Epigenetic Mechanisms in Fabry Disease: A Thematic Analysis Linking Differential Methylation Profiles and Genetic Modifiers to Disease Phenotype
Abstract
1. Introduction
Aim of the Narrative Review
- (I)
- To evaluate studies of DNA methylation in Fabry disease.
- (II)
- To perform a thematic analysis and identify themes that lead to a better understanding of clinical severity and disease prediction.
- (III)
- To determine whether areas emerging from the thematic analysis can be applied to other X-linked disorders.
2. Methods
2.1. Narrative Review Strategy
2.2. Search Terms
2.3. Population Characteristics
2.4. Eligibility Criteria
- ➢
- Peer-reviewed full-text articles in the English language.
- ➢
- Participants with a diagnosis of Fabry disease. This can also include studies performed on cell lines derived from individuals with Fabry.
- ➢
- The study included articles from 2015 to August 2025.
- ➢
- Studies performed exclusively using animal models.
- ➢
- Book chapters, conference abstracts, meta-analyses, preprints, protocols, and all types of review articles.
2.5. Extraction of Data
2.6. Thematic Analysis Procedure
- (I)
- Selection of Statements
- (II)
- Keywords
- (III)
- Inductive Coding
- (IV)
- Generation of Themes
3. Results
3.1. Study Characteristics
Source | N (Fabry) | Study Purpose | Sample Characteristics | Relevant Findings |
---|---|---|---|---|
[46] Hossain et al. (2017) | 1 | Reports on a severe and unique clinical presentation of a female patient with Fabry disease |
|
|
[47] Bae et al. (2020) | 1 | Case of a male Fabry patient with a de novo somatic mosaicism with mild symptoms but classic GLA variant |
|
|
[48] Čerkauskaitė et al. (2019) | ¥ 4 | Identification of the novel GLA gene mutation in a female with Fabry disease |
|
|
[49] Al-Obaide et al. (2022) | 4 | Investigating the cumulative effects of GLA mutation and BDP methylation on disease severity |
|
|
[50] Sezer & Ceylaner (2021) | 510 | Genetic management algorithm for high-risk patients with Fabry disease |
|
|
[51] Yanagisawa et al. (2019) | Ψ N/A | To assess whether GLA expression levels were associated with autophagy | Fibroblasts were obtained from a female patient severely affected with Fabry disease and two siblings (sisters) who had mild symptoms |
|
[52] Shen et al. (2022) | N/A | Investigating whether dysregulated DNA methylation has a role in the development of Fabry disease | Endothelial cell line from a patient with Fabry disease (R112H mutation, aged 64 years) |
|
[53] Iza et al. (2025) | 7 | To examine the relationship between methylation and clinical disease in females with Fabry disease |
|
|
[54] Rossanti et al. (2021) | 9 | Examining whether the existence of skewed XCI in females with heterozygous pathogenic variants in the GLA gene affects the phenotype |
|
|
[55] Juchniewicz et al. (2018) | 12 | Analyze XCI patterns and examine their role in disease manifestation in female patients with Fabry disease |
|
|
[56] Hübner et al. (2015) | 9 | A retrospective investigation of DNA methylation of the promoter region of the calcitonin receptor gene in Fabry patients |
|
|
[58] Hossain et al. (2019) | 36 | To evaluate 36 heterozygous Fabry disease females using methylation studies of the GLA gene |
|
|
[59] Echevarria et al. (2016) | 56 | To further understand the role of XCI in the clinical presentation in heterozygous females with Fabry disease |
|
|
[60] Simoncini et al. (2016) | 77 | To investigate whether genetic polymorphisms in the mitochondrial genome could behave as disease modifiers in patients with Fabry disease |
|
|
[61] Pan et al. (2016) | 73 | Evaluation of genotype–phenotype relationships in Fabry disease patients |
|
|
[62] Di Risi et al. (2022) | 5 | Investigating methylation profiles in Fabry patients |
|
|
[63] Levstek et al. (2024) | 99 | Assessment of telomere length in patients with Fabry disease |
|
|
[64] Fu et al. (2022) | 8 | Examination of apabetalone treatment on inflammatory burden in cells isolated from Fabry patients treated with ERT |
|
|
[65] Wagenhäuser et al. (2022) | 154 | Association of XCI with clinical phenotype |
|
|
[66] Řeboun et al. (2022) | 35 | To assess the impact of XCI on the phenotype of Fabry disease patients by examining pitfalls in XCI testing |
|
|
3.2. Thematic Analysis
- Theme I: Genetic Modifiers
- Summary of Theme
- Theme II: Methylation Profiling
- Summary of Theme
- Theme III: Insights into X chromosome inactivation
- Summary of Theme
4. Discussion
4.1. Genetic Modifiers
4.1.1. Findings with Relatively Solid Support
4.1.2. Emerging Hypothesis
4.1.3. Gaps in the Literature
4.2. Differential Methylation Profiles
4.2.1. Findings with Relatively Solid Support
4.2.2. Emerging Hypothesis
4.2.3. Gaps in the Literature
4.3. X Chromosome Inactivation
4.3.1. Findings with Relatively Solid Support
4.3.2. Emerging Hypothesis
4.3.3. Gaps in the Literature
4.4. Limitations
4.5. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Migeon, B.R. Why females are mosaics, X-chromosome inactivation, and sex differences in disease. Gend. Med. 2007, 4, 97–105. [Google Scholar] [CrossRef]
- Khan, S.A.; Theunissen, T.W. Modeling X-chromosome inactivation and reactivation during human development. Curr. Opin. Genet. Dev. 2023, 82, 102096. [Google Scholar] [CrossRef]
- Lyon, M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961, 190, 372–373. [Google Scholar] [CrossRef]
- Wu, H.; Luo, J.; Yu, H.; Rattner, A.; Mo, A.; Wang, Y.; Smallwood, P.M.; Erlanger, B.; Wheelan, S.J.; Nathans, J. Cellular resolution maps of X chromosome inactivation: Implications for neural development, function, and disease. Neuron 2014, 81, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Robert Finestra, T.; Gribnau, J. X chromosome inactivation: Silencing, topology and reactivation. Curr. Opin. Cell Biol. 2017, 46, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Dobyns, W.B.; Filauro, A.; Tomson, B.N.; Chan, A.S.; Ho, A.W.; Ting, N.T.; Oosterwijk, J.C.; Ober, C. Inheritance of most X-linked traits is not dominant or recessive, just X-linked. Am. J. Med. Genet. A 2004, 129, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Puck, J.M.; Nussbaum, R.L.; Conley, M.E. Carrier detection in X-linked severe combined immunodeficiency based on patterns of X chromosome inactivation. J. Clin. Investig. 1987, 79, 1395–1400. [Google Scholar] [CrossRef]
- Bolduc, V.; Chagnon, P.; Provost, S.; Dubé, M.P.; Belisle, C.; Gingras, M.; Mollica, L.; Busque, L. No evidence that skewing of X chromosome inactivation patterns is transmitted to offspring in humans. J. Clin. Investig. 2008, 118, 333–341. [Google Scholar] [CrossRef]
- Amos-Landgraf, J.M.; Cottle, A.; Plenge, R.M.; Friez, M.; Schwartz, C.E.; Longshore, J.; Willard, H.F. X chromosome-inactivation patterns of 1005 phenotypically unaffected females. Am. J. Hum. Genet. 2006, 79, 493–499. [Google Scholar] [CrossRef]
- Posynick, B.J.; Brown, C.J. Escape From X-Chromosome Inactivation: An Evolutionary Perspective. Front. Cell Dev. Biol. 2019, 7, 241. [Google Scholar] [CrossRef]
- Percy, A.K.; Benke, T.A.; Marsh, E.D.; Neul, J.L. Rett syndrome: The natural history study journey. Ann. Child Neurol. Soc. 2024, 2, 189–205, Erratum in Ann. Child Neurol. Soc. 2025, 3, 127. [Google Scholar] [CrossRef]
- Fang, X.; Butler, K.M.; Abidi, F.; Gass, J.; Beisang, A.; Feyma, T.; Ryther, R.C.; Standridge, S.; Heydemann, P.; Jones, M.; et al. Analysis of X-inactivation status in a Rett syndrome natural history study cohort. Mol. Genet. Genom. Med. 2022, 10, e1917. [Google Scholar] [CrossRef]
- Xiol, C.; Vidal, S.; Pascual-Alonso, A.; Blasco, L.; Brandi, N.; Pacheco, P.; Gerotina, E.; O’callaghan, M.; Pineda, M.; Armstrong, J. Rett Working Group. X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients. Sci. Rep. 2019, 9, 11983. [Google Scholar] [CrossRef]
- Archer, H.; Evans, J.; Leonard, H.; Colvin, L.; Ravine, D.; Christodoulou, J.; Williamson, S.; Charman, T.; Bailey, M.E.S.; Sampson, J.; et al. Correlation between clinical severity in patients with Rett syndrome with a p.R168X or p.T158M MECP2 mutation, and the direction and degree of skewing of X-chromosome inactivation. J. Med. Genet. 2007, 44, 148–152. [Google Scholar] [CrossRef]
- Merritt, J.K.; Fang, X.; Caylor, R.C.; Skinner, S.A.; Friez, M.J.; Percy, A.K.; Neul, J.L. Normalized Clinical Severity Scores Reveal a Correlation between X Chromosome Inactivation and Disease Severity in Rett Syndrome. Genes 2024, 15, 594. [Google Scholar] [CrossRef] [PubMed]
- Di Risi, T.; Vinciguerra, R.; Cuomo, M.; Della Monica, R.; Riccio, E.; Cocozza, S.; Imbriaco, M.; Duro, G.; Pisani, A.; Chiariotti, L. DNA methylation impact on Fabry disease. Clin. Epigenet. 2021, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Levade, T.; Hachulla, E.; Knebelmann, B.; Lacombe, D. Challenging the traditional approach for interpreting genetic variants: Lessons from Fabry disease. Clin. Genet. 2022, 101, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P. Fabry disease. Orphanet J. Rare Dis. 2010, 5, 30. [Google Scholar] [CrossRef]
- Cacciapuoti, M.; Bertoldi, G.; Caputo, I.; Driussi, G.; Carraro, G.; Calò, L.A. Oxidative stress and its role in Fabry disease. J. Nephrol. 2024, 37, 1201–1207. [Google Scholar] [CrossRef]
- Simoncini, C.; Torri, S.; Montano, V.; Chico, L.; Gruosso, F.; Tuttolomondo, A.; Pinto, A.; Simonetta, I.; Cianci, V.; Salviati, A.; et al. Oxidative stress biomarkers in Fabry disease: Is there a room for them? J. Neurol. 2020, 267, 3741–3752. [Google Scholar] [CrossRef]
- Cortelazzo, A.; De Felice, C.; Guerranti, R.; Signorini, C.; Leoncini, S.; Pecorelli, A.; Zollo, G.; Landi, C.; Valacchi, G.; Ciccoli, L.; et al. Subclinical inflammatory status in Rett syndrome. Mediat. Inflamm. 2014, 2014, 480980. [Google Scholar] [CrossRef]
- Gold, W.A.; Percy, A.K.; Neul, J.L.; Cobb, S.R.; Pozzo-Miller, L.; Issar, J.K.; Ben-Zeev, B.; Vignoli, A.; Kaufmann, W.E. Rett syndrome. Nat. Rev. Dis. Primers 2024, 10, 84. [Google Scholar] [CrossRef]
- Møller, A.T.; Jensen, T.S. Neurological manifestations in Fabry’s disease. Nat. Clin. Pract. Neurol. 2007, 3, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Neul, J.L.; Kaufmann, W.E.; Glaze, D.G.; Christodoulou, J.; Clarke, A.J.; Bahi-Buisson, N.; Leonard, H.; Bailey, M.E.S.; Schanen, N.C.; Zappella, M.; et al. RettSearch Consortium. Rett syndrome: Revised diagnostic criteria and nomenclature. Ann. Neurol. 2010, 68, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Wilkins, G.; Goodman-Vincent, E.; Chishti, S.; Bonilla Guerrero, R.; McFadden, L.; Zahavi, Z.; Santosh, P. Co-Occurring Methylenetetrahydrofolate Reductase (MTHFR) rs1801133 and rs1801131 Genotypes as Associative Genetic Modifiers of Clinical Severity in Rett Syndrome. Brain Sci. 2024, 14, 624. [Google Scholar] [CrossRef] [PubMed]
- Artuso, R.; Papa, F.T.; Grillo, E.; Mucciolo, M.; Yasui, D.H.; Dunaway, K.W.; Disciglio, V.; A Mencarelli, M.; Pollazzon, M.; Zappella, M.; et al. Investigation of modifier genes within copy number variations in Rett syndrome. J. Hum. Genet. 2011, 56, 508–515, Erratum in J. Hum. Genet. 2012, 57, 342–344. [Google Scholar] [CrossRef]
- Liu, Y.; Whitfield, T.W.; Bell, G.W.; Guo, R.; Flamier, A.; Young, R.A.; Jaenisch, R. Exploring the complexity of MECP2 function in Rett syndrome. Nat. Rev. Neurosci. 2025, 26, 379–398. [Google Scholar] [CrossRef]
- Li, L.; Chen, R.; Zhang, H.; Li, J.; Huang, H.; Weng, J.; Tan, H.; Guo, T.; Wang, M.; Xie, J. The epigenetic modification of DNA methylation in neurological diseases. Front. Immunol. 2024, 15, 1401962. [Google Scholar] [CrossRef]
- Vuu, Y.M.; Roberts, C.T.; Rastegar, M. MeCP2 Is an Epigenetic Factor That Links DNA Methylation with Brain Metabolism. Int. J. Mol. Sci. 2023, 24, 4218. [Google Scholar] [CrossRef]
- Brown, C.J.; Robinson, W.P. The causes and consequences of random and non-random X chromosome inactivation in humans. Clin. Genet. 2000, 58, 353–363. [Google Scholar] [CrossRef]
- Sharp, A.J.; Stathaki, E.; Migliavacca, E.; Brahmachary, M.; Montgomery, S.B.; Dupre, Y.; Antonarakis, S.E. DNA methylation profiles of human active and inactive X chromosomes. Genome Res. 2011, 21, 1592–1600. [Google Scholar] [CrossRef]
- Rodrigues, B.; Gonçalves, A.; Sousa, V.; Maia, N.; Marques, I.; Vale-Fernandes, E.; Santos, R.; Nogueira, A.J.A.; Jorge, P. Use of the FMR1 Gene Methylation Status to Assess the X-Chromosome Inactivation Pattern: A Stepwise Analysis. Genes 2022, 13, 419. [Google Scholar] [CrossRef] [PubMed]
- De Riso, G.; Cuomo, M.; Di Risi, T.; Della Monica, R.; Buonaiuto, M.; Costabile, D.; Pisani, A.; Cocozza, S.; Chiariotti, L. Ultra-Deep DNA Methylation Analysis of X-Linked Genes: GLA and AR as Model Genes. Genes 2020, 11, 620. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.; Ramaswami, U.; Hernberg-Ståhl, E.; Hughes, D.A.; Kampmann, C.; Mehta, A.B.; Nicholls, K.; Niu, D.-M.; Pintos-Morell, G.; Reisin, R.; et al. Twenty years of the Fabry Outcome Survey (FOS): Insights, achievements, and lessons learned from a global patient registry. Orphanet J. Rare Dis. 2022, 17, 238. [Google Scholar] [CrossRef] [PubMed]
- Lenders, M.; Hennermann, J.B.; Kurschat, C.; Rolfs, A.; Canaan-Kühl, S.; Sommer, C.; Üçeyler, N.; Kampmann, C.; Karabul, N.; Giese, A.-K.; et al. Multicenter Female Fabry Study (MFFS)—Clinical survey on current treatment of females with Fabry disease. Orphanet J. Rare Dis. 2016, 11, 88. [Google Scholar] [CrossRef]
- Palakuzhiyil, S.V.; Christopher, R.; Chandra, S.R. Deciphering the modifiers for phenotypic variability of X-linked adrenoleukodystrophy. World J. Biol. Chem. 2020, 11, 99–111. [Google Scholar] [CrossRef]
- Fang, H.; Deng, X.; Disteche, C.M. X-factors in human disease: Impact of gene content and dosage regulation. Hum. Mol. Genet. 2021, 30, R285–R295. [Google Scholar] [CrossRef]
- Kable, A.K.; Pich, J.; Maslin-Prothero, S.E. A structured approach to documenting a search strategy for publication: A 12 step guideline for authors. Nurse Educ. Today 2012, 32, 878–886. [Google Scholar] [CrossRef]
- Voniati, L.; Papadopoulos, A.; Ziavra, N.; Tafiadis, D. Communication Abilities, Assessment Procedures, and Intervention Approaches in Rett Syndrome: A Narrative Review. Brain Sci. 2025, 15, 753. [Google Scholar] [CrossRef]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA-a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Singh, J.; Santosh, P. Molecular Insights into Neurological Regression with a Focus on Rett Syndrome-A Narrative Review. Int. J. Mol. Sci. 2025, 26, 5361. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Ozuem, W.; Howell, K.; Ranfagni, S. A Step-by-Step Process of Thematic Analysis to Develop a Conceptual Model in Qualitative Research. Int. J. Qual. Methods 2023, 22, 16094069231205789. [Google Scholar] [CrossRef]
- O’Leary, Z. The Essential Guide to Doing Your Research Project, 2nd ed.; Sage: London, UK, 2004. [Google Scholar]
- Fereday, J.; Muir-Cochrane, E. Demonstrating rigor using thematic analysis: A hybrid approach of inductive and deductive coding and theme development. Int. J. Qual. Res. 2006, 5, 80–92. [Google Scholar] [CrossRef]
- Hossain, M.A.; Yanagisawa, H.; Miyajima, T.; Wu, C.; Takamura, A.; Akiyama, K.; Itagaki, R.; Eto, K.; Iwamoto, T.; Yokoi, T.; et al. The severe clinical phenotype for a heterozygous Fabry female patient correlates to the methylation of non-mutated allele associated with chromosome 10q26 deletion syndrome. Mol. Genet. Metab. 2017, 120, 173–179. [Google Scholar] [CrossRef]
- Bae, E.H.; Choi, J.M.; Ki, C.S.; Ma, S.K.; Yoo, H.W.; Kim, S.W. A late-onset male Fabry disease patient with somatic mosaicism of a classical GLA mutation: A case report. Ann. Palliat. Med. 2021, 10, 4926–4931. [Google Scholar] [CrossRef]
- Čerkauskaitė, A.; Čerkauskienė, R.; Miglinas, M.; Laurinavičius, A.; Ding, C.; Rolfs, A.; Vencevičienė, L.; Barysienė, J.; Kazėnaitė, E.; Sadauskienė, E. Genotype-Phenotype Correlation in a New Fabry-Disease-Causing Mutation. Medicina 2019, 55, 122. [Google Scholar] [CrossRef]
- Al-Obaide, M.A.; Al-Obaidi, I.I.; Vasylyeva, T.L. The potential consequences of bidirectional promoter methylation on GLA and HNRNPH2 expression in Fabry disease phenotypes in a family of patients carrying a GLA deletion variant. Biomed. Rep. 2022, 17, 71. [Google Scholar] [CrossRef]
- Sezer, O.; Ceylaner, S. Genetic Management Algorithm in High-Risk Fabry Disease Cases; Especially in Female Indexes with Mutations. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 324–337. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Hossain, M.A.; Miyajima, T.; Nagao, K.; Miyashita, T.; Eto, Y. Dysregulated DNA methylation of GLA gene was associated with dysfunction of autophagy. Mol. Genet. Metab. 2019, 126, 460–465. [Google Scholar] [CrossRef]
- Shen, J.S.; Balaji, U.; Shigeyasu, K.; Okugawa, Y.; Jabbarzadeh-Tabrizi, S.; Day, T.S.; Arning, E.; Marshall, J.; Cheng, S.H.; Gu, J.; et al. Dysregulated DNA methylation in the pathogenesis of Fabry disease. Mol. Genet. Metab. Rep. 2022, 33, 100919. [Google Scholar] [CrossRef]
- Iza, S.N.; Lagos, S.O.; Yunis, J.J. DNA Methylation Analysis and Phenotype Severity in Fabry Disease. J. Inborn Errors Metab. Screen. 2025, 13, e20230007. [Google Scholar] [CrossRef]
- Rossanti, R.; Nozu, K.; Fukunaga, A.; Nagano, C.; Horinouchi, T.; Yamamura, T.; Sakakibara, N.; Minamikawa, S.; Ishiko, S.; Aoto, Y.; et al. X-chromosome inactivation patterns in females with Fabry disease examined by both ultra-deep RNA sequencing and methylation-dependent assay. Clin. Exp. Nephrol. 2021, 25, 1224–1230. [Google Scholar] [CrossRef]
- Juchniewicz, P.; Kloska, A.; Tylki-Szymańska, A.; Jakóbkiewicz-Banecka, J.; Węgrzyn, G.; Moskot, M.; Gabig-Cimińska, M.; Piotrowska, E. Female Fabry disease patients and X-chromosome inactivation. Gene 2018, 641, 259–264. [Google Scholar] [CrossRef]
- Hübner, A.; Metz, T.; Schanzer, A.; Greber-Platzer, S.; Item, C.B. Aberrant DNA methylation of calcitonin receptor in Fabry patients treated with enzyme replacement therapy. Mol. Genet. Metab. Rep. 2015, 5, 1–2. [Google Scholar] [CrossRef]
- Mignani, R.; Pieruzzi, F.; Berri, F.; Burlina, A.; Chinea, B.; Gallieni, M.; Pieroni, M.; Salviati, A.; Spada, M. FAbry STabilization indEX (FASTEX): An innovative tool for the assessment of clinical stabilization in Fabry disease. Clin. Kidney J. 2016, 9, 739–747. [Google Scholar] [CrossRef]
- Hossain, M.A.; Wu, C.; Yanagisawa, H.; Miyajima, T.; Akiyama, K.; Eto, Y. Future clinical and biochemical predictions of Fabry disease in females by methylation studies of the GLA gene. Mol. Genet. Metab. Rep. 2019, 20, 100497. [Google Scholar] [CrossRef] [PubMed]
- Echevarria, L.; Benistan, K.; Toussaint, A.; Dubourg, O.; Hagege, A.A.; Eladari, D.; Jabbour, F.; Beldjord, C.; De Mazancourt, P.; Germain, D.P. X-chromosome inactivation in female patients with Fabry disease. Clin. Genet. 2016, 89, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Simoncini, C.; Chico, L.; Concolino, D.; Sestito, S.; Fancellu, L.; Boadu, W.; Sechi, G.; Feliciani, C.; Gnarra, M.; Zampetti, A.; et al. Mitochondrial DNA haplogroups may influence Fabry disease phenotype. Neurosci. Lett. 2016, 629, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Ouyang, Y.; Wang, Z.; Ren, H.; Shen, P.; Wang, W.; Xu, Y.; Ni, L.; Yu, X.; Chen, X.; et al. Genotype: A Crucial but Not Unique Factor Affecting the Clinical Phenotypes in Fabry Disease. PLoS ONE 2016, 11, e0161330. [Google Scholar] [CrossRef]
- Di Risi, T.; Cuomo, M.; Vinciguerra, R.; Ferraro, S.; Della Monica, R.; Costabile, D.; Buonaiuto, M.; Trio, F.; Capoluongo, E.; Visconti, R.; et al. Methylome Profiling in Fabry Disease in Clinical Practice: A Proof of Concept. Int. J. Mol. Sci. 2022, 23, 12110. [Google Scholar] [CrossRef] [PubMed]
- Levstek, T.; Breznik, N.; Vujkovac, B.; Nowak, A.; Trebušak Podkrajšek, K. Dynamics of Leukocyte Telomere Length in Patients with Fabry Disease. Biomedicines 2024, 12, 1724. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wasiak, S.; Tsujikawa, L.M.; Rakai, B.D.; Stotz, S.C.; Wong, N.C.W.; Johansson, J.O.; Sweeney, M.; Mohan, C.M.; Khan, A.; et al. Inhibition of epigenetic reader proteins by apabetalone counters inflammation in activated innate immune cells from Fabry disease patients receiving enzyme replacement therapy. Pharmacol. Res. Perspect. 2022, 10, e00949. [Google Scholar] [CrossRef] [PubMed]
- Wagenhäuser, L.; Rickert, V.; Sommer, C.; Wanner, C.; Nordbeck, P.; Rost, S.; Üçeyler, N. X-chromosomal inactivation patterns in women with Fabry disease. Mol. Genet. Genom. Med. 2022, 10, e2029. [Google Scholar] [CrossRef]
- Řeboun, M.; Sikora, J.; Magner, M.; Wiederlechnerová, H.; Černá, A.; Poupětová, H.; Štorkánova, G.; Mušálková, D.; Dostálová, G.; Goláň, L.; et al. Pitfalls of X-chromosome inactivation testing in females with Fabry disease. Am. J. Med. Genet. A 2022, 188, 1979–1989. [Google Scholar] [CrossRef]
- Cokan Vujkovac, A.; Novaković, S.; Vujkovac, B.; Števanec, M.; Škerl, P.; Šabovič, M. Aging in Fabry Disease: Role of Telomere Length, Telomerase Activity, and Kidney Disease. Nephron 2020, 144, 5–13. [Google Scholar] [CrossRef]
- Mignani, R.; Berti, G.M.; Vischini, G.; Di Costanzo, R.; Ciurli, F.; Fabbrizio, B.; Pasquinelli, G.; La Manna, G.; Capelli, I. The Fabry Nephropathy in Patients with N215S Variant. Nephron 2025, 1–5. [Google Scholar] [CrossRef]
- Xu, M.; Orsborne, C.; Eden, J.; Wallace, A.; Church, H.J.; Tylee, K.; Deepak, S.; Cassidy, C.; Woolfson, P.; Miller, C.; et al. Mosaic Fabry Disease in a Male Presenting as Hypertrophic Cardiomyopathy. Cardiogenetics 2021, 11, 1–9. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Gambardella, J.; Fiordelisi, A.; Sorriento, D.; Cerasuolo, F.; Buonaiuto, A.; Avvisato, R.; Pisani, A.; Varzideh, F.; Riccio, E.; Santulli, G.; et al. Mitochondrial microRNAs Are Dysregulated in Patients with Fabry Disease. J. Pharmacol. Exp. Ther. 2023, 384, 72–78. [Google Scholar] [CrossRef]
- Esposito, R.; Santoro, C.; Mandoli, G.E.; Cuomo, V.; Sorrentino, R.; La Mura, L.; Pastore, M.C.; Bandera, F.; D’ascenzi, F.; Malagoli, A.; et al. Cardiac Imaging in Anderson-Fabry Disease: Past, Present and Future. J. Clin. Med. 2021, 10, 1994. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ochoa, E.; Barwick, K.; Cif, L.; Rodger, F.; Docquier, F.; Pérez-Dueñas, B.; Clark, G.; Martin, E.; Banka, S.; et al. Comparison of methylation episignatures in KMT2B- and KMT2D-related human disorders. Epigenomics 2022, 14, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Husson, T.; Lecoquierre, F.; Nicolas, G.; Richard, A.C.; Afenjar, A.; Audebert-Bellanger, S.; Badens, C.; Bilan, F.; Bizaoui, V.; Boland, A.; et al. Episignatures in practice: Independent evaluation of published episignatures for the molecular diagnostics of ten neurodevelopmental disorders. Eur. J. Hum. Genet. 2024, 32, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Brand, E.; Linhart, A.; Deegan, P.; Jurcut, R.; Pisani, A.; Torra, R.; Feldt-Rasmussen, U. Clinical management of female patients with Fabry disease based on expert consensus. Orphanet J. Rare Dis. 2025, 20, 7. [Google Scholar] [CrossRef]
- Schumann, A.; Schaller, K.; Belche, V.; Cybulla, M.; Grünert, S.C.; Moers, N.; Sass, J.O.; Kaech, A.; Hannibal, L.; Spiekerkoetter, U. Defective lysosomal storage in Fabry disease modifies mitochondrial structure, metabolism and turnover in renal epithelial cells. J. Inherit. Metab. Dis. 2021, 44, 1039–1050. [Google Scholar] [CrossRef]
- Hassan, S.; Sidransky, E.; Tayebi, N. The role of epigenetics in lysosomal storage disorders: Uncharted territory. Mol. Genet. Metab. 2017, 122, 10–18. [Google Scholar] [CrossRef]
- Fadra, N.; Schultz-Rogers, L.E.; Chanana, P.; Cousin, M.A.; Macke, E.L.; Ferrer, A.; Pinto E Vairo, F.; Olson, R.J.; Oliver, G.R.; Mulvihill, L.A.; et al. Identification of skewed X chromosome inactivation using exome and transcriptome sequencing in patients with suspected rare genetic disease. BMC Genom. 2024, 25, 371. [Google Scholar] [CrossRef]
- Wanner, C.; Ortiz, A.; Wilcox, W.R.; Hopkin, R.J.; Johnson, J.; Ponce, E.; Ebels, J.T.; Batista, J.L.; Maski, M.; Politei, J.M.; et al. Global reach of over 20 years of experience in the patient-centered Fabry Registry: Advancement of Fabry disease expertise and dissemination of real-world evidence to the Fabry community. Mol. Genet. Metab. 2023, 139, 107603. [Google Scholar] [CrossRef]
- Tebani, A.; Mauhin, W.; Abily-Donval, L.; Lesueur, C.; Berger, M.G.; Nadjar, Y.; Berger, J.; Benveniste, O.; Lamari, F.; Laforêt, P.; et al. A Proteomics-Based Analysis Reveals Predictive Biological Patterns in Fabry Disease. J. Clin. Med. 2020, 9, 1325. [Google Scholar] [CrossRef]
- Tebani, A.; Barbey, F.; Dormond, O.; Ducatez, F.; Marret, S.; Nowak, A.; Bekri, S. Deep next-generation proteomics and network analysis reveal systemic and tissue-specific patterns in Fabry disease. Transl. Res. 2023, 258, 47–59. [Google Scholar] [CrossRef]
- Rozenfeld, P.; Feriozzi, S. Contribution of inflammatory pathways to Fabry disease pathogenesis. Mol. Genet. Metab. 2017, 122, 19–27. [Google Scholar] [CrossRef]
- De Francesco, P.N.; Mucci, J.M.; Ceci, R.; Fossati, C.A.; Rozenfeld, P.A. Fabry disease peripheral blood immune cells release inflammatory cytokines: Role of globotriaosylceramide. Mol. Genet. Metab. 2013, 109, 93–99. [Google Scholar] [CrossRef]
- Gragnaniello, V.; Burlina, A.P.; Commone, A.; Gueraldi, D.; Puma, A. Newborn Screening for Fabry Disease: Current Status of Knowledge. Int. J. Neonatal Screen. 2023, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Ramaswami, U.; West, M.L.; Tylee, K.; Castillon, G.; Braun, A.; Ren, M.; Doobaree, I.U.; Howitt, H.; Nowak, A. The use and performance of lyso-Gb3 for the diagnosis and monitoring of Fabry disease: A systematic literature review. Mol. Genet. Metab. 2025, 145, 109110. [Google Scholar] [CrossRef] [PubMed]
- Abaoui, M.; Boutin, M.; Lavoie, P.; Auray-Blais, C. Tandem mass spectrometry multiplex analysis of methylated and non-methylated urinary Gb3 isoforms in Fabry disease patients. Clin. Chim. Acta 2016, 452, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Burlina, A.; Brand, E.; Hughes, D.; Kantola, I.; Krämer, J.; Nowak, A.; Tøndel, C.; Wanner, C.; Spada, M. An expert consensus on the recommendations for the use of biomarkers in Fabry disease. Mol. Genet. Metab. 2023, 139, 107585. [Google Scholar] [CrossRef]
- Hopkin, R.J.; Laney, D.; Kazemi, S.; Walter, A. Fabry disease in females: Organ involvement and clinical outcomes compared with the general population. Orphanet J. Rare Dis. 2025, 20, 433. [Google Scholar] [CrossRef]
- Stepien, K.M.; Roncaroli, F.; Turton, N.; Hendriksz, C.J.; Roberts, M.; Heaton, R.A.; Hargreaves, I. Mechanisms of Mitochondrial Dysfunction in Lysosomal Storage Disorders: A Review. J. Clin. Med. 2020, 9, 2596. [Google Scholar] [CrossRef]
- Mehta, A.; Ginsberg, L.; FOS Investigators. Natural history of the cerebrovascular complications of Fabry disease. Acta Paediatr. Suppl. 2005, 94, 24–27; discussion 9–10. [Google Scholar] [CrossRef]
- Mehta, A.; Clarke, J.T.; Giugliani, R.; Elliott, P.; Linhart, A.; Beck, M.; Sunder-Plassmann, G.; FOS Investigators. Natural course of Fabry disease: Changing pattern of causes of death in FOS—Fabry Outcome Survey. J. Med. Genet. 2009, 46, 548–552. [Google Scholar] [CrossRef]
- Moreno-Martínez, D.; León-Cejas, L.; Reisin, R. Cerebrovascular disorders and Fabry disease. Rare Dis. Orphan Drugs J. 2024, 3, 9. [Google Scholar] [CrossRef]
- Rombach, S.M.; Twickler, T.B.; Aerts, J.M.; Linthorst, G.E.; Wijburg, F.A.; Hollak, C.E. Vasculopathy in patients with Fabry disease: Current controversies and research directions. Mol. Genet. Metab. 2010, 99, 99–108. [Google Scholar] [CrossRef]
- Faro, D.C.; Di Salvo, S.; Rodolico, M.S.; Losi, V.; Capodanno, D.; Monte, I.P. Cardiac Phenotypes in Fabry Disease: Genetic Variability and Clinical Severity Staging Correlation in a Reference Center Cohort. Genes 2025, 16, 1086. [Google Scholar] [CrossRef] [PubMed]
- Kuo, D.S.; Labelle-Dumais, C.; Gould, D.B. COL4A1 and COL4A2 mutations and disease: Insights into pathogenic mechanisms and potential therapeutic targets. Hum. Mol. Genet. 2012, 21, R97–R110. [Google Scholar] [CrossRef] [PubMed]
- Guey S and Hervé, D. Main features of COL4A1-COL4A2 related cerebral microangiopathies. Cereb. Circ. Cogn. Behav. 2022, 3, 100140. [Google Scholar]
- Linnebank, M.; Kemp, S.; Wanders, R.J.; Kleijer, W.J.; van der Sterre, M.L.; Gartner, J.; Fliessbach, K.; Semmler, A.; Sokolowski, P.; Kohler, W.; et al. Methionine metabolism and phenotypic variability in X-linked adrenoleukodystrophy. Neurology 2006, 66, 442–443. [Google Scholar] [CrossRef]
- Hughes, D.; Linhart, A.; Gurevich, A.; Kalampoki, V.; Jazukeviciene, D.; Feriozzi, S.; FOS Study Group. Prompt Agalsidase Alfa Therapy Initiation is Associated with Improved Renal and Cardiovascular Outcomes in a Fabry Outcome Survey Analysis. Drug Des. Devel Ther. 2021, 15, 3561–3572. [Google Scholar] [CrossRef]
- Weidemann, F.; Jovanovic, A.; Herrmann, K.; Vardarli, I. Chaperone Therapy in Fabry Disease. Int. J. Mol. Sci. 2022, 23, 1887. [Google Scholar] [CrossRef]
- Singh, J.; Lanzarini, E.; Santosh, P. Autonomic dysfunction and sudden death in patients with Rett syndrome: A systematic review. J. Psychiatry Neurosci. 2020, 45, 150–181. [Google Scholar] [CrossRef]
- Singh, J.; Manginas, A.; Wilkins, G.; Santosh, P. A Comprehensive Analysis Examining the Role of Genetic Influences on Psychotropic Medication Response in Children. Genes 2025, 16, 1055. [Google Scholar] [CrossRef]
- Germain, D.P.; Gruson, D.; Malcles, M.; Garcelon, N. Applying artificial intelligence to rare diseases: A literature review highlighting lessons from Fabry disease. Orphanet J. Rare Dis. 2025, 20, 186. [Google Scholar] [CrossRef]
- Kobayashi, H.; Nakata, N.; Izuka, S.; Hongo, K.; Nishikawa, M. Using artificial intelligence and promoter-level transcriptome analysis to identify a biomarker as a possible prognostic predictor of cardiac complications in male patients with Fabry disease. Mol. Genet. Metab. Rep. 2024, 41, 101152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, J.; Santosh, P.; Ramaswami, U. Epigenetic Mechanisms in Fabry Disease: A Thematic Analysis Linking Differential Methylation Profiles and Genetic Modifiers to Disease Phenotype. Curr. Issues Mol. Biol. 2025, 47, 855. https://doi.org/10.3390/cimb47100855
Singh J, Santosh P, Ramaswami U. Epigenetic Mechanisms in Fabry Disease: A Thematic Analysis Linking Differential Methylation Profiles and Genetic Modifiers to Disease Phenotype. Current Issues in Molecular Biology. 2025; 47(10):855. https://doi.org/10.3390/cimb47100855
Chicago/Turabian StyleSingh, Jatinder, Paramala Santosh, and Uma Ramaswami. 2025. "Epigenetic Mechanisms in Fabry Disease: A Thematic Analysis Linking Differential Methylation Profiles and Genetic Modifiers to Disease Phenotype" Current Issues in Molecular Biology 47, no. 10: 855. https://doi.org/10.3390/cimb47100855
APA StyleSingh, J., Santosh, P., & Ramaswami, U. (2025). Epigenetic Mechanisms in Fabry Disease: A Thematic Analysis Linking Differential Methylation Profiles and Genetic Modifiers to Disease Phenotype. Current Issues in Molecular Biology, 47(10), 855. https://doi.org/10.3390/cimb47100855