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Abstract: Organoids are three-dimensional constructs generated by placing cells in scaffolds to facili-
tate the growth of cultures with cell–cell and cell–matrix interactions close to the in vivo situation.
Organoids may contain different types of cells, including cancer cells, progenitor cells, or differenti-
ated cells. As distinct culture conditions have significant effects on cell metabolism, we explored the
expansion of cells and expression of marker genes in bladder cancer cells expanded in two different
common scaffolds. The cells were seeded in basement membrane extract (BME; s.c., Matrigel®) or in
a cellulose-derived hydrogel (GrowDex®, GD) and cultured. The size of organoids and expression of
marker genes were studied. We discovered that BME facilitated the growth of significantly larger
organoids of cancer cell line RT112 (p < 0.05), cells from a solid tumor (p < 0.001), and a voiding urine
sample (p < 0.001). Expression of proliferation marker Ki76, transcription factor TP63, cytokeratin
CK20, and cell surface marker CD24 clearly differed in these different tumor cells upon expansion in
BME when compared to cells in GD. We conclude that the choice of scaffold utilized for the generation
of organoids has an impact not only on cell growth and organoid size but also on protein expression.
The disadvantages of batch-to-batch-variations of BME must be balanced with the phenotypic bias
observed with GD scaffolds when standardizing organoid cultures for clinical diagnoses.

Keywords: bladder cancer organoids; scaffold materials; Matrigel®; basement membrane extract;
GrowDex®

1. Introduction

Overall mortality rates of cancer have declined for some malignancies since the turn
of the century [1]. However, diagnosis and therapy of bladder cancer (BC) remain a signifi-
cant challenge. Bladder cancer is among the most prevalent cancers claiming more than
18 million new cases annually worldwide [2]. However, BC incidence falls in some re-
gions of the world, most likely due to reduced consumption of tobacco, less environmen-
tal or occupational pollution, and improvements in diagnosis and especially treatment.
BC incidences with 9.6/100,000 in men and mortality rates of 3.2/100,000 in men and
0.9/100,000 women worldwide are still concerning [3]. This means that the need for basic
research and more efficient diagnosis and therapy of BC is undiminished. We, there-
fore, initiated a series of experiments to investigate advanced cell culture methods for
analyses of the pathomechanisms contributing to BC initiation and propagation and to
generate an alternative in vitro platform to investigate promising new therapies and to
facilitate decision-making heading to more effective cancer therapies by individualizing
each therapeutic approach.

Cancer research builds on different technologies employing malignant cells and,
in many cases, the corresponding healthy counterparts. Classically, these studies are
performed in standard cell culture systems using cancer cell lines or by employing different
animal models of cancer research. Studies with cancer cells and controls are comparably
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simple and affordable. However, cell culture systems using cell lines inherit their specific
disadvantages, including a clonal bias, lack of cancer cell communication with stromal cells,
lack of the contribution of the tumor vasculature, and infiltrating inflammatory cells found
in cancers in vivo [4]. Knowledge of animal cancer models expanded our understanding
of BC pathology significantly [5,6], but they are comparably expensive and require extra
effort and facilities. Depending on the study design and species or even breeds employed,
such studies yield in many cases no robust nor translatable results [7]. In addition, animal
studies should be reduced to the levels essential for medical or biological research due to
ethical concerns [8]. Therefore, alternatives to simple cell culture experiments or animal
studies are urgently needed.

Production of organoids gained much interest recently. It is a technology, facilitat-
ing the growth of complex blends of cells in defined three-dimensional scaffolds [9–11].
Organoids contain stem cells or progenitor cells as well as a variety of other cells found
in the tissue samples used for organoid production. In the context of the cell–cell and
cell–matrix interactions, the stem or progenitor cells differentiate in the organoids along
the corresponding germline lineages to generate a tissue resembling the composition and
architecture of the tissue source from which it was derived [11–13]. Thus, organoids bridge
between in vitro cell culture systems and animal studies and are powerful tools to investi-
gate different biological processes much more closely to the in vivo situation. Organoids
were generated from a variety of tissues, including mammary glands, gastrointestinal
progenitor niches, or a variety of cancer specimens [11], among them, vesical tissue samples
from BC patients [14–18]. Such BC organoids (BCOs) were used for drug screening [18–20],
investigating the potential of tumor-specific CAR-T cells [21], as a mechanism of tissue
vascularization [22], or exchanging of fluids between cells in 3D constructs [23].

The 3D organoid cell culture technology was developed 30 years ago from mouse
mammary gland samples and mammary tumors [9]. That study employed a rodent
tumor-derived extract as a scaffold containing mainly type IV collagen, laminin-111, and
low amounts of other components [9]. Such extracts are commercially available from
different providers and are known for instance as Matrigel® or basement membrane
extract (BME®). Depending on production protocols or batches, these extracts vary in
their composition and content of low molecular weight components, such as growth
factors, proteases, or enzymes [24–26]. The BCOs described some 5 years ago in two early
key studies used either Matrigel® [14] or BME® [15] from two different providers. In
addition, the cell culture media employed in these first studies differed quite considerably
as well [14,15]. However, in at least one of the studies, the composition of the organoid
media was disclosed in detail [15]. This facilitated further research and reproduction of
the results, but the composition, mechanical properties, and other factors of cell culture
scaffolds produced from natural sources, including tumor cell lines, are highly variable
and not always disclosed [24,25]. In addition, scaffolds from natural sources cannot be
adapted to the specific need of an experiment to the same extent when compared, e.g., to
polymer hydrogels [26]. However, for standardizing preclinical studies and in the context
of drug screening with cells from individual BC patients, standardized procedures would
be preferable. We, therefore, investigated if an animal-free, cellulose-based hydrogel known
as GrowDex® (GD), granted the growth of human BCOs.

2. Materials and Methods
2.1. Culture of Bladder Cancer Cell Line, RT112, in 3D Organoids

The BC cell line RT112 (AC488; available from DSMZ Leibnitz Institute Braunschweig,
Germany; a generous gift from Prof. Peter Black, Vancouver Prostate Center) was expanded
in DMEM (Thermo Fisher, Waltham, MA, USA) media enriched by 10% FBS and antibiotics
as described [27]. To generate spheroids from the tumor line, RT112 cells were harvested
with the aid of trypsin-EDTA (Sigma-Aldrich, St. Louis, MO, USA) and washed twice with
cold PBS (Sigma-Aldrich, St. Louis, MO, USA). The yield and viability of the cells were
determined by trypan blue dye exclusion and a hematocytometer. To generate spheroids,
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2 × 104 cells per well were mixed with BME (R&D Systems, Minneapolis, MN, USA) or GD
(UMP Biomedicals, Helsinki, Finland), respectively, as described below. The RT112 cells
were expanded in spheroids in DMEM media enriched by 10% FBS and antibiotics.

2.2. Isolation of Cells from Urothelial Carcinoma Tissue from Bladder Cancer Patients

Tumor tissue samples were obtained after informed and written consent from BC
patient # BCO 140. Information on the patients and stages of the disease is summarized in
Table 1. The tissue was minced by blade and scissors followed by enzymatic degradation
as described recently [17,18]. Debris was removed by passing the extract through a cell
strainer with 70 µm mesh size and cells were washed by centrifugation (150 g, 7 min,
20 ◦C). Yield and viability were enumerated by cell counting in a hematocytometer and
trypan blue dye exclusion. The cells were expanded as organoids in OEM as described
below. The study was approved by the ethics committee under file number 840/2020BO2
and conducted in full compliance with the WMA Declaration of Helsinki and all other
relevant guidelines and regulations.

Table 1. Clinical data on patients # UCO33 and # BCO140. Abbreviations: pT, pL, pV, pathological
staging (p) of the tumoral (T), lymphatic (L), and venous invasion of the tumor cells; CIS, carcinoma
in situ; BCO, tissue-derived bladder cancer organoid; UCO, urine-derived bladder cancer organoid;
n.a., not applicable.

BCO#140 UCO#33

Sex male male
Age 62 85

Pathology
pT 1 a
pL 1 n.a.
pV 1 n.a.

Grading high grade low grade
CIS yes no

Urine cytology positive positive

2.3. Isolation of Cells from Rinsing Urine of Bladder Cancer Patients

Rinsing urine samples of patient UCO#33 diagnosed with BC were collected after
informed and written consent, cooled on wet ice, and diluted by the addition of equal
amounts of PBS. The cells were sedimented by centrifugation (250× g, 10 min, 4 ◦C). Infor-
mation on the patients and stage of the disease is summarized in Table 1. The sediments
were washed twice with washing buffer (PBS, 1% (v/v) penicillin/streptomycin (Thermo
Fisher, Waltham, MA, USA); 0.2% (v/v) amphotericin B (Sigma-Aldrich, St. Louis, MO,
USA) and resuspended in 1 mL media. The yield and viability of cells were assessed by cell
counting in a hematocytometer and trypan blue dye exclusion. However, exact numbers of
viable cells were hard to determine due to debris in the first fractions of cell preparations
from voiding urine samples.

2.4. Expansion of Cells in Organoid Cultures

The initial cell density utilized for the generation of organoids from BC voiding
and tissue samples was 2 × 106 cells/mL. For the generation of organoids, 10 µL of the
cell suspension corresponding to 2 × 104 viable cells total were mixed on wet ice with
30 µL of the BME hydrogel stock (R&D Systems, ≈15 mg/mL), either depleted of growth
factors (type 2; BME−) or containing growth factor (BME+) and mixed by gentle pipetting.
Two aliquots of 20 µL each were dropped in a well of a 48-well culture plate. The plate
was turned over and incubated at 37 ◦C for 15 min in a humidified cell culture incubator
to jell the hydrogel containing the cells. Then, the 48-well plate was turned back, and
the hydrogel domes were covered by 250 µL of organoid expansion medium (OEM) per
well [15]. The OEM contained 22.2 mL advanced DMEM-F12 (Thermo Fisher) and 22.5 mL
of wnt-, R-spondin-, and noggin media (generously provided by Dr. André Koch, Dept.
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of Gynecology, UKT@EKUT) [28] and was enriched by 2.5 mL 5% charcoal-stripped FBS,
1 mL B27-supplement, 500 µL L- glutamine, 500 µL HEPES (1 M), 500 µL nicotinamide (1 M),
125 µL N-acetylcysteine (500 mM), 50 µL A83-01 (5 mM), 50 µLl Primocin (50 mg/mL),
50 µL FGF-10 (100 µg/mL), 25 µL FGF-7 (50 µg/mL), 12,5 µL FGF-2 (50 µg/mL), 5 µL Y-
27632 (100 mM), and 0,5 µL EGF (500 µM) (all from Sigma-Aldrich or PeptroTech, Rehovot,
Israel) [15]. Organoids were cultured in an incubator at 37 ◦C in 5% CO2 and a humidified
atmosphere. OEM was changed two to three times per week depending on cell density,
integrity, and size of the organoids. To isolate cells from BME hydrogels, OEM was
aspirated, and the scaffold was degraded enzymatically by adding 250 µL prewarmed
PBS and 50 µL dispase (Roche) to the well followed by a 60 min incubation at 37 ◦C in a
humidified cell culture incubator. Then, 200 µL of trypsin-EDTA (Sigma-Aldrich) were
added per well, mixed carefully, transferred in a 2 mL tube, and incubated in a thermomixer
(Eppendorff; 37 ◦C, 1400 rpm, 17 min). After proteolytic degradation of the scaffold, the
suspension was aspirated and mixed with 1 mL OEM, and the cells were sedimented by
centrifugation (150× g, 5 min, 20 ◦C). Supernatants were removed, the sediment was chilled
on wet ice, and the cells were counted as described above. Fresh domes were generated
from 2 × 104 cells as described above, or cells were used for other experiments.

To generate spheroids or organoids with an animal-free cellulose-based hydrogel,
different dilutions of the original stock (i.e., 1.5% GrowDex® (GD), UMP Biomedicals,
Helsinki, Finland) were prepared with OEM ranging from 0.2% to 1% and tested with
RT112 cells for cell density and growth kinetics. Based on the outcome of the preparatory
tests with RT112 in GD scaffolds, dilutions of 0.2% and 0.5% GD in OEM and an inoculation
density of 5 × 104 cells per well were used in the study. To isolate the cells from the
GD hydrogel, the enzyme GrowDase® was used as recommended by the supplier (UMP
Biochemicals). After degradation of the scaffold, the cells were washed twice with OEM,
counted, and either expanded as organoids or used for experiments.

2.5. Freezing and Thawing of Organoids

The cells were harvested from organoids as described above, resuspended in 500 µL
OEM in a cryotube on wet ice, mixed with 500 µL ice-cold freezing medium (20% DMSO
(AppliChem, Darmstadt, Germany), 30% FCS (Sigma-Aldrich), and 50% RPMI 1640 (Gibco
Life Technologies, Waltham, MA, USA)), chilled slowly to −80 ◦C overnight, and then
transferred to a liquid nitrogen tank for long-term storage. To thaw organoids, cryotubes of
liquid nitrogen were transported on wet ice to the 37 ◦C water bath. The cells were thawed,
transferred very quickly in 10 mL OEM, mixed gently, and sedimented by centrifugation
(150× g, 5 min 20 ◦C). The domes were generated as described above, or cells were used
for other experiments.

2.6. Immunofluorescence of Spheroids and Organoids and Fluorescence Microscopy

To detect the expression of BC marker genes or lineage markers on UCO#33, BCO#140,
and RT112, immunofluorescence on chamber slides was applied. The spheroids or organoids
were isolated from the hydrogel as described above (in the case of BME without the trypsin-
EDTA step), dissolved in OEM complemented by 3.3% BME, transferred in 8-well chamber
slides (x-well cell culture chamber, on PCA slide; Sarstedt), incubated for 2 h (37 ◦C, 5%
CO2), and fixed by 4% formaldehyde (30 min, 20 ◦C) before staining. Then, the spheroids
or organoids were washed three times with PBS, blocked (5% BSA (Sigma-Aldrich), 0.2%
Triton X-100 (Merck, Rahway, NJ, USA), 0.1% Tween 20 (Sigma-Aldrich) in PBS, 30 min,
37 ◦C), washed with PBS again, and incubated with primary antibodies (1 h, 37 ◦C, hu-
midified chamber, dark, Table 2). Unbound antibodies were washed away with PBS
(3 × 5 min, slow orbital shaker, 20 ◦C). The samples were incubated with fluorescence-
labeled secondary antibodies (1 h, 37 ◦C, humidified chamber, dark; Table 2). Unbound
secondary antibodies were washed away with PBS (see above). Cell nuclei were stained
with DAPI. The antibody diluent was 1% BSA in PBS. Samples were observed by fluores-
cence microscopy (Axiophot; Zeiss, Jena, Germany) equipped with an AxioCam MRm
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camera (Zeiss), a UV light source (Leica EL6000, medium power), and, unless otherwise
stated, by 40× objective. Micrographs and fluorescence overlays were generated using
proprietary software (AxioVision 4.8, Zeiss). Whole organoids were recorded as projection
images. Additionally, staining of organoids was performed with secondary antibodies as
the control and to determine detection levels (Figure S1).

Table 2. Primary and fluorescence-labeled secondary antibodies employed.

Target Dilution Clone Company

AE1/AE3 antigens 1:200 AE1/Ae3 Merck
CD24 1:100 PR19925 Abcam
CD44 1:200 MEM-263 Abcam
CK7 1:300 EPRY1619Y Abcam

CK20 1:100 XQ1 Merck
GATA-3 1:100 serum Abcam

Ki67 1:100 ARG57562 Biomol-Argio
p53 1:100 PAb 240 Invitrogen

TP63 1:100 10H7L17 Invitrogen
gt-a-ms IgG 1 1:1000 serum Jackson Immuno Res.
gt-a-rb IgG 2 1:1000 serum Jackson Immuno Res.

1 Cy3- or Alexa488-labelled goat-anti-mouse total IgG; 2 Cy3- or Alexa488-labelled goat-anti-rabbit total IgG.

2.7. Statistics

The experimental data were processed by spreadsheet software (Excel®, Microsoft, Al-
buquerque, NM, USA) and tested for normal distribution (skewness, kurtosis, Kolmogorov–
Smirnov test, Shapiro–Wilk-test) and in the histogram with normal distribution curve using
a statistic program (SPSS Statistics; IBM, Endicott, NY, USA). A normal distribution was
not found in any of the groups so the medians and non-parametrical Mann–Whitney U-test
were employed for the comparison of the groups. However, the Mann–Whitney U-test
for the comparison of GD 0.5% and BME– is unlikely to be meaningful due to the small
number of samples in the cohort GD 0.5% (n = 7).

3. Results
3.1. Optimizing Scaffold Concentrations for Bladder Cancer Cell Cultures

Most studies exploring urothelial carcinoma, e.g., for cancer therapy testing in three-
dimensional (3D) culture systems, employed Matrigel® or BME in either growth factor-
depleted (BME−) or growth factor-containing (BME+) formulation. However, the attach-
ment of cells to a matrix and the complementation of cell culture with growth factors
influence the cell’s metabolism. We, therefore, investigated the effects of GD in two dif-
ferent concentrations on the size of RT112 spheroids in comparison to BME− and BME+
respectively (Figure 1).

Normal distribution of data was not found. A Kruksal–Wallis test revealed significant
differences in the median spheroid sizes between at least two of the four matrix-type groups
investigated (p < 0.008). The RT112 generated in BME− significantly larger spheroids
(median diameter 66.31 ± 19.8 mm; n = 84) when compared to cells in BME+ (median
diameter 55.65 ± 20.9 mm; n = 45; p < 0.05). Thus, cell growth of this tumor line was
facilitated in BME− when compared to BME+, despite lower concentrations of growth
factors (Figure 1). In 0.2% GD, larger RT112 spheroids were observed in comparison to
BME+, (median diameter 71.44 ± 28.3 mm; n = 48; p < 0.05) but not in comparison to
BME− (p = 0.06). In a 0.5% GD scaffold, the sizes of RT112 spheroids were not significantly
different in comparison to 0.2% GD (median diameter 62.07 ± 20.5 mm; n = 49; p = 0.087).
As GD is not complemented by cytokines, the role of the scaffold for growth RT112 in
three-dimensional spheroids is emphasized.
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Figure 1. Size of RT112 organoids in BME in comparison to GD scaffolds. RT112 were seeded
in scaffolds generated by cytokine-deprived (BME−) or cytokine-enriched (BME+) Matrigel@ or
in GD at 0.2% or 0.5% (v/v) density as indicated (x-axis). After seven days of 3D culture, the
sizes of organoids were determined by microscopy. The median diameter of organoids is depicted
on the y-axis (scale in mm). Outliers are displayed as dots or stars. Abbreviations: BME, basal
membrane extract.

In addition, the expressions of proliferation marker Ki67, tumor-associated tumor
suppressor p53, and transcription factor TP63 were investigated by immunofluorescence
in spheroids generated by RT112 in BME− in comparison to 0.2% GD. Expression of Ki67
was recorded in RT112 in BME− but not in RT112 in 0.2% GD (Figure 2), while TP63 and
p53 remained below detection levels in RT112. This indicated that the choice of scaffold
had an influence on gene expression levels, even in urothelial cancer cell lines.

3.2. Effects of Basement Membrane Extract- Versus Cellulose-Derived Scaffolds on Urothelial
Carcinoma-Derived Organoid BCO#140

Bladder cancer tissue-derived organoids BCO#140 were seeded in BME−, 0.2%, and
0.5% GD scaffolds, respectively, and incubated for 7 days in culture (Figure 3). For BCO#140,
significantly larger organoids were found in BME− (median diameter 45.7 ± 14.6 mm;
n = 80) when compared to organoids in 0.2% GD (median diameter 22.4 ± 14.1 mm; n = 23,
p < 0.001), while organoids seeded in 0.5% GD (median diameter 35.7 ± 22.2 mm; n = 7,
p = 0.17) were not significantly different in size when compared to BCO#140 in BME− or
0.2% GD (Figure 3).

In addition, the expression of some representative bladder tumor-associated markers
was investigated by immunohistochemistry in organoids of BCO#140 expanded in BME−
or 0.2% GD (Figure 4). Expression of TP63 was detected in BCO#140 in BME− but not in
GD, even after extended exposure (Figure 4). In contrast, the expression of cytokeratin 20
(CK20) as well as the expression of CD24 were recorded in BCO#140 cultured in GD but
not in BME−, not even after extended exposure (Figure 4). This result corroborated the
effects observed in RT112 spheroids (Figure 2). We conclude that the composition of the
scaffold influences the metabolism of bladder cancer tissue-derived cells.
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Figure 2. Analysis of marker gene expression in RT112 spheroids as a function of the scaffold
composition. The expression of p53 (top), TP63 (middle), and Ki67 (bottom) in RT112 cells cultured
in BME− (left) or 0.2% GD (right) was investigated by immunofluorescence and labeled in red. Cell
nuclei are indicated in blue (DAPI). The exposure time is indicated in the individual micrographs in
milliseconds, objective 40×. Control stainings omitting the primary antibody are provided in the
supplement. Abbreviations: BME, basal membrane extract; GD, GrowDex®.
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respectively. Size bars indicate 100 mm.

3.3. Effects of Basement Membrane Extract- Versus Cellulose-Derived Scaffolds on Urine-Derived
Organoid UCO#33

Urine samples were collected from a patient diagnosed with bladder cancer to isolate
cells for the generation of urine-derived cancer organoids (UCOs). In 77% of all urine-
derived cultures generated (27/35), organoids were observed in primary cultures. Cells
from UCO#33 (parental tumor size 23 × 15 × 10 mm) were seeded in BME−, 0.2%, or in
0.5% GD scaffolds, respectively, and incubated for 7 days in culture (Figure 5). For UCO#33,
significantly larger organoids were found in BME− (median diameter 44.05 ± 25.3 mm;
n = 205) when compared to organoids in 0.2% GD (median diameter 27.71 ± 9.3 mm;
n = 36, p < 0.001) or when compared to organoids in 0.5% GD (median diameter
23.2 ± 9.6 mm; n = 83, p < 0.01). Differences between UCO#33 in 0.2 versus 0.5% GD
were not recorded (Figure 5). These results are in clear contrast to the observation with
cell line RT112 (Figure 1) but in line with the results observed with BCO#140 (Figure 3)
as BME− facilitated the growth of larger organoids from cells isolated from clinical sam-
ples and expanded in OEM medium in organoid cultures (Figure 5). A representative
micrograph of UCO#33 in culture is shown in Figure 6.
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Figure 4. Expression of TP63 (top), CK20 (middle), and CD24 (bottom) in BCO#140 cultured in
BME− (left) or 0.2% GD (right) scaffolds. A moderate expression of TP63 was detected in BCO#140
organoids in BME− but not upon even extended exposure on BCO#140 in GD. Expression of CK20
and CD24 was found in BCO#140 organoids in 0.2% GD but not even after extended exposure in
BCO#140 in BME−. The exposure times in milliseconds (ms) are included in each micrograph,
objective 40×. Control stainings omitting the primary antibody are provided in the supplement.
Abbreviations: BME, basal membrane extract; GD, GrowDex®.
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Figure 5. (A) Size of urine-derived organoids UCO#33 in BME− scaffolds in comparison to GD at
0.2% or 0.5% (v/v) scaffolds as indicated (x-axis). After 7 days of 3D culture, sizes of organoids were
determined by microscopy. The median diameter of organoids is depicted on the y-axis (scale in mm).
Outliers are displayed as dots. Abbreviations: BME, basal membrane extract. (B–D) Examples of
overview micrographs of UCO#33 in BME− (B), GD 0.2% (C), or DG 0.5% (D), respectively. Size bars
indicate 100 mm.
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The expression of some representative bladder tumor-associated markers was in-
vestigated by immunohistochemistry on UCO#33 in early passage in BME−cultures
(Figure S2). Intensive yellow staining provided evidence for a prominent co-expression of
tumor marker GATA-3 and the AE1/AE3 reactive cytokeratins on UCO#33 by immunoflu-
orescence (Figure S2A) as well as co-expression of bladder tumor-associated antigens CD24
and of CD44. However, on some organoids, only a weak expression of CD24 but no CD44
was found (Figure S2B). The proliferation marker Ki67 was detected in virtually all cells
of UCO#33 (Figure S2C), and some, but not all, cells expressed the epithelial or urothelial
marker CK 7 (Figure S2D). This suggested that at least some cells contained in UCO#33
resembled marker expression patterns associated with bladder cancer cells. BCO#33 was
expanded in BME− versus 0.2%GD as well (Figure 7). Expression of TP63 was not de-
tected in UCO#33 (not shown), but the expression of the epithelial or urothelial marker
cytokeratin 20 (CK20) was recorded in UCO#33 cultured in GD but not in BME−, not
even after extended exposure (Figure 7). The expression of CD24 was weak in BME− and
recorded by extended exposure but not detected in UCO#33 organoids in GD (Figure 7).
This corroborated that the composition of the scaffold has an effect on the phenotype of
BCOs and UCOs in culture.
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Figure 7. Expression of CK20 (top) and CD24 (bottom) in UCO#33 organoids cultured in BME− (left)
or 0.2% GD (right) scaffolds. Expression of CK20 was found in UCO#33 in 0.2% GD but not in cells
in BME−, not even after extended exposure. In contrast, low expression of CD24 was detected in
UCO#33 upon expansion in BME− but not in cells in GD. The exposure times in milliseconds (ms) are
included in each micrograph, objective used 40×. Control stainings omitting the primary antibody
are provided in the supplement. Abbreviations: BME, basal membrane extract; GD, GrowDex®.
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4. Discussion

Three-dimensional (3D) cultures of cells, such as spheroids and organoids, have
gained significant interest in current discussions. While spheroids refer to multicellular
and 3D cultures without specifying the blend and type of cells, in this study we stick to
the definition of organoids as 3D cell cultures containing—besides a scaffold—cells of
different lineages and differentiation stages and especially differentiation and proliferation
competent stem cells and/or progenitor cells. The 3D cell cultures of established cell
lines, such as RT112 and others, are therefore considered spheroids [29], while cultures
containing a blend of cells isolated from healthy or diseased tissues and seeded in suitable
hydrogels are regarded as organoids. Such organoids resemble the in vivo situation of
tissues or tumors much better when compared to standard 2D cultures [30]. However,
vascularization and hormonal or neuronal signals may not be provided in organoids to the
extent observed in animal models or real clinical situations. This of course inherits several
challenges when tumor models are needed to investigate optimal or novel therapies for
individual cancer patients.

In aiming at technologies to establish robust protocols for future tests in search of
efficient therapies, patient-derived organoids were employed [14,18–20], and significant
differences between 2D and 3D cultures were observed [18]. Mechanisms of drug action
may here come into account. For instance, cisplatin or its derivatives are complexes of
platinum with different ligands, which bind to purine residues of DNA [31]. Upon diffusion
across the cell membrane and in the nucleus of cells, cisplatin blocks DNA replication and
induces apoptosis [31]. Thus, it acts on faster-proliferating cells but is of course not tumor
specific. However, limitations of cisplatin diffusion in 3D constructs when compared to
cells in flat 2D cultures may bias dose-response curve assays screening drug efficacies
at short incubation times. Therefore, the significant differences in organoid size—and
possibly in the density of cell clusters in a dome—should be considered when investigating
tumor sensitivities in organoids using rapid throughput systems. Remarkably, the matrix
density of GD did not cause significant differences in spheroid nor organoid densities, but
significant differences were observed between the scaffolds included, i.e., BME versus GD.

Cells binding in vitro to pericellular components or scaffolds and in vivo to the dif-
ferent hydrogels may therefore not be compared without critical consideration. Integrin-
binding peptide motives were defined on type IV collagen and laminin-111, the main
components of Matrigel® or BME [32,33]. Cells therefore can interact directly with such
scaffolds. In contrast, direct binding of cells to cellulose seems unlikely. However, proteins
in OEM may adhere to the cellulose scaffold and thus facilitate an indirect attachment of
the cells to the hydrogel. Integrin binding activates the focal adhesion kinase, which in turn
activates an anti-apoptotic situation in cells [34]. The scaffolds used for the generation of
3D cultures may therefore bias cancer drug assays. Moreover, efficient binding of cells via
integrins requires their activation by divalent cations [35,36] and TGF-b [37]. As the OEM
containing the TGF-signaling blocker A83-01, enhanced integrin signaling seems not to
influence the cell viability [34], and significant differences in cell survival were not recorded
in cells in BME when compared to GD (not shown). However, integrin signaling modulates
the apoptotic response of cells to cisplatin- or doxorubicin-induced cell death [38].

However, non-integrin receptors for type IV collagen and laminin-111 are known as
well. In contrast to integrins, they do not need to change their configuration to an active and
erected matrix-binding heterodimeric complex. For instance, the adhesion molecule CD44
is a glycoprotein and binds to type IV collagen [39]. Expression of CD44 was associated
with tumor metastasis [40,41]. Elevated expression of CD44 was reported on bladder cancer
tissue samples, primary cells, cell lines, and organoids [17,42]. Moreover, the discoidin
domain receptor 1 (DDR1, alias CD167) is another example of an integrin-independent
receptor for type IV collagen [43]. DDR1 is a tyrosine kinase involved in the regulation
of cell growth and metabolism. Expression of DDR1 is described on different epithelial
cells; its overexpression in bladder cancer was associated with poor outcomes [44]. The
same applies to laminin-111-mediated cell attachment. A monomeric 67 kDa receptor
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for laminin-111 was described on mouse tumor cells as early as four decades ago [45].
This 67 kDa was detected on human breast, prostate, and colon cancer cells [46,47]. Thus,
integrin-independent attachment of cancer cells to hydrogels in organoids is granted, but
their role in the context of 3D cell culture spheroids or organoids remains to be explored.

To target bladder cancer tumors more specifically, cell surface antigens, such as fi-
broblast growth factor receptor 3, CD276, CD47 [48–52], or intracellular antigens, such as
p53, TP63, isoforms of the Pi3-kinase, hRas, her2, and others, were considered [53,54]. Fur-
thermore, differentiation into pathological or molecular subtypes of bladder cancer, such
as basal (CK5/6 positive, CK20 negative) and luminal-like expression profiles, hold the
potential to predict beneficial responses towards, e.g., neoadjuvant chemotherapy, which
provided the best survival benefit among the basal subtype [55]. Here, expression levels
of these antigens on and within the cells take the spotlight of interest both in histopatho-
logical evaluation and in the culture systems as individual features of each tumor should
be preserved in a potential prediction and screening model. In our investigations, we
found controversial results regarding the expression of CK20 depending on the scaffold
used. In both organoids investigated, BCO#140 as well as UCO#33, GD promoted a CK20
positive luminal-like subtype, while cultivation of an autologous specimen in BME led to a
CK20 negative, basal like-subtype. The relevance of this finding should be evaluated in
a larger cohort size; however, it is crucial to consider the potential impact of the scaffold
on the molecular subtype when using organoids as drug-screening models to guide per-
sonalized therapeutic approaches. The role of CD24 is highlighted by the overexpression
on different tumors, and knock-down of CD24 expression revealed its function in tumor
cells: CD24 depletion reduced cell proliferation, enhanced sensitivity to undergo apoptosis,
and modulated STAT3-mediated gene expression [56]. Moreover, CD24 was reported as a
predictor of bladder cancer recurrence [57], and recent proof-of-principle studies provided
promising results of anti-CD24 cancer therapy. However, the results for proof of the efficacy
of anti-CD24 therapies are limited [58]. We showed that the expression of CD24 differs in
BCOs or UCOs depending on the scaffold used. Therefore, the efficacies of drugs target-
ing cell surface structures will yield different outcomes depending on the experimental
design employed.

Investigation of the complex differences in gene regulation of cells as a function of
the scaffold is beyond the topic of this study. Due to the expected limitations of mate-
rials available, an in-depth investigation of gene expression on, e.g., transcript versus
protein versus cell surface levels, was not intended. We noted, however, that the very
same cells, be that a cell line such as RT112, tumor cells BCO#140 isolated from a solid
tumor, or UCO#33 cells from rinsing urine samples—behave differently in BME versus
GD. Elevated expression of proliferation marker Ki67 in RT112 in BME seems most likely
a matrix-induced difference and to a subordinate extent modulated by growth factors as
no difference in organoid sizes was recorded between BME+ in comparison to BME−
cultures. In BCO#140, BME− induced expression of TP63, while CK20 and CD24 were
elevated in GD organoids. As growth factor-depleted BME− was employed in these exper-
iments, major differences in the growth factor contents of the cultures are less pronounced.
Here, the role of the matrix, its structure and complexity, and the density of domains or
peptide motives for cell attachment seem more important. The same was observed with
UCO#33, where CK20 was elevated in GD cultures, while CD24 was prominent in BME−
organoids. However, a general trend indicating which gene is expressed at elevated or
reduced levels cannot be deduced from this small proof-of-principle study as the impact of
patient-interindividual effects could not be studied. Serial investigations of larger cohorts
of BCOs and UCOs will facilitate discrimination between the influence of the individual
donor on the assay and the effects of the scaffold materials used. However, when screen-
ing for sensitivities of cancer cells for treatment efficacy, the bias of the scaffold should
be considered.
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5. Conclusions

Organoids derived from solid tumor tissue and from voiding urine samples of bladder
cancer patients can be propagated and studied in 3D cultures complemented by both
collagen- and laminin-containing Matrigel® or BME® scaffolds as well as cellulose-based
GrowDex® hydrogels. However, significant differences in the sizes of cell clusters were
recorded, and distinct patterns of gene expression patterns were observed. The choice of
the scaffold may therefore influence the outcome of a study when standardized assays are
developed for drug screens with cells of individual donors in preparation for an efficient
regimen.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12162108/s1, Figure S1: Staining of organoids with sec-
ondary antibodies as controls; Figure S2: Detection of bladder cancer markers on UCO#33 by
immunofluorescence.
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