Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = bamboo particleboard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1519 KB  
Article
Investigation of Particleboard Production from Durian Husk and Bamboo Waste
by Thi Kim Hong Tang and Nhat Quang Nguyen
J. Compos. Sci. 2025, 9(6), 276; https://doi.org/10.3390/jcs9060276 - 29 May 2025
Viewed by 1391
Abstract
Agricultural residues offer promising opportunities for the development of biocomposites. Durian husk, a lignocellulosic by-product abundantly available in Southeast Asia, and bamboo waste, an underutilized biomass resource, present considerable potential for sustainable particleboard production. This study focuses on developing single-layer bio-based particleboards using [...] Read more.
Agricultural residues offer promising opportunities for the development of biocomposites. Durian husk, a lignocellulosic by-product abundantly available in Southeast Asia, and bamboo waste, an underutilized biomass resource, present considerable potential for sustainable particleboard production. This study focuses on developing single-layer bio-based particleboards using varying proportions of durian husk and bamboo waste bonded with urea formaldehyde resin. The fabricated boards were evaluated for thickness swelling, modulus of rupture, and internal bond strength according to relevant European standards. Results indicated that all particleboards met the Type P1 requirements for general-purpose use under dry conditions, as specified in BS EN 312:2010. The findings demonstrate the feasibility of converting agricultural waste into value-added, eco-friendly materials, supporting waste valorization, promoting circular economy practices, and contributing to the development of bio-based materials. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

23 pages, 5096 KB  
Review
Engineered Bamboo Building Materials: Types, Production, and Applications
by Mahdi Hosseini, Milan Gaff, Yang Wei and Chaoyu Tu
Forests 2025, 16(4), 662; https://doi.org/10.3390/f16040662 - 10 Apr 2025
Cited by 4 | Viewed by 3064
Abstract
The challenges highlighted at the 29th Conference of the Parties (COP29) emphasize the importance of using renewable resources in the architecture, engineering, and construction (AEC) industry. The building and construction sector is a major contributor to environmental pollution, with most emissions stemming from [...] Read more.
The challenges highlighted at the 29th Conference of the Parties (COP29) emphasize the importance of using renewable resources in the architecture, engineering, and construction (AEC) industry. The building and construction sector is a major contributor to environmental pollution, with most emissions stemming from the extraction, transportation, production, and disposal of construction materials. As a result, developing renewable building materials is essential. In the past decade, bamboo has gained significant attention from researchers due to its strength, sustainability, high yield, and rapid growth. Bamboo in its original form has been used in construction for centuries, and recent innovations have led to the creation of engineered bamboo materials designed for more versatile applications. Researchers have been focused on understanding the physical and mechanical properties of engineered bamboo to assess its potential as a sustainable alternative to traditional building materials. However, modern practitioners are still unfamiliar with engineered bamboo materials, their types, and where they can be used. This article highlights the most widely researched engineered bamboo materials that have been used in the construction of small architectural forms and bigger structures. It provides an overview of common engineered bamboo building materials, namely laminated bamboo lumber, laminated bamboo sheets, parallel strand bamboo, bamboo mat boards, and bamboo particleboards, and their manufacturing processes and applications, offering valuable information for current practitioners and future research. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
Show Figures

Figure 1

30 pages, 17875 KB  
Article
Development and Characterization of Novel Hybrid Particleboard Made from Several Non-Wood Lignocellulosic Materials
by Fazilla Oktaviani Tarigan, Luthfi Hakim, Agus Purwoko, Tito Sucipto, Halimatuddahliana Nasution, Widya Fatriasari, Muhammad Adly Rahandi Lubis, Jajang Sutiawan, Mohammad Irfan Bakhsi, Nam-Hun Kim, Petar Antov, Seng Hua Lee, Rangabhashiyam Selvasembian, Mohd Hazwan Hussin, Manggar Arum Aristri and Apri Heri Iswanto
Polymers 2025, 17(4), 512; https://doi.org/10.3390/polym17040512 - 16 Feb 2025
Cited by 3 | Viewed by 1485
Abstract
The green transition trend in the wood-based panel industry aims to reduce environmental impact and waste production, and it is a viable approach to meet the increasing global demand for wood and wood-based materials as roundwood availability decreases, necessitating the development of composite [...] Read more.
The green transition trend in the wood-based panel industry aims to reduce environmental impact and waste production, and it is a viable approach to meet the increasing global demand for wood and wood-based materials as roundwood availability decreases, necessitating the development of composite products as alternatives to non-wood lignocellulosic raw materials. As a result, the purpose of this study is to examine and assess the physical, mechanical, and acoustic properties of particleboard manufactured from non-wood lignocellulosic biomass. The core layer was composed of non-wood lignocelluloses (banana stem, rice straw, coconut fiber, sugarcane bagasse, and fibrous vascular bundles (FVB) from snakefruit fronds), whereas the surface was made of belangke bamboo (Gigantochloa pruriens) and wood. The chemical characteristics, fiber dimensions and derivatives, and contact angles of non-wood lignocellulosic materials were investigated. The contact angle, which ranged from 44.57 to 62.37 degrees, was measured to determine the wettability of these materials toward adhesives. Hybrid particleboard (HPb) or sandwich particleboard (SPb) samples of 25 cm × 25 cm with a target density of 0.75 g/cm3 and a thickness of 1 cm were manufactured using 7% isocyanate adhesive (based on raw material oven dry weight). The physical parameters of the particleboard, including density, water content, water absorption (WA), and thickness swelling (TS), ranged from 0.47 to 0.79 g/cm3, 6.57 to 13.78%, 16.46 to 103.51%, and 3.38 to 39.91%, respectively. Furthermore, the mechanical properties of the particleboard, including the modulus of elasticity (MOE), bending strength (MOR), and internal bond strength (IB), varied from 0.39 to 7.34 GPa, 6.52 to 87.79 MPa, and 0.03 to 0.69 MPa, respectively. On the basis of these findings, the use of non-wood lignocellulosic raw materials represents a viable alternative for the production of high-performance particleboard. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials III)
Show Figures

Figure 1

9 pages, 2264 KB  
Article
The Improvement of Sumatran Elephant (Elephas maximussumatranus) Dung Particleboard Characteristics Using Bamboo Layering
by Rudi Hartono, Apri Heri Iswanto, Evalina Herawati, Reski Eka Suramana, Jajang Sutiawan, Yusup Amin and Ihak Sumardi
Polymers 2022, 14(16), 3330; https://doi.org/10.3390/polym14163330 - 16 Aug 2022
Cited by 5 | Viewed by 2376
Abstract
The use of natural fibers or particles as alternative raw materials for particleboard production is essential due to the shrinking forest area. Currently, dung waste from the Sumatran elephant (Elephas maximus sumatranus) is being used as a raw material for particleboard [...] Read more.
The use of natural fibers or particles as alternative raw materials for particleboard production is essential due to the shrinking forest area. Currently, dung waste from the Sumatran elephant (Elephas maximus sumatranus) is being used as a raw material for particleboard due to its high fiber content. Although the product still has inferior mechanical and physical characteristics, it can be improved by layering bamboo. Therefore, this study aimed to enhance the mechanical and physical qualities of elephant dung particleboard by adding layers of bamboo. The particleboard constructed had three layers; namely, the face and back in the form of a bamboo layers, as well as the core, which was in the form of elephant dung. The elephant dung was evenly mixed with isocyanate adhesive using a spray gun, and the bamboo layers were coated with adhesive on one side of the surface. The sample was subjected to a hot press at a temperature of 150 °C and 30 kg/cm2 pressure for 10 min. Generally, JIS A 5908-2003 is the specification used to test the physical and mechanical properties of particleboard. During the experiment, the characteristics examined include density, moisture content, water absorption, thickness swelling, modulus of elasticity, modulus of rupture, and internal bonding, which were enhanced by using layers of bamboo. The results showed that the physical properties of the particleboard with bamboo layers were a density of 0.62–0.69 g/cm3, a moisture content of 7.87–10.35%, water absorption of 38.27–68.58%, and a thickness swelling of 10.87–30.00%, which met the minimum standards of JIS A 5908-2003. The mechanical characteristics had values for the modulus of elasticity of 1952–7282 MPa, the modulus of rupture of 20.44–68.27 MPa, and the internal bonding of 0.16–0.38 MPa, which met the JIS A 5908-2003 standard. Based on these results, the particleboard with Belangke bamboo layers was the best in this study. Full article
(This article belongs to the Special Issue Preparation and Application of Wood Composite)
Show Figures

Figure 1

25 pages, 6254 KB  
Article
Chemical, Physical, and Mechanical Properties of Belangke Bamboo (Gigantochloa pruriens) and Its Application as a Reinforcing Material in Particleboard Manufacturing
by Apri Heri Iswanto, Elvara Windra Madyaratri, Nicko Septuari Hutabarat, Eka Rahman Zunaedi, Atmawi Darwis, Wahyu Hidayat, Arida Susilowati, Danang Sudarwoko Adi, Muhammad Adly Rahandi Lubis, Tito Sucipto, Widya Fatriasari, Petar Antov, Viktor Savov and Lee Seng Hua
Polymers 2022, 14(15), 3111; https://doi.org/10.3390/polym14153111 - 30 Jul 2022
Cited by 20 | Viewed by 4787
Abstract
This study aimed to analyze the basic properties (chemical composition and physical and mechanical properties) of belangke bamboo (Gigantochloa pruriens) and its potential as a particleboard reinforcement material, aimed at increasing the mechanical properties of the boards. The chemical composition was [...] Read more.
This study aimed to analyze the basic properties (chemical composition and physical and mechanical properties) of belangke bamboo (Gigantochloa pruriens) and its potential as a particleboard reinforcement material, aimed at increasing the mechanical properties of the boards. The chemical composition was determined by Fourier transform near infrared (NIR) analysis and X-ray diffraction (XRD) analysis. The physical and mechanical properties of bamboo were evaluated following the Japanese standard JIS A 5908 (2003) and the ISO 22157:2004 standard, respectively. The results showed that this bamboo had average lignin, holocellulose, and alpha-cellulose content of 29.78%, 65.13%, and 41.48%, respectively, with a degree of crystallinity of 33.54%. The physical properties of bamboo, including specific gravity, inner and outer diameter shrinkage, and linear shrinkage, were 0.59%, 2.18%, 2.26%, and 0.18%, respectively. Meanwhile, bamboo’s mechanical properties, including compressive strength, shear strength, and tensile strength, were 42.19 MPa, 7.63 MPa, and 163.8 MPa, respectively. Markedly, the addition of belangke bamboo strands as a reinforcing material (surface coating) in particleboards significantly improved the mechanical properties of the boards, increasing the modulus of elasticity (MOE) and bending strength (MOR) values of the fabricated composites by 16 and 3 times. Full article
Show Figures

Figure 1

21 pages, 7442 KB  
Article
Polymer Composite Fabrication Reinforced with Bamboo Fiber for Particle Board Product Raw Material Application
by Martijanti Martijanti, Sutarno Sutarno and Ariadne L. Juwono
Polymers 2021, 13(24), 4377; https://doi.org/10.3390/polym13244377 - 14 Dec 2021
Cited by 19 | Viewed by 7318
Abstract
Bamboo particles as reinforcement in composite materials are prospective to be applied to particleboard products in the industry. This study aimed to synthesize bamboo particle reinforced polymer composites as a substitute for particleboard products, which still use wood as a raw material. The [...] Read more.
Bamboo particles as reinforcement in composite materials are prospective to be applied to particleboard products in the industry. This study aimed to synthesize bamboo particle reinforced polymer composites as a substitute for particleboard products, which still use wood as a raw material. The parameters of the composite synthesis process were varied with powder sizes of 50, 100, and 250 mesh, each mesh with volume fractions of 10, 20, and 30%, matrix types of polyester and polypropylene, Tali Bamboo, and Haur Hejo Bamboo as reinforcements. Characterization included tensile strength, flexural strength, and morphology. Particleboard products were tested based on JIS A 5908-2003, including density testing, moisture content, thickness expansion after immersion in water, flexural strength in dry and wet conditions, bending Young’s modulus, and wood screw holding power. The results showed that the maximum flexural and tensile strength values of 91.03 MPa and 30.85 MPa, respectively, were found in polymer composites reinforced with Tali bamboo with the particle size of 250 mesh and volume fraction 30%. Particleboard made of polypropylene and polyester reinforced Tali Bamboo with a particle size of 250 mesh and a volume fraction of 30% composites meets the JIS A 5908-2003 standard. Full article
(This article belongs to the Special Issue Advances in the Mechanical Behavior of Polymeric Materials)
Show Figures

Figure 1

13 pages, 2578 KB  
Article
Some of the Physical and Mechanical Properties of Particleboard Made from Betung Bamboo (Dendrocalamus asper)
by Lina Karlinasari, Prabu Setia Sejati, Ulfa Adzkia, Arinana Arinana and Salim Hiziroglu
Appl. Sci. 2021, 11(8), 3682; https://doi.org/10.3390/app11083682 - 19 Apr 2021
Cited by 16 | Viewed by 5146
Abstract
The objective of this study was to evaluate various physical and mechanical properties of experimental particleboard panels made from Asian giant bamboo (Dendrocalamus asper). Single layer panels having a density level of 0.75 g/cm3 from coarse and fine particles were [...] Read more.
The objective of this study was to evaluate various physical and mechanical properties of experimental particleboard panels made from Asian giant bamboo (Dendrocalamus asper). Single layer panels having a density level of 0.75 g/cm3 from coarse and fine particles were used within the scope of this study. Thickness swelling, water absorption, surface roughness, and wettability characteristics of the samples were tested as physical properties while bending, internal bond strength, and screw withdrawal strength of the panels were considered for their mechanical properties. Resistance of the panels against termite and fungus were also determined. Based on the findings in the work both physical and mechanical properties of the panels made from coarse particles resulted in higher values than those made from fine particles with the exception of their internal bond strength. It appears that using fine particles in the panels enhanced their overall surface quality as well as wettability. Regarding biological deterioration of the samples, those made with coarse particles had better resistance. It seems that giant bamboo as a non-wood lignocellulosic species would have potential to be used as raw material to the manufacture value added particleboard with accepted characteristics. Full article
(This article belongs to the Special Issue Application of Wood Composites II)
Show Figures

Figure 1

29 pages, 9577 KB  
Review
Production of Sustainable Construction Materials Using Agro-Wastes
by Chrysanthos Maraveas
Materials 2020, 13(2), 262; https://doi.org/10.3390/ma13020262 - 7 Jan 2020
Cited by 186 | Viewed by 27811
Abstract
The construction sector, in modern times, is faced by a myriad of challenges primarily due to the increase in the urban population and dwindling natural resources that facilitate the production of construction materials. Furthermore, higher awareness on climate change is forcing companies to [...] Read more.
The construction sector, in modern times, is faced by a myriad of challenges primarily due to the increase in the urban population and dwindling natural resources that facilitate the production of construction materials. Furthermore, higher awareness on climate change is forcing companies to rethink their strategies in developing more sustainable construction materials. Diverse types of agro-waste ranging from rice husk ash (RHA), sugarcane bagasse ash (SCBA), and bamboo leaves ash (BLA) among others have been identified as potent solutions in the development of sustainable construction materials. In this review paper, six different construction materials, made using agro-waste products, are examined. The materials include brick/masonry elements, green concrete, insulation materials for buildings, reinforcement materials for buildings, particleboards, and bio-based plastics. The main criterion adopted in selecting the materials regards their popularity and wide-scale use in modern construction applications. Additionally, as this research emphasizes identifying alternative approaches to develop sustainable construction materials, the focus is directed toward mainstream materials whose continued use has an adverse impact on the environment. The findings obtained from the review showed that the use of agro-waste to develop sustainable construction materials was effective, as the developed materials adhered to established building standards. Therefore, this indicates that agro-waste materials have the potential to replace conventional construction materials and hence achieve economic, environmental, and social sustainability in the long run. Full article
(This article belongs to the Special Issue Sustainability in Construction and Building Materials)
Show Figures

Figure 1

12 pages, 2906 KB  
Article
Castor Oil-Based Polyurethane Resin for Low-Density Composites with Bamboo Charcoal
by Yi-Chun Chen and Wei Tai
Polymers 2018, 10(10), 1100; https://doi.org/10.3390/polym10101100 - 5 Oct 2018
Cited by 64 | Viewed by 9962
Abstract
Polyurethane (PU) foam adhesives were prepared from castor oil as a polyol with isocyanate poly(4,4’-methylene diphenyl isocyanate) (PMDI) using a solvent-free process. The NCO/OH molar ratio used for the preparation of PU foams was 1.5. Water, organosiloxane and dibutyltin dilaurate were used as [...] Read more.
Polyurethane (PU) foam adhesives were prepared from castor oil as a polyol with isocyanate poly(4,4’-methylene diphenyl isocyanate) (PMDI) using a solvent-free process. The NCO/OH molar ratio used for the preparation of PU foams was 1.5. Water, organosiloxane and dibutyltin dilaurate were used as the blowing agent, surfactant and catalyst, respectively. The ratio of blowing agent and catalyst were adjusted to optimize the properties. The results show that PU foam prepared with 4 wt % of castor oil catalyst and blowing agent has minimal water absorption and maximal volume expansion in the PU foams. FT-IR analysis shows that a urethane bond was formed by the hydroxyl group of castor oil and the –NCO group of isocyanate PMDI. More blowing agent and catalyst could improve the volume expansion ratio and reduce water retention of PU foams. It was found that Moso bamboo charcoal (Phyllostachys pubescens) and China fir wood particle (Cunninghamia lanceolate) composites with setting densities of 500 and 600 kg/m3 can be prepared from optimized castor oil-based PU foam adhesive at 100 °C for 5 min under a pressure of 1.5 MPa. Increasing the amount of bamboo charcoal decreases the equilibrium moisture content, water absorption and internal bonding strength of the composite. Notably, bamboo charcoal composite exhibits excellent dimensional stability. The optimized density and bamboo charcoal percentages of the composite were 500 kg/m3 and 50–100%, respectively. The castor oil-based PU composites containing bamboo charcoal fulfilled the CNS 2215 standards for particleboard. This dimensionally stable, low-density bamboo charcoal composite has high potential to replace current indoor building materials. Full article
Show Figures

Graphical abstract

Back to TopTop