Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (300)

Search Parameters:
Keywords = base corrugation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4783 KiB  
Article
Empirical Investigation of the Structural Response of Super-Span Soil–Steel Arches During Backfilling
by Bartłomiej Kunecki
Materials 2025, 18(15), 3650; https://doi.org/10.3390/ma18153650 - 3 Aug 2025
Viewed by 87
Abstract
This paper presents field investigations of a corrugated steel soil–steel arch structure with a span of 25.7 m and a rise of 9.0 m—currently the largest single-span structure of its kind in Europe. The structure, serving as a wildlife crossing along the DK16 [...] Read more.
This paper presents field investigations of a corrugated steel soil–steel arch structure with a span of 25.7 m and a rise of 9.0 m—currently the largest single-span structure of its kind in Europe. The structure, serving as a wildlife crossing along the DK16 expressway in northeastern Poland, was constructed using deep corrugated steel plates (500 mm× 237 mm) made from S315MC steel, without additional reinforcements such as stiffening ribs or geosynthetics. The study focused on monitoring the structural behavior during the critical backfilling phase. Displacements and strains were recorded using 34 electro-resistant strain gauges and a geodetic laser system at successive backfill levels, with particular attention to the loading stage at the crown. The measured results were compared with predictions based on the Swedish Design Method (SDM). The SDM equations did not accurately predict internal forces during backfilling. At the crown level, bending moments and axial forces were overestimated by approximately 69% and 152%, respectively. At the final backfill level, the SDM underestimated bending moments by 55% and overestimated axial forces by 90%. These findings highlight limitations of current design standards and emphasize the need for revised analytical models and long-term monitoring of large-span soil–steel structures. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 5425 KiB  
Article
Dynamic Structural Response of a Corrugated Blast Wall Under Hydrogen Blast Loads
by Hyunho Lee and Jungkwan Seo
Appl. Sci. 2025, 15(15), 8237; https://doi.org/10.3390/app15158237 - 24 Jul 2025
Viewed by 167
Abstract
A literature review was conducted to examine blast load characteristics of hydrogen, and the trend of hydrogen blast load and correlations between load characteristics were analyzed and compared with those of hydrocarbons. It was empirically confirmed that hydrogen explosions tend to produce higher [...] Read more.
A literature review was conducted to examine blast load characteristics of hydrogen, and the trend of hydrogen blast load and correlations between load characteristics were analyzed and compared with those of hydrocarbons. It was empirically confirmed that hydrogen explosions tend to produce higher peak overpressures and shorter durations compared with hydrocarbon explosions. In addition, blast load scenarios for hydrogen were selected considering the examined load characteristics and applied to numerical simulations. Dynamic structural responses of a corrugated blast wall were investigated through numerical simulations and analyzed from the perspective of displacement and strain energy. The results also indicated that blast walls designed for hydrocarbon explosions might not provide sufficient structural stiffness and strength to prevent excessive deflection and fracture under hydrogen blast loads. Lastly, a new type of diagram for structural response analysis was proposed, and deformation modes of corrugated blast walls were defined based on qualitative and quantitative structural responses. Full article
Show Figures

Figure 1

23 pages, 4194 KiB  
Article
Incorporating Transverse Normal Strain in the Homogenization of Corrugated Cardboards
by Shao-Keng Liang and Zhi-Wei Wang
Appl. Sci. 2025, 15(14), 7868; https://doi.org/10.3390/app15147868 - 14 Jul 2025
Viewed by 195
Abstract
Homogenization researches for corrugated cardboard are predominantly based on plate theories assuming constant thickness, such as the Reissner–Mindlin plate. However, corrugated cardboard is prone to significant deformation in the thickness direction. To address this limitation, the present work proposes an improved plate element [...] Read more.
Homogenization researches for corrugated cardboard are predominantly based on plate theories assuming constant thickness, such as the Reissner–Mindlin plate. However, corrugated cardboard is prone to significant deformation in the thickness direction. To address this limitation, the present work proposes an improved plate element designed by expanding the deflection function to the quadratic term of the thickness coordinate, enabling a linearly varied transverse normal strain. Furthermore, an extension of the established homogenization method is developed to derive the constitutive matrix. The element is implemented via the Abaqus user subroutine UEL. Validation demonstrates that the proposed element effectively characterizes a linearly varied transverse normal strain and stress. Simulation results from the homogenized model applying the proposed element and extended homogenization method are compared with those from detailed models. The comparisons confirm the efficiency and accuracy of the proposed approach. Full article
Show Figures

Figure 1

16 pages, 3606 KiB  
Article
Comparative Study on Rail Damage Recognition Methods Based on Machine Vision
by Wanlin Gao, Riqin Geng and Hao Wu
Infrastructures 2025, 10(7), 171; https://doi.org/10.3390/infrastructures10070171 - 4 Jul 2025
Viewed by 318
Abstract
With the rapid expansion of railway networks and increasing operational complexity, intelligent rail damage detection has become crucial for ensuring safety and improving maintenance efficiency. Traditional physical inspection methods (e.g., ultrasonic testing, magnetic flux leakage) are limited in terms of efficiency and environmental [...] Read more.
With the rapid expansion of railway networks and increasing operational complexity, intelligent rail damage detection has become crucial for ensuring safety and improving maintenance efficiency. Traditional physical inspection methods (e.g., ultrasonic testing, magnetic flux leakage) are limited in terms of efficiency and environmental adaptability. This study proposes a machine vision-based approach leveraging deep learning to identify four primary types of rail damages: corrugations, spalls, cracks, and scratches. A self-developed acquisition device collected 298 field images from the Chongqing Metro system, which were expanded into 1556 samples through data augmentation techniques (including rotation, translation, shearing, and mirroring). This study systematically evaluated three object detection models—YOLOv8, SSD, and Faster R-CNN—in terms of detection accuracy (mAP), missed detection rate (mAR), and training efficiency. The results indicate that YOLOv8 outperformed the other models, achieving an mAP of 0.79, an mAR of 0.69, and a shortest training time of 0.28 h. To further enhance performance, this study integrated the Multi-Head Self-Attention (MHSA) module into YOLO, creating MHSA-YOLOv8. The optimized model achieved a significant improvement in mAP by 10% (to 0.89), increased mAR by 20%, and reduced training time by 50% (to 0.14 h). These findings demonstrate the effectiveness of MHSA-YOLO for accurate and efficient rail damage detection in complex environments, offering a robust solution for intelligent railway maintenance. Full article
Show Figures

Figure 1

23 pages, 5097 KiB  
Article
Experimental and Restoring Force Model of Precast Shear Walls with Steel Sleeve and Corrugated Metallic Duct Hybrid Connections
by Yuqing Han, Yongjun Qin, Wentong Cheng and Qi Chen
Buildings 2025, 15(13), 2178; https://doi.org/10.3390/buildings15132178 - 22 Jun 2025
Viewed by 483
Abstract
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial [...] Read more.
This study proposes a novel hybrid connection method for precast concrete shear walls, where the edge walls are connected using grouting splice sleeves and the middle walls are connected using grouted corrugated metallic ducts. To investigate the effects of connection type and axial compression ratio on structural performance, five shear wall specimens were tested under low-cycle reversed loading, with detailed analysis of their failure modes and hysteretic behavior. Based on experimental results and theoretical derivation, a restoring force model incorporating connection type was developed. The results demonstrate that hybrid-connected specimens exhibit significantly improved load-bearing capacity, ductility, and seismic performance compared to those with only grouted corrugated metallic duct connections. A higher axial compression ratio enhances structural strength but also accelerates damage progression, particularly after peak loading. A three-line skeleton curve model was established to describe the load, displacement, and stiffness relationships at key characteristic points, and unloading stiffness expressions for different loading stages were proposed. The calculated skeleton and hysteresis curves align well with the experimental results, accurately capturing the cyclic behavior of the hybrid-connected precast shear walls. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

31 pages, 4369 KiB  
Article
Medicago Sativa Stems—A Multi-Output Integrated Biorefinery Approach
by Adrian Cătălin Puițel, George Bârjoveanu, Cătălin Dumitrel Balan and Mircea Teodor Nechita
Polymers 2025, 17(12), 1709; https://doi.org/10.3390/polym17121709 - 19 Jun 2025
Viewed by 355
Abstract
This study presents an investigation on the potential of using one-year-old field-stored Medicago sativa (alfalfa) as a raw material for a multi-output biorefinery. The main objective was to fractionate the biomass into valuable components—crude protein, hemicellulose-derived polysaccharides, lignin, and cellulose—and to explore the [...] Read more.
This study presents an investigation on the potential of using one-year-old field-stored Medicago sativa (alfalfa) as a raw material for a multi-output biorefinery. The main objective was to fractionate the biomass into valuable components—crude protein, hemicellulose-derived polysaccharides, lignin, and cellulose—and to explore the latter’s suitability in papermaking. To this end, three pretreatment strategies (water, alkaline buffer, and NaOH solution) were applied, followed by soda pulping under varying severity conditions. Both solid and liquid fractions were collected and chemically characterized using FTIR, HPLC, and standardized chemical methods. Water-based pretreatment was most effective for protein extraction, achieving over 40% protein content in precipitated fractions. The harshest pulping conditions (20% NaOH, 160 °C, 60 min) yielded cellulose-rich pulp with high glucan content, while also facilitating lignin and hemicellulose recovery from black liquor. Furthermore, the pulps derived from alfalfa stems were tested for papermaking. When blended with old corrugated cardboard (OCC), the fibers enhanced tensile and burst strength by 35% and 70%, respectively, compared to OCC alone. These findings support the valorization of unexploited alfalfa deposits and suggest a feasible biorefinery approach for protein, fiber, and polymer recovery, aligned with circular economy principles. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Polymeric Materials)
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Research on an Intelligent Design Method for the Geometric Structure of Three-Layer Hollow Fan Blades
by Jialin Lei, Jiale Chao, Chuipin Kong and Xionghui Zhou
Aerospace 2025, 12(6), 469; https://doi.org/10.3390/aerospace12060469 - 26 May 2025
Viewed by 371
Abstract
The geometric structure design of three-layer hollow fan blades is extremely complex, which is not only directly related to the blade quality and manufacturing cost but also has a significant impact on engine performance. Based on geometric algorithms and combined with design rules [...] Read more.
The geometric structure design of three-layer hollow fan blades is extremely complex, which is not only directly related to the blade quality and manufacturing cost but also has a significant impact on engine performance. Based on geometric algorithms and combined with design rules and process constraints, an intelligent design method for the geometric structure of three-layer hollow blades is proposed: A new cross-section curve design method based on a non-equidistant offset is presented to enable the rapid design of wall plate structure. An innovative parametric design method for the corrugation structure in cross-sections driven by process constraints such as diffusion bonding angle thresholds is put forward. The spanwise rib smoothing optimization is realized based on the minimum energy method with the corrugation angle change term. The cross-section densification design is carried out to improve the accuracy of wireframe structure and achieve the rapid solid modeling of hollow blades. Finally, the proposed methods are seamlessly integrated into the NX software (version 12), and a three-layer hollow fan blade intelligent design system is developed, which enables the automated design and modeling of the complex geometric structure of the hollow blade under an aerodynamic shape and a large number of design and process constraints. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 24592 KiB  
Article
A Fast, Simple, and Approximate Method for a Minimal Unit Cell Design of Glide-Symmetric Double-Corrugated Parallel-Plate Waveguides
by Fatih Çolak and Agah Oktay Ertay
Appl. Sci. 2025, 15(11), 5876; https://doi.org/10.3390/app15115876 - 23 May 2025
Viewed by 424
Abstract
Glide-symmetric double-corrugated parallel-plate waveguides (GS-DCPPWs) have essential technical properties such as an electromagnetic bandgap, lower dispersion, and the ability to control the equivalent refractive index. For this reason, a fast and simple analysis and design of GS-DCPPW structures have great importance to improve [...] Read more.
Glide-symmetric double-corrugated parallel-plate waveguides (GS-DCPPWs) have essential technical properties such as an electromagnetic bandgap, lower dispersion, and the ability to control the equivalent refractive index. For this reason, a fast and simple analysis and design of GS-DCPPW structures have great importance to improve related microwave systems. This paper introduces a novel design methodology based on the auxiliary functions of generalized scattering matrix (AFGSM) for the dimensional synthesis of GS-DCPPWs. We test the applicability of the AFGSM method on a variety of numerical examples to determine the passband/stopband regions of single and GS-DCPPWs before applying the design procedure. Certain design specifications are chosen, and unit cell dimensions are constructed in accordance with the proposed design technique. Three design scenarios are considered to assess the success of how well the design criteria can be met with the proposed method. The designed unit cells have been periodically connected in a various finite numbers to create periodic filters as a test application for adjusting the electromagnetic bandgap. The success of the periodic GS-DCPPW filters obtained with the proposed design strategy in meeting the specified design requirements has been tested using full-wave electromagnetic simulators (CST Microwave Studio and HFSS). The results indicate that the combined use of the equivalent transmission line circuit and the root-finding routine provided by the proposed method facilitates rapid, efficient, versatile, and approximate designs for corrugated parallel-plate waveguides. Moreover, the design methodology provides the viability of developing a minimal unit cell and a compact periodic filter performance with respect to the literature counterparts. Full article
Show Figures

Figure 1

17 pages, 13434 KiB  
Article
Utilization of Calorimetric Analysis and Fire Dynamics Simulator (FDS) to Determine the Cause of Plant Fire in Taiwan: Thermogravimetric Analyzer (TGA), Differential Scanning Calorimetry (DSC), and FDS Reconstruction
by Yi-Hao Huang, Jen-Hao Chi and Chi-Min Shu
Processes 2025, 13(5), 1450; https://doi.org/10.3390/pr13051450 - 9 May 2025
Viewed by 541
Abstract
This study investigated a factory fire that resulted in an unusual situation that caused the deaths of two firefighters. The official fire investigation report was analyzed, records were obtained, and on-site investigations and interviews were conducted. Using these additional data and a calorimetric [...] Read more.
This study investigated a factory fire that resulted in an unusual situation that caused the deaths of two firefighters. The official fire investigation report was analyzed, records were obtained, and on-site investigations and interviews were conducted. Using these additional data and a calorimetric analysis to determine the combustibility of goods stored in the building at the time, a functional 3D model was produced, and a fire dynamics simulator (FDS) was run. The model was augmented using the results of calorimetric experiments for three types of primary goods being stored in the warehouse area: paper lunch boxes, tissue paper, and corrugated boxes. The reaction heat data obtained for each of the three sample types was 848.24, 468.29, and 301.21 J g−1, respectively. The maximum mass loss data were 98.522, 84.439, and 90.811 mass% for each of the three types, respectively. A full-scale fire scene reconstruction confirmed the fire propagation routes and changes in fire hazard factors, such as indoor temperature, visibility, and carbon monoxide concentration. The FDS results were compared to the NIST recommended values for firefighter heat exposure time. The cause of death for both firefighters was also investigated in terms of the heat resistance of the facepiece lenses of their self-contained breathing apparatus. Based on the findings of this study, recommendations can be made to forestall the recurrence of similar events. Full article
Show Figures

Figure 1

21 pages, 4530 KiB  
Article
Leaf Morpho-Anatomy of Twelve Cymbidium (Orchidaceae) Species from China and Their Taxonomic Significance
by Xiangke Hu, Lei Tao, Jialin Huang, Kaifeng Tao, Dong Ma and Lu Li
Plants 2025, 14(9), 1396; https://doi.org/10.3390/plants14091396 - 6 May 2025
Viewed by 591
Abstract
Cymbidium are endangered and ornamental orchids, and the taxonomy and species identification of this genus have been debated due to some overlapping morphological features between taxa and limited data being available. The leaf morpho-anatomy of 12 Cymbidium species from China was investigated using [...] Read more.
Cymbidium are endangered and ornamental orchids, and the taxonomy and species identification of this genus have been debated due to some overlapping morphological features between taxa and limited data being available. The leaf morpho-anatomy of 12 Cymbidium species from China was investigated using light microscopy and paraffin sectioning. Based on a comparative analysis, some leaf morphological features that varied between species were selected and used for taxonomic differentiation as follows: (1) The shape and structure of leaves were varied and could be used for species delimitation. (2) Microscopic characteristics show that the leaves lacked trichomes and displayed polygonal to rectangular epidermal cells on both surfaces, with larger adaxial cells and more abaxial stigmata. Stomata were mostly distributed only on the abaxial side, but on both sides in Cymbidium mastersii, which exhibited a rare amphistomatic type. The stomatal complex was uniformly tetracytic in 11 species, while it was observed to be anomocytic in C. floribundum. (3) Anatomically, two distinct midrib configurations were identified, a shallow V-shape and V-shape. The mesophyll cells were homogeneous in 10 species, with the exception of a layer of parenchyma cells resembling palisade cells occurring in C. lancifolium and C. qiubeiense. The thickness of the cuticle varied between species, with the adaxial surface covered by a thicker cuticle than the abaxial surface and displaying either a smooth or corrugated surface. A fiber bundle was observed in six species, but absent in the other six. In the former group, the fiber bundle occurred adjacent to both epidermal cells in C. mastersii and C. hookerianum, while it was adjacent to the abaxial epidermis in four other species. The stegmata, with conical, spherical silica bodies, were associated with fiber bundles and mesophyll in seven species, but absent in the other five (C. kanran, C. defoliatum, C. floribundum, C. lancifolium, and C. serratum). Three kinds of crystals were identified, namely the terete bundle, the long tube bundle, and the raphide. (4) It was suggested that some of these variable features could be selected and used for the delimitation of the species and taxonomy of Cymbidium. In addition, a key to the 12 Cymbidium species based on their leaf morpho-anatomic features was proposed, which could lead to a better understanding of the taxonomy and conservation of Orchidaceae. Full article
(This article belongs to the Special Issue Plant Taxonomy, Phylogeny, and Evolution)
Show Figures

Figure 1

14 pages, 4249 KiB  
Article
Effect of Microfiltration Membrane Configuration in Microplastics Recovery from Wastewater Treatment Effluent
by Rubén Rodríguez-Alegre, Sergi Durán-Videra, Laura Pérez Megías, Montserrat Pérez-Moya, Julia García-Montaño, Carlos Andecochea Saiz and Xialei You
Membranes 2025, 15(5), 137; https://doi.org/10.3390/membranes15050137 - 2 May 2025
Viewed by 951
Abstract
Water scarcity has driven the use of wastewater treatment plant (WWTP) effluents as reclaimed water, highlighting the need to overcome challenges such as the presence of emerging contaminants, particularly microplastics (MPs), which WWTPs are unable to effectively remove. Membrane-based processes, such as microfiltration, [...] Read more.
Water scarcity has driven the use of wastewater treatment plant (WWTP) effluents as reclaimed water, highlighting the need to overcome challenges such as the presence of emerging contaminants, particularly microplastics (MPs), which WWTPs are unable to effectively remove. Membrane-based processes, such as microfiltration, have demonstrated high efficiency in the removal of suspended solids, and their application for MP removal is currently under investigation. This study assesses the influence of microfiltration membrane spacer size (1 mil and 80 mil) and geometry—diamond and corrugated—on MP recovery performance, using synthetic wastewaters with varying MPs concentrations. The results indicate the superior performance of large corrugated and small diamond-shaped membranes, as both exhibited the highest and comparable permeate flux, with no MP retention within the membrane element. All microfiltration membranes achieved an 80% recovery of the influent as safe reclaimed water and demonstrated an MP recovery efficiency exceeding 99%, with 100% rejection for fragments and up to 98% rejection for fibres. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

20 pages, 9426 KiB  
Article
Automated Recognition and Measurement of Corrugated Pipes for Precast Box Girder Based on RGB-D Camera and Deep Learning
by Jiongyi Zhu, Zixin Huang, Dejiang Wang, Panpan Liu, Haili Jiang and Xiaoqing Du
Sensors 2025, 25(9), 2641; https://doi.org/10.3390/s25092641 - 22 Apr 2025
Viewed by 538
Abstract
The accurate installation position of corrugated pipes is critical for ensuring the quality of prestressed concrete box girders. Given that these pipes can span up to 30 m and are deeply embedded within rebars, manual measurement is both labor-intensive and prone to errors. [...] Read more.
The accurate installation position of corrugated pipes is critical for ensuring the quality of prestressed concrete box girders. Given that these pipes can span up to 30 m and are deeply embedded within rebars, manual measurement is both labor-intensive and prone to errors. Meanwhile, automated recognition and measurement methods are hindered by high equipment costs and accuracy issues caused by rebar occlusion. To balance cost effectiveness and measurement accuracy, this paper proposes a method that utilizes an RGB-D camera and deep learning. Firstly, an optimal registration scheme is selected to generate complete point cloud data of pipes from segmented data captured by an RGB-D camera. Next, semantic segmentation is applied to extract the characteristic features of the pipes. Finally, the center points from cross-sectional slices are extracted and curve-fitting is performed to recognize and measure the pipes. A test was conducted in a simulated precast factory environment to validate the proposed method. The results show that under the optimal fitting scheme (BP neural network with circle fitting constraint), the average measurement errors for the three pipes are 2.2 mm, 1.4 mm, and 1.6 mm, with Maximum Errors of −5.8 mm, −4.2 mm, and −5.7 mm, respectively, meeting the standard requirements. The proposed method can accurately locate the pipes, offering a new technical pathway for the automated recognition and measurement of pipes in prefabricated construction. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

20 pages, 6387 KiB  
Review
A Survey on the Design and Mechanical Analysis of Cryogenic Hoses for Offshore Liquid CO2 Ship-to-Ship Transfer
by Hao Cheng, Fangqiu Li, Yufeng Bu, Yuanchao Yin, Hailong Lu, Houbin Mao, Xun Zhou, Zhaokuan Lu and Jun Yan
J. Mar. Sci. Eng. 2025, 13(4), 790; https://doi.org/10.3390/jmse13040790 - 16 Apr 2025
Cited by 1 | Viewed by 877
Abstract
With the increasing severity of climate change, Carbon Capture, Utilization, and Storage (CCUS) technology has become essential for reducing atmospheric CO2. Marine carbon sequestration, which stores CO2 in seabed geological structures, offers advantages such as large storage capacity and high [...] Read more.
With the increasing severity of climate change, Carbon Capture, Utilization, and Storage (CCUS) technology has become essential for reducing atmospheric CO2. Marine carbon sequestration, which stores CO2 in seabed geological structures, offers advantages such as large storage capacity and high stability. Cryogenic hoses are critical for the ship-to-ship transfer of liquid CO2 from transportation vessels to offshore carbon sequestration platforms, but their design methods and mechanical analysis remain inadequately understood. This study reviews existing cryogenic hose designs, including reinforced corrugated hoses, vacuum-insulated hoses, and composite hoses, to assess their suitability for liquid CO2 transfer. Based on CO2’s physicochemical properties, a conceptual composite hose structure is proposed, featuring a double-spring-supported internal composite hose, thermal insulation layer, and outer sheath. Practical recommendations for material selection, corrosion prevention, and monitoring strategies are provided to improve flexibility, pressure resistance, and thermal insulation, enabling reliable long-distance tandem transfer. A mechanical analysis framework is developed to evaluate structural performance under conditions including mechanical loads, thermal stress, and dynamic responses. This manuscript includes an introduction to the background, the methodology for data collection, a review of existing designs, an analysis of CO2 characteristics, the proposed design methods, the mechanical analysis framework, a discussion of challenges, and the conclusions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

13 pages, 11060 KiB  
Article
Influence of Sheet Thickness and Process Parameters on the Microstructure and Mechanical Properties of Brazed Welding Used for Cold-Formed Steel Beams
by Iosif Hulka, Viorel Ungureanu, Silviu Saraolu, Alin Popescu and Alexandru Pascu
Crystals 2025, 15(4), 354; https://doi.org/10.3390/cryst15040354 - 12 Apr 2025
Viewed by 458
Abstract
Metal inert gas (MIG) brazing was used to join galvanized thin sheets with thicknesses in the range of 0.8 to 2 mm in a lap joint configuration using CuAl8 wire as filler. The process was used to manufacture built-up cold-formed steel beams [...] Read more.
Metal inert gas (MIG) brazing was used to join galvanized thin sheets with thicknesses in the range of 0.8 to 2 mm in a lap joint configuration using CuAl8 wire as filler. The process was used to manufacture built-up cold-formed steel beams composed of corrugated steel webs and flanges made from thin-walled cold-formed steel lipped channel profiles. The effect of heat input and sheet thickness on joint properties, such as macro- and microstructure, wettability, and mechanical characteristics such as microhardness and tensile strength were investigated. The bead geometry was assessed by studying the wettability of the filler material. The microstructure was investigated by digital and scanning electron microscopy, and the composition in the heat-affected zone (HAZ), interface, and bead was determined by energy dispersive spectroscopy. Formation of Fe–Al intermetallics was observed in the bead at the bead–base material interface. Some pores were noticed that formed due to the evaporation of the zinc coating. The bead shape and mechanical properties were found to be the best when 1.2 and 2 mm sheets were brazed using a heat input of 121.4 J/mm. This suggests that not only the heat input but also the thickness of the sheet metal play a crucial role in the production of MIG brazed joints. Full article
Show Figures

Figure 1

29 pages, 8370 KiB  
Article
Nonlinear Analysis of Corrugated Core Sandwich Plates Using the Element-Free Galerkin Method
by Linxin Peng, Zhaoyang Zhang, Dongyan Wei, Peng Tang and Guikai Mo
Buildings 2025, 15(8), 1235; https://doi.org/10.3390/buildings15081235 - 9 Apr 2025
Viewed by 292
Abstract
This paper presents a meshless Galerkin method for analyzing the nonlinear behavior of corrugated sandwich plates. A corrugated sandwich plate is a composite structure comprising two flat face sheets and a corrugated core, which can be approximated as an orthotropic anisotropic plate with [...] Read more.
This paper presents a meshless Galerkin method for analyzing the nonlinear behavior of corrugated sandwich plates. A corrugated sandwich plate is a composite structure comprising two flat face sheets and a corrugated core, which can be approximated as an orthotropic anisotropic plate with distinct elastic properties in two perpendicular directions. The formulation is based on the first-order shear deformation theory (FSDT), where the shape functions are constructed using the moving least-square (MLS) approximation. Nonlinear stress and strain expressions are derived according to von Kármán’s large deflection theory. The virtual strain energy functionals of the individual plates are established, and their nonlinear equilibrium equations are formulated using the principle of virtual work. The governing equations for the entire corrugated sandwich structure are obtained by incorporating boundary conditions and displacement continuity constraints. A Newton–Raphson iterative scheme is employed to solve the nonlinear equilibrium equations. The computational program is implemented in C++, and extensive numerical examples are analyzed. The accuracy and reliability of the proposed method are validated through comparisons with ANSYS finite element solutions using SHELL181 elements. The method used in this paper can avoid the problems of mesh reconstruction and mesh distortion in the finite element method. In practical application, it simplifies the simulation calculation and understands the mechanical behavior of sandwich plates closer to actual engineering practice. Full article
(This article belongs to the Special Issue Computational Mechanics Analysis of Composite Structures)
Show Figures

Figure 1

Back to TopTop