular-matrix-mimetic (ECM-mimetic) properties. However, its batch-to-batch variability and limited mechanical tunability hinder reproducibility and clinical translation. To overcome these issues, synthetic ECM-mimetic hydrogels have been developed to improve reproducibility and biocompatibility. While they are effective in mimicking ECMs, these materials must go beyond passive replication by implementing the complex functionalities of the ECM. The integration of nanomaterials with hydrogel could address this need by reinforcing mechanical properties, enabling various functionalities, and featuring dynamic responsiveness. In this review, we present the evolution from Matrigel to ECM-mimetic hydrogels and ECM-mimetic hydrogel nanocomposites, exploring their key advancements and challenges. We will discuss the advantages and disadvantages of the transition from Matrigel to ECM-mimetic hydrogels and ECM-mimetic hydrogel nanocomposites, along with cases that have addressed Matrigel’s limitations and added new functionalities. Furthermore, we discuss future directions for the design of the ECM-mimetic hydrogels, emphasizing how nanotechnology strategies can drive innovation in tissue engineering and regenerative medicine. Full article
Show Figures

Figure 1

11 pages, 2650 KB  
Brief Report
The TIP60-CD44 Axis Modulates Colorectal Cancer Stemness
by Asad Mohammad and Sudhakar Jha
Cells 2025, 14(10), 686; https://doi.org/10.3390/cells14100686 - 9 May 2025
Viewed by 1334
Abstract
HIV-1 Tat-interactive protein of 60 kDa (TIP60) is a lysine acetyltransferase protein that can acetylate histone and non-histone proteins. This study highlights TIP60’s role in regulating colorectal cancer (CRC) stemness. The depletion of TIP60 resulted in a marked decrease in cellular proliferation, highlighting [...] Read more.
HIV-1 Tat-interactive protein of 60 kDa (TIP60) is a lysine acetyltransferase protein that can acetylate histone and non-histone proteins. This study highlights TIP60’s role in regulating colorectal cancer (CRC) stemness. The depletion of TIP60 resulted in a marked decrease in cellular proliferation, highlighting TIP60’s involvement in the progression of CRC. Additionally, the loss of TIP60 impacted colony formation, transitioning from densely packed structures to dispersed spindle networks along with the loss of E-cadherin, indicating its role in the epithelial–mesenchymal transition (EMT). Three-dimensional culture models suggest that TIP60 is vital for spheroid formation, highlighting its importance in maintaining cancer stem cell properties in CRC. TIP60-depleted cells showed increased invasion in a 3D basement membrane extract (BME) invasion matrix, demonstrating its essential role in cellular invasiveness. Mechanistically, the reduction of TIP60 resulted in a decrease in CD44 expression, a critical marker for cancer stem cells (CSCs). Notably, CD44 overexpression restored the efficiency of spheroid formation and cell proliferation while reversing the EMT phenotype. Developing the TIP60-CD44 axis as a therapeutic target to treat CRC stemness and metastasis will help decrease the burden due to the deadly disease. Full article
(This article belongs to the Collection Cancer Stem Cells and Drug Resistance)
Show Figures

Graphical abstract

16 pages, 2559 KB  
Article
A Self-Adaptive Strip Pooling Network for Segmenting the Kidney Glomerular Basement Membrane
by Caifang Song, Xiangsheng Huang and Xiangyu Lyu
Sensors 2025, 25(6), 1829; https://doi.org/10.3390/s25061829 - 14 Mar 2025
Viewed by 1147
Abstract
Accurate semantic segmentation and automatic thickness measurement of the glomerular basement membrane (GBM) can aid pathologists in carrying out subsequent pathological diagnoses. The GBM has a complex ultrastructure and irregular shape, which makes it difficult to segment accurately. We found that the shape [...] Read more.
Accurate semantic segmentation and automatic thickness measurement of the glomerular basement membrane (GBM) can aid pathologists in carrying out subsequent pathological diagnoses. The GBM has a complex ultrastructure and irregular shape, which makes it difficult to segment accurately. We found that the shape of the GBM is striped, so we proposed an RSP model to extract both the strip and square features of the GBM. Additionally, grayscale images of the GBM are similar to those of surrounding tissues, and the contrast is low. We added an edge attention mechanism to further improve the quality of segmentation. Moreover, we revised the pixel-level loss function to consider the tissues around the GBM and locate the GBM as a doctor would, i.e., by using the tissues as the reference object. Ablation experiments with each module showed that SSPNet can better segment the GBM. The proposed method was also compared with the existing medical semantic segmentation model. The experimental results showed that the proposed method can obtain high-precision segmentation results for the GBM and completely segment the target. Finally, the thickness of the GBM was calculated using a skeleton extraction method to provide quantitative data for expert diagnosis. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

12 pages, 1767 KB  
Article
Proteome Expression Signatures: Differences between Orbital and Subcutaneous Abdominal Adipose Tissues
by Noam Castel, Edward Vitkin, Sharon Shabo, Ariel Berl, Julia Wise, Amir Duenyas, Eliyahu Michael Aharon Cohen, Alexander Golberg and Avshalom Shalom
Life 2024, 14(10), 1308; https://doi.org/10.3390/life14101308 - 15 Oct 2024
Viewed by 1434
Abstract
Differences between orbital and subcutaneous abdominal fat in the same patient have been noted but not formally investigated, previously. The objective of this research was to compare the differential expression of protein profiles in subcutaneous abdominal and orbital adipose tissues. In this cross-sectional, [...] Read more.
Differences between orbital and subcutaneous abdominal fat in the same patient have been noted but not formally investigated, previously. The objective of this research was to compare the differential expression of protein profiles in subcutaneous abdominal and orbital adipose tissues. In this cross-sectional, observational study, orbital fat tissue was sampled from 10 patients who underwent blepharoplasty and agreed to provide a small sample of subcutaneous abdominal fat. Shotgun mass spectrometry was performed on the extracted proteome. Data were analyzed using protein appearance patterns, differential expression and statistical enrichment. Protein analysis revealed significant differences in proteomics and differential expression between the orbital and subcutaneous abdominal adipose tissues, which presented five proteins that were uniquely expressed in the orbital fat and 18 in the subcutaneous abdominal fat. Gene Ontology analysis identified significantly different cellular processes and components related to the extracellular matrix or basement membrane components. This analysis shows the differences between orbital and subcutaneous abdominal fat found in proteomics differential expression, uniquely expressed proteins, and cellular processes. Further research is needed to correlate specific proteins and cellular processes to the mechanism of fat accumulation and obesity. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

23 pages, 2370 KB  
Article
Exploring Water-Soluble South African Tulbaghia violacea Harv Extract as a Therapeutic Approach for Triple-Negative Breast Cancer Metastasis
by Mohammed Alaouna, Rodney Hull, Thulo Molefi, Richard Khanyile, Langanani Mbodi, Thifhelimbilu Emmanuel Luvhengo, Nkhensani Chauke-Malinga, Boitumelo Phakathi, Clement Penny and Zodwa Dlamini
Curr. Issues Mol. Biol. 2024, 46(10), 10806-10828; https://doi.org/10.3390/cimb46100642 - 26 Sep 2024
Cited by 2 | Viewed by 2142
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 20% of all breast cancer cases and is characterized by a lack of estrogen, progesterone, and human epidermal growth factor 2 receptors. Current targeted medicines have been unsuccessful due to this absence of hormone receptors. This [...] Read more.
Triple-negative breast cancer (TNBC) accounts for approximately 20% of all breast cancer cases and is characterized by a lack of estrogen, progesterone, and human epidermal growth factor 2 receptors. Current targeted medicines have been unsuccessful due to this absence of hormone receptors. This study explored the efficacy of Tulbaghia violacea, a South African medicinal plant, for the treatment of TNBC metastasis. Extracts from T. violacea leaves were prepared using water and methanol. However, only the water-soluble extract showed anti-cancer activity and the effects of this water-soluble extract on cell adhesion, invasion, and migration, and its antioxidant activity were assessed using MCF-10A and MDA-MB-231 cells. The T. violacea extract that was soluble in water effectively decreased the movement and penetration of MDA-MB-231 cells through the basement membrane in scratch and invasion tests, while enhancing their attachment to a substance resembling an extracellular matrix. The sample showed mild-to-low antioxidant activity in the antioxidant assy. Nuclear magnetic resonance spectroscopy revealed 61 chemical components in the water-soluble extract, including DDMP, 1,2,4-triazine-3,5(2H,4H)-dione, vanillin, schisandrin, taurolidine, and α-pinene, which are known to have anti-cancer properties. An in-depth examination of the transcriptome showed alterations in genes linked to angiogenesis, metastasis, and proliferation post-treatment, with reduced activity in growth receptor signaling, angiogenesis, and cancer-related pathways, such as the Wnt, Notch, and PI3K pathways. These results indicate that T. violacea may be a beneficial source of lead chemicals for the development of potential therapeutic medicines that target TNBC metastasis. Additional studies are required to identify the precise bioactive chemical components responsible for the observed anti-cancer effects. Full article
(This article belongs to the Special Issue Phytochemicals in Cancer Chemoprevention and Treatment)
Show Figures

Graphical abstract

18 pages, 4617 KB  
Article
Luteolin-7-O-β-d-Glucuronide Attenuated Cerebral Ischemia/Reperfusion Injury: Involvement of the Blood–Brain Barrier
by Xing Fan, Jintao Song, Shuting Zhang, Lihui Lu, Fang Lin, Yu Chen, Shichang Li, Xinxin Jin and Fang Wang
Biomedicines 2024, 12(6), 1366; https://doi.org/10.3390/biomedicines12061366 - 19 Jun 2024
Cited by 4 | Viewed by 2754
Abstract
Ischemic stroke is a common cerebrovascular disease with high mortality, high morbidity, and high disability. Cerebral ischemia/reperfusion injury seriously affects the quality of life of patients. Luteolin-7-O-β-d-glucuronide (LGU) is a major active flavonoid compound extracted from Ixeris sonchifolia (Bge.) Hance, a Chinese medicinal [...] Read more.
Ischemic stroke is a common cerebrovascular disease with high mortality, high morbidity, and high disability. Cerebral ischemia/reperfusion injury seriously affects the quality of life of patients. Luteolin-7-O-β-d-glucuronide (LGU) is a major active flavonoid compound extracted from Ixeris sonchifolia (Bge.) Hance, a Chinese medicinal herb mainly used for the treatment of coronary heart disease, angina pectoris, cerebral infarction, etc. In the present study, the protective effect of LGU on cerebral ischemia/reperfusion injury was investigated in an oxygen–glucose deprivation/reoxygenation (OGD/R) neuronal model and a transient middle cerebral artery occlusion (tMCAO) rat model. In in vitro experiments, LGU was found to improve the OGD/R-induced decrease in neuronal viability effectively by the MTT assay. In in vivo experiments, neurological deficit scores, infarction volume rates, and brain water content rates were improved after a single intravenous administration of LGU. These findings suggest that LGU has significant protective effects on cerebral ischemia/reperfusion injury in vitro and in vivo. To further explore the potential mechanism of LGU on cerebral ischemia/reperfusion injury, we performed a series of tests. The results showed that a single administration of LGU decreased the content of EB and S100B and ameliorated the abnormal expression of tight junction proteins ZO-1 and occludin and metalloproteinase MMP-9 in the ischemic cerebral cortex of the tMCAO 24-h injury model. In addition, LGU also improved the tight junction structure between endothelial cells and the degree of basement membrane degradation and reduced the content of TNF-α and IL-1β in the brain tissue. Thereby, LGU attenuated cerebral ischemia/reperfusion injury by improving the permeability of the blood–brain barrier. The present study provides new insights into the therapeutic potential of LGU in cerebral ischemia. Full article
(This article belongs to the Topic Animal Models of Human Disease 2.0)
Show Figures

Figure 1

19 pages, 3058 KB  
Article
MicroRNA Profiling of the Inflammatory Response after Early and Late Asthmatic Reaction
by Ruth P. Duecker, Oguzhan Alemdar, Andreas Wimmers, Lucia Gronau, Andreas G. Chiocchetti, Eva M. Valesky, Helena Donath, Jordis Trischler, Katharina Blumchen, Stefan Zielen and Ralf Schubert
Int. J. Mol. Sci. 2024, 25(2), 1356; https://doi.org/10.3390/ijms25021356 - 22 Jan 2024
Cited by 3 | Viewed by 2457
Abstract
A high proportion of house dust mite (HDM)-allergic asthmatics suffer from both an early asthmatic reaction (EAR) and a late asthmatic reaction (LAR) which follows it. In these patients, allergic inflammation is more relevant. MiRNAs have been shown to play an important role [...] Read more.
A high proportion of house dust mite (HDM)-allergic asthmatics suffer from both an early asthmatic reaction (EAR) and a late asthmatic reaction (LAR) which follows it. In these patients, allergic inflammation is more relevant. MiRNAs have been shown to play an important role in the regulation of asthma’s pathology. The aim of this study was to analyze the miRNA profile in patients with mild asthma and an HDM allergy after bronchial allergen provocation (BAP). Seventeen patients with EAR/no LAR and 17 patients with EAR plus LAR, determined by a significant fall in FEV1 after BAP, were differentially analyzed. As expected, patients with EAR plus LAR showed a more pronounced allergic inflammation and FEV1 delta drop after 24 h. NGS-miRNA analysis identified the down-regulation of miR-15a-5p, miR-15b-5p, and miR-374a-5p after BAP with the highest significance in patients with EAR plus LAR, which were negatively correlated with eNO and the maximum decrease in FEV1. These miRNAs have shared targets like CCND1, VEGFA, and GSK3B, which are known to be involved in airway remodeling, basement membrane thickening, and Extracellular Matrix deposition. NGS-profiling identified miRNAs involved in the inflammatory response after BAP with HDM extract, which might be useful to predict a LAR. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 7200 KB  
Article
Small Molecules Temporarily Induce Neuronal Features in Adult Canine Dermal Fibroblasts
by Kiyotaka Arai, Fumiyo Saito, Masashi Miyazaki, Haruto Kushige, Yayoi Izu, Noritaka Maeta and Kazuaki Yamazoe
Int. J. Mol. Sci. 2023, 24(21), 15804; https://doi.org/10.3390/ijms242115804 - 31 Oct 2023
Viewed by 2085
Abstract
Several methods have been developed to generate neurons from other cell types for performing regeneration therapy and in vitro studies of central nerve disease. Small molecules (SMs) can efficiently induce neuronal features in human and rodent fibroblasts without transgenes. Although canines have been [...] Read more.
Several methods have been developed to generate neurons from other cell types for performing regeneration therapy and in vitro studies of central nerve disease. Small molecules (SMs) can efficiently induce neuronal features in human and rodent fibroblasts without transgenes. Although canines have been used as a spontaneous disease model of human central nerve, efficient neuronal reprogramming method of canine cells have not been well established. We aimed to induce neuronal features in adult canine dermal fibroblasts (ACDFs) by SMs and assess the permanency of these changes. ACDFs treated with eight SMs developed a round-shaped cell body with branching processes and expressed neuronal proteins, including βIII-tubulin, microtubule-associated protein 2 (MAP2), and neurofilament-medium. Transcriptome profiling revealed the upregulation of neuron-related genes, such as SNAP25 and GRIA4, and downregulation of fibroblast-related genes, such as COL12A1 and CCN5. Calcium fluorescent imaging demonstrated an increase in intracellular Ca2+ concentration upon stimulation with glutamate and KCl. Although neuronal features were induced similarly in basement membrane extract droplet culture, they diminished after culturing without SMs or in vivo transplantation into an injured spinal cord. In conclusion, SMs temporarily induce neuronal features in ACDFs. However, the analysis of bottlenecks in the neuronal induction is crucial for optimizing the process. Full article
Show Figures

Figure 1

16 pages, 5036 KB  
Article
Effects of Scaffolds on Urine- and Urothelial Carcinoma Tissue-Derived Organoids from Bladder Cancer Patients
by Simon Walz, Paul Pollehne, Philipp Vollmer, Wilhelm K. Aicher, Arnulf Stenzl, Niklas Harland and Bastian Amend
Cells 2023, 12(16), 2108; https://doi.org/10.3390/cells12162108 - 20 Aug 2023
Cited by 5 | Viewed by 3734
Abstract
Organoids are three-dimensional constructs generated by placing cells in scaffolds to facilitate the growth of cultures with cell–cell and cell–matrix interactions close to the in vivo situation. Organoids may contain different types of cells, including cancer cells, progenitor cells, or differentiated cells. As [...] Read more.
Organoids are three-dimensional constructs generated by placing cells in scaffolds to facilitate the growth of cultures with cell–cell and cell–matrix interactions close to the in vivo situation. Organoids may contain different types of cells, including cancer cells, progenitor cells, or differentiated cells. As distinct culture conditions have significant effects on cell metabolism, we explored the expansion of cells and expression of marker genes in bladder cancer cells expanded in two different common scaffolds. The cells were seeded in basement membrane extract (BME; s.c., Matrigel®) or in a cellulose-derived hydrogel (GrowDex®, GD) and cultured. The size of organoids and expression of marker genes were studied. We discovered that BME facilitated the growth of significantly larger organoids of cancer cell line RT112 (p < 0.05), cells from a solid tumor (p < 0.001), and a voiding urine sample (p < 0.001). Expression of proliferation marker Ki76, transcription factor TP63, cytokeratin CK20, and cell surface marker CD24 clearly differed in these different tumor cells upon expansion in BME when compared to cells in GD. We conclude that the choice of scaffold utilized for the generation of organoids has an impact not only on cell growth and organoid size but also on protein expression. The disadvantages of batch-to-batch-variations of BME must be balanced with the phenotypic bias observed with GD scaffolds when standardizing organoid cultures for clinical diagnoses. Full article
(This article belongs to the Collection Advances in 3D Cell Culture)
Show Figures

Figure 1

20 pages, 3208 KB  
Article
Development of Matrix-Embedded Bovine Tracheal Organoids to Study the Innate Immune Response against Bovine Respiratory Disease
by Pin Shie Quah, Bang M. Tran, Vincent D.A. Corbin, Jessie J.-Y. Chang, Chinn Yi Wong, Andrés Diaz-Méndez, Carol A. Hartley, Weiguang Zeng, Eric Hanssen, Zlatan Trifunovic, Patrick C. Reading, David C. Jackson, Elizabeth Vincan, Lachlan J.M. Coin and Georgia Deliyannis
Organoids 2023, 2(2), 82-101; https://doi.org/10.3390/organoids2020007 - 11 May 2023
Cited by 3 | Viewed by 5107
Abstract
Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle. Bovine herpesvirus-1 (BHV-1) is one of the main culprits of BRD; however, research on BHV-1 is hampered by the lack of suitable models for infection and drug testing. [...] Read more.
Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle. Bovine herpesvirus-1 (BHV-1) is one of the main culprits of BRD; however, research on BHV-1 is hampered by the lack of suitable models for infection and drug testing. In this study, we established a novel bovine tracheal organoid culture grown in a basement membrane extract type 2 (BME2) matrix and compared it with the air–liquid interface (ALI) culture system. After differentiation, the matrix-embedded organoids developed beating cilia and demonstrated a transcriptomic profile similar to the ALI culture system. The matrix-embedded organoids were also highly susceptible to BHV-1 infection and immune stimulation by Pam2Cys, an immunomodulator, which resulted in robust cytokine production and tracheal antimicrobial peptide mRNA upregulation. However, treatment of bovine tracheal organoid cultures with Pam2Cys was not sufficient to inhibit viral infection or replication, suggesting a role of the non-epithelial cellular microenvironment in vivo. Full article
Show Figures

Graphical abstract

11 pages, 254 KB  
Article
Circulating HPV DNA as a Biomarker for Pre-Invasive and Early Invasive Cervical Cancer: A Feasibility Study
by Stacey J. Bryan, Jen Lee, Richard Gunu, Allison Jones, Adeola Olaitan, Adam N. Rosenthal, Ros J. Cutts, Isaac Garcia-Murillas, Nick Turner, Susan Lalondrelle and Shreerang A. Bhide
Cancers 2023, 15(9), 2590; https://doi.org/10.3390/cancers15092590 - 2 May 2023
Cited by 9 | Viewed by 3156
Abstract
Background: High-risk HPV infection is responsible for >99% of cervix cancers (CC). In persistent infections that lead to cancer, the tumour breaches the basement membrane, releasing HPV-DNA into the bloodstream (cHPV-DNA). A next-generation sequencing assay (NGS) for detection of plasma HPV circulating DNA [...] Read more.
Background: High-risk HPV infection is responsible for >99% of cervix cancers (CC). In persistent infections that lead to cancer, the tumour breaches the basement membrane, releasing HPV-DNA into the bloodstream (cHPV-DNA). A next-generation sequencing assay (NGS) for detection of plasma HPV circulating DNA (cHPV-DNA) has demonstrated high sensitivity and specificity in patients with locally advanced cervix cancers. We hypothesised that cHPV-DNA is detectable in early invasive cervical cancers but not in pre-invasive lesions (CIN). Methods: Blood samples were collected from patients with CIN (n = 52) and FIGO stage 1A-1B CC (n = 12) prior to treatment and at follow-up. DNA extraction from plasma, followed by NGS, was used for the detection of cHPV-DNA. Results: None of the patients with pre-invasive lesions were positive for CHPV-DNA. In invasive tumours, plasma from one patient (10%) reached the threshold of positivity for cHPV-DNA in plasma. Conclusion: Low detection of cHPV-DNA in early CC may be explained by small tumour size, poorer access to lymphatics and circulation, and therefore little shedding of cHPV-DNA in plasma at detectable levels. The detection rate of cHPV-DNA in patients with early invasive cervix cancer using even the most sensitive of currently available technologies lacks adequate sensitivity for clinical utility. Full article
22 pages, 4348 KB  
Article
Semi-Synthetic Click-Gelatin Hydrogels as Tunable Platforms for 3D Cancer Cell Culture
by Luke Hipwood, Julien Clegg, Angus Weekes, Jordan W. Davern, Tim R. Dargaville, Christoph Meinert and Nathalie Bock
Gels 2022, 8(12), 821; https://doi.org/10.3390/gels8120821 - 12 Dec 2022
Cited by 17 | Viewed by 5848
Abstract
Basement membrane extracts (BME) derived from Engelbreth–Holm–Swarm (EHS) mouse sarcomas such as Matrigel® remain the gold standard extracellular matrix (ECM) for three-dimensional (3D) cell culture in cancer research. Yet, BMEs suffer from substantial batch-to-batch variation, ill-defined composition, and lack the ability for [...] Read more.
Basement membrane extracts (BME) derived from Engelbreth–Holm–Swarm (EHS) mouse sarcomas such as Matrigel® remain the gold standard extracellular matrix (ECM) for three-dimensional (3D) cell culture in cancer research. Yet, BMEs suffer from substantial batch-to-batch variation, ill-defined composition, and lack the ability for physichochemical manipulation. Here, we developed a novel 3D cell culture system based on thiolated gelatin (Gel-SH), an inexpensive and highly controlled raw material capable of forming hydrogels with a high level of biophysical control and cell-instructive bioactivity. We demonstrate the successful thiolation of gelatin raw materials to enable rapid covalent crosslinking upon mixing with a synthetic poly(ethylene glycol) (PEG)-based crosslinker. The mechanical properties of the resulting gelatin-based hydrogels were readily tuned by varying precursor material concentrations, with Young’s moduli ranging from ~2.5 to 5.8 kPa. All hydrogels of varying stiffnesses supported the viability and proliferation of MDA-MB-231 and MCF-7 breast cancer cell lines for 14 and 21 days of cell culture, respectively. Additionally, the gelatin-based hydrogels supported the growth, viability, and osteogenic differentiation of patient-derived preosteoblasts over 28 days of culture. Collectively, our data demonstrate that gelatin-based biomaterials provide an inexpensive and tunable 3D cell culture platform that may overcome the limitations of traditional BMEs. Full article
(This article belongs to the Special Issue Polymer Hydrogels for Cancer Therapy)
Show Figures

Figure 1

Back to TopTop