Castor Oil-Based Polyurethane Resin for Low-Density Composites with Bamboo Charcoal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Properties of Castor Oil and PMDI
2.3. Preparation of PU Resins
2.4. Characterization of PU Resins
2.4.1. FTIR Analysis
2.4.2. Density, Water Absorption and Water Retention
2.4.3. Weight Retention
2.5. Preparation of Bamboo Charcoal and/or Wood Composites
2.6. Characterizations of Bamboo Charcoal and/or Wood Composites
2.7. Statistical Analyses
3. Results and Discussion
3.1. Foaming Behavior of PU Resins
3.2. Density, Water Absorption and Resistance of PU Resins
3.3. FTIR Spectra of PMDI, Castor Oil and PU Resins
3.4. Appearance and Densities of Bamboo Charcoal/Wood Composite
3.5. Hygroscopicity and Water Absorption of Bamboo Charcoal and/or Wood Composites
3.6. Dimensional Stability of Bamboo Charcoal and/or Wood Composites
3.7. Internal bond strength of bamboo charcoal and wood composites
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fernando, S.; Adhikari, S.; Chandrapal, C.; Murali, N. Biorefineries: Current status, challenges, and future direction. Energy & Fuels 2006, 20, 1727–1737. [Google Scholar] [CrossRef]
- Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502. [Google Scholar] [CrossRef] [PubMed]
- Parikka, M. Global biomass fuel resources. Biomass Bioenerg. 2004, 27, 613–620. [Google Scholar] [CrossRef]
- Passos de Oliveira Santos, R.; Fernanda Rossi, P.; Ramos, L.; Frollini, E. Renewable resources and a recycled polymer as raw materials: Mats from electrospinning of lignocellulosic biomass and pet solutions. Polymers 2018, 10, 538. [Google Scholar] [CrossRef]
- Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Plant oils as platform chemicals for polyurethane synthesis: Current state-of-the-art. Biomacromolecules 2010, 11, 2825–2835. [Google Scholar] [CrossRef] [PubMed]
- Fiorelli, J.; Curtolo, D.D.; Barrero, N.G.; Savastano, H.; de Jesus Agnolon Pallone, E.M.; Johnson, R. Particulate composite based on coconut fiber and castor oil polyurethane adhesive: An eco-efficient product. Ind. Crops Prod. 2012, 40, 69–75. [Google Scholar] [CrossRef]
- Silva, M.C.; Silva, G.G. A new composite from cellulose industrial waste and elastomeric polyurethane. J. Appl. Polym. Sci. 2005, 98, 336–340. [Google Scholar] [CrossRef]
- El-Shekeil, Y.A.; Sapuan, S.M.; Abdan, K.; Zainudin, E.S. Influence of fiber content on the mechanical and thermal properties of kenaf fiber reinforced thermoplastic polyurethane composites. Mater. Des. 2012, 40, 299–303. [Google Scholar] [CrossRef]
- Wang, F.Y.; Wang, H.; Ma, J.W. Adsorption of cadmium (ii) ions from aqueous solution by a new low-cost adsorbent—bamboo charcoal. J. Hazard. Mater. 2010, 177, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, X.; Chen, C.; Wang, H.; Deng, Q.; Gong, M.; Li, D. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Compos. Sci. Technol. 2016, 132, 31–37. [Google Scholar] [CrossRef]
- Asada, T.; Ishihara, S.; Yamane, T.; Toba, A.; Yamada, A.; Oikawa, K. Science of bamboo charcoal: Study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. J. Health Sci. 2002, 48, 473–479. [Google Scholar] [CrossRef]
- Kawai, S.; Sasaki, H. Low-density particleboard. Recent Research on Wood and Wood-Based Materials; Elsevier: Amsterdam, Netherlands, 1993; pp. 33–41. [Google Scholar]
- Mutlu, H.; Meier, M.A.R. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Sci. Technol. 2010, 112, 10–30. [Google Scholar] [CrossRef]
- Somani, K.P.; Kansara, S.S.; Patel, N.K.; Rakshit, A.K. Castor oil based polyurethane adhesives for wood-to-wood bonding. Int. J. Adhes. Adhes. 2003, 23, 269–275. [Google Scholar] [CrossRef]
- Cravo, J.C.M.; de Lucca Sartori, D.; Mármol, G.; de Carvalho Balieiro, J.C.; de Oliveira Machado, G.; Fiorelli, J. Manufacture of particleboard based on cement bag and castor oil polyurethane resin. Constr. Build. Mater. 2015, 87, 8–15. [Google Scholar] [CrossRef]
- Tenorio-Alfonso, A.; Sánchez, M.C.; Franco, J.M. Preparation, characterization and mechanical properties of bio-based polyurethane adhesives from isocyanate-functionalized cellulose acetate and castor oil for bonding wood. Polymers 2017, 9, 132. [Google Scholar] [CrossRef]
- Hejna, A.; Kirpluks, M.; Kosmela, P.; Cabulis, U.; Haponiuk, J.; Piszczyk, Ł. The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind. Crops Prod. 2017, 95, 113–125. [Google Scholar] [CrossRef]
- Hejna, A.; Kosmela, P.; Kirpluks, M.; Cabulis, U.; Klein, M.; Haponiuk, J.; Piszczyk, Ł. Structure, mechanical, thermal and fire behavior assessments of environmentally friendly crude glycerol-based rigid polyisocyanurate foams. J. Polym. Environ. 2018, 26, 1854–1868. [Google Scholar] [CrossRef]
- Guo, H.; Lee, S.C.; Chan, L.Y.; Li, W.M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66. [Google Scholar] [CrossRef]
- Silva, B.B.R.; Santana, R.M.C.; Forte, M.M.C. A solventless castor oil-based PU adhesive for wood and foam substrates. Int. J. Adhes. Adhes. 2010, 30, 559–565. [Google Scholar] [CrossRef]
- Lee, W.J.; Yu, C.Y.; Chen, Y.C. Preparation and characteristics of polyurethane made with polyhydric alcohol-liquefied rice husk. J. Appl. Polym. Sci. 2018, 135, 45910. [Google Scholar] [CrossRef]
- Kairytė, A.; Vėjelis, S. Evaluation of forming mixture composition impact on properties of water blown rigid polyurethane (pur) foam from rapeseed oil polyol. Ind. Crops Prod. 2015, 66, 210–215. [Google Scholar] [CrossRef]
- Zhou, X.; Sain, M.M.; Oksman, K. Semi-rigid biopolyurethane foams based on palm-oil polyol and reinforced with cellulose nanocrystals. Compos. Part A 2016, 83, 56–62. [Google Scholar] [CrossRef]
- Lee, W.J.; Chen, Y.C.; Wu, C.C.; Juan, Y.M. Physicomechanical and thermal properties of moldings made from liquefied wood-based novolak PF resins under various hot-pressing conditions. J. Appl. Polym. Sci. 2009, 113, 1257–1263. [Google Scholar] [CrossRef]
- CNS 2215, Chinese National Standard. Particleboards; Bureau of Standards, Metrology and Inspection: Taipei, Taiwan, 2017.
- Ogunniyi, D.S. Castor oil: A vital industrial raw material. Bioresour. Technol. 2006, 97, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Javni, I.; Petrović, Z.S.; Guo, A.; Fuller, R. Thermal stability of polyurethanes based on vegetable oils. J. Appl. Polym. Sci. 2000, 77, 1723–1734. [Google Scholar] [CrossRef]
- Kong, X.; Liu, G.; Curtis, J.M. Characterization of canola oil based polyurethane wood adhesives. Int. J. Adhes. Adhes. 2011, 31, 559–564. [Google Scholar] [CrossRef]
- Wu, C.H.; Chen, Y.C. The reactivity of bio-based polyurthane foams prepared from castor oil. J. Agric. For. 2017, 64, 215–222. [Google Scholar] [CrossRef]
- Hu, Y.H.; Gao, Y.; Wang, D.N.; Hu, C.P.; Zu, S.; Vanoverloop, L.; Randall, D. Rigid polyurethane foam prepared from a rape seed oil based polyol. J. Appl. Polym. Sci. 2002, 84, 591–597. [Google Scholar] [CrossRef]
- Choe, K.H.; Lee, D.S.; Seo, W.J.; Kim, W.N. Properties of rigid polyurethane foams with blowing agents and catalysts. Polym. J. 2004, 36, 368. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, G.; Xu, W. Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polym. Degrad. Stab. 2014, 101, 32–39. [Google Scholar] [CrossRef]
- He, G.; Yan, N. Effect of moisture content on curing kinetics of PMDI resin and wood mixtures. Int. J. Adhes. Adhes. 2005, 25, 450–455. [Google Scholar] [CrossRef]
- Das, S.; Malmberg, M.J.; Frazier, C.E. Cure chemistry of wood/polymeric isocyanate (PMDI) bonds: Effect of wood species. Int. J. Adhes. Adhes. 2007, 27, 250–257. [Google Scholar] [CrossRef]
- Merlini, C.; Soldi, V.; Barra, G.M.O. Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polym. Test. 2011, 30, 833–840. [Google Scholar] [CrossRef]
- Kurimoto, Y.; Takeda, M.; Koizumi, A.; Yamauchi, S.; Doi, S.; Tamura, Y. Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour. Technol. 2000, 74, 151–157. [Google Scholar] [CrossRef]
- Lin, S.; Huang, J.; Chang, P.R.; Wei, S.; Xu, Y.; Zhang, Q. Structure and mechanical properties of new biomass-based nanocomposite: Castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohydr. Polym. 2013, 95, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Trovati, G.; Sanches, E.A.; Neto, S.C.; Mascarenhas, Y.P.; Chierice, G.O. Characterization of polyurethane resins by FTIR, TGA, and XRD. J. Appl. Polym. Sci. 2010, 115, 263–268. [Google Scholar] [CrossRef]
- Wechsler, A.; Zaharia, M.; Crosky, A.; Jones, H.; Ramírez, M.; Ballerini, A.; Nuñez, M.; Sahajwalla, V. Macadamia (Macadamia integrifolia) shell and castor (Rícinos communis) oil based sustainable particleboard: A comparison of its properties with conventional wood based particleboard. Mater. Des. 2013, 50, 117–123. [Google Scholar] [CrossRef]
- Pelaez-Samaniego, M.R.; Yadama, V.; Lowell, E.; Espinoza-Herrera, R. A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 2013, 47, 1285–1319. [Google Scholar] [CrossRef][Green Version]
- Mo, X.; Cheng, E.; Wang, D.; Sun, X.S. Physical properties of medium-density wheat straw particleboard using different adhesives. Ind. Crops Prod. 2003, 18, 47–53. [Google Scholar] [CrossRef]
- Que, Z.; Furuno, T.; Katoh, S.; Nishino, Y. Effects of urea–formaldehyde resin mole ratio on the properties of particleboard. Build. Environ. 2007, 42, 1257–1263. [Google Scholar] [CrossRef]
- Nitayaphat, W.; Jiratumnukul, N.; Charuchinda, S.; Kittinaovarat, S. Mechanical properties of chitosan/bamboo charcoal composite films made with normal and surface oxidized charcoal. Carbohydr. Polym. 2009, 78, 444–448. [Google Scholar] [CrossRef]
- Fabiyi, J.S.; McDonald, A.G.; Morrell, J.J.; Freitag, C. Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Compos. Part A 2011, 42, 501–510. [Google Scholar] [CrossRef]
- Talavera, F.J.F.; Guzmán, J.A.S.; Richter, H.G.; Dueñas, R.S.; Quirarte, J.R. Effect of production variables on bending properties, water absorption and thickness swelling of bagasse/plastic composite boards. Ind. Crops Prod. 2007, 26, 1–7. [Google Scholar] [CrossRef]
- Wang, S.Y.; Yang, T.H.; Lin, L.T.; Lin, C.J.; Tsai, M.J. Properties of low-formaldehyde-emission particleboard made from recycled wood-waste chips sprayed with PMDI/PF resin. Build. Environ. 2007, 42, 2472–2479. [Google Scholar] [CrossRef]
- Wong, E.D.; Zhang, M.; Wang, Q.; Kawai, S. Formation of the density profile and its effects on the properties of particleboard. Wood Sci. Technol. 1999, 33, 327–340. [Google Scholar] [CrossRef]
Code1 | PMDI | Castor oil | Surfactant | Blowing agent | Catalyst |
---|---|---|---|---|---|
P-2-2 | 67.1 | 100 | 4 | 2 | 2 |
P-2-3 | 67.1 | 100 | 4 | 2 | 3 |
P-2-4 | 67.1 | 100 | 4 | 2 | 4 |
P-3-2 | 67.1 | 100 | 4 | 3 | 2 |
P-3-3 | 67.1 | 100 | 4 | 3 | 3 |
P-3-4 | 67.1 | 100 | 4 | 3 | 4 |
P-4-2 | 67.1 | 100 | 4 | 4 | 2 |
P-4-3 | 67.1 | 100 | 4 | 4 | 3 |
P-4-4 | 67.1 | 100 | 4 | 4 | 4 |
Setting densities (kg/m3) | P-4-4 (g) | Bamboo charcoal (g) | Wood particle (g) |
---|---|---|---|
500 | 81 | 0 | 54 |
500 | 81 | 27 | 27 |
500 | 81 | 40.5 | 13.5 |
500 | 81 | 54 | 0 |
600 | 97.2 | 0 | 64.8 |
600 | 97.2 | 32.4 | 32.4 |
600 | 97.2 | 48.6 | 16.2 |
600 | 97.2 | 64.8 | 0 |
Code | Cream time (s) | End of rise time (s) | Tack-free time (s) | Volume expansion (%) |
---|---|---|---|---|
P-2-2 | 32 | 62 | 90 | 250 |
P-2-3 | 33 | 62 | 81 | 360 |
P-2-4 | 31 | 62 | 83 | 500 |
P-3-2 | 26 | 46 | 58 | 300 |
P-3-3 | 26 | 48 | 60 | 340 |
P-3-4 | 29 | 56 | 80 | 380 |
P-4-2 | 22 | 47 | 54 | 300 |
P-4-3 | 28 | 47 | 60 | 330 |
P-4-4 | 23 | 41 | 59 | 350 |
Code | Density (kg/m3) | Water absorption (%) | Water retention (g/cm3) | Weight retention (%) |
---|---|---|---|---|
P-2-2 | 25.7 ± 0.6EF,1 | 43.0 ± 4.5AB | 0.11 ± 0.01B | 99.0 ± 0.1A |
P-2-3 | 17.8 ± 0.3B | 61.4 ± 4.1CD | 0.11 ± 0.01B | 99.2 ± 0.7A |
P-2-4 | 13.3 ± 0.2A | 88.6 ± 3.7E | 0.12 ± 0.01B | 99.0 ± 0.1A |
P-3-2 | 25.8 ± 0.4F | 36.1 ± 2.8A | 0.09 ± 0.01AB | 99.2 ± 0.1A |
P-3-3 | 24.1 ± 0.8E | 42.2 ± 3.3AB | 0.10 ± 0.01AB | 99.2 ± 0.1A |
P-3-4 | 17.8 ± 0.3B | 65.7 ± 5.5D | 0.12 ± 0.01B | 98.3 ± 1.8A |
P-4-2 | 25.0 ± 1.4EF | 33.8 ± 3.5A | 0.08 ± 0.01A | 98.6 ± 0.1A |
P-4-3 | 21.0 ± 0.7C | 49.9 ± 6.4BC | 0.11 ± 0.01B | 98.5 ± 0.2A |
P-4-4 | 22.2 ± 0.3D | 50.7 ± 6.2BC | 0.10 ± 0.01AB | 98.5 ± 0.1A |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Tai, W. Castor Oil-Based Polyurethane Resin for Low-Density Composites with Bamboo Charcoal. Polymers 2018, 10, 1100. https://doi.org/10.3390/polym10101100
Chen Y-C, Tai W. Castor Oil-Based Polyurethane Resin for Low-Density Composites with Bamboo Charcoal. Polymers. 2018; 10(10):1100. https://doi.org/10.3390/polym10101100
Chicago/Turabian StyleChen, Yi-Chun, and Wei Tai. 2018. "Castor Oil-Based Polyurethane Resin for Low-Density Composites with Bamboo Charcoal" Polymers 10, no. 10: 1100. https://doi.org/10.3390/polym10101100