Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (146)

Search Parameters:
Keywords = ballast waters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3950 KB  
Article
Hydrodynamic Performance and Motion Response of a Novel Deep-Water TLP Floating Offshore Wind Turbine
by Ronghua Zhu, Zongyuan Lai, Chunlong Li, Haiping Qian, Huaqi Yuan, Yingchun Xie and Ke Sun
J. Mar. Sci. Eng. 2025, 13(11), 2131; https://doi.org/10.3390/jmse13112131 - 11 Nov 2025
Viewed by 263
Abstract
The deployment of floating offshore wind turbines (FOWTs) in deep, typhoon-prone waters like the South China Sea requires platforms with exceptional stability. However, the performance validation of novel Tension Leg Platform (TLP) concepts under such extreme metocean conditions remains a significant research gap. [...] Read more.
The deployment of floating offshore wind turbines (FOWTs) in deep, typhoon-prone waters like the South China Sea requires platforms with exceptional stability. However, the performance validation of novel Tension Leg Platform (TLP) concepts under such extreme metocean conditions remains a significant research gap. This study addresses this by numerically evaluating a novel TLP design, including a regular hexagonal topology, a unique bracing structure and heave plates, and an increased ballast-tank height. A coupled numerical framework, integrating potential-flow theory and blade element momentum (BEM) theory within ANSYS-AQWA (2023), was established to simulate the TLP’s dynamic response to combined irregular wave, current, and turbulent wind loads. The resulting time-series data were analyzed using the Continuous Wavelet Transform (CWT) to investigate non-stationary dynamics and capture transient peak loads critical for fatigue sizing, which demonstrated the platform’s superior stability. Under a significant wave height of 11.4 m, the platform’s maximum heave was limited to 0.86 m and its maximum pitch did not exceed 0.3 degrees. Crucially, the maximum tension in the tendons remained below 22% of their minimum breaking load. The primary contribution of this work is the quantitative validation of a novel TLP design’s resilience in an understudied, harsh deep-water environment, confirming the feasibility of the concept and presenting a viable pathway for FOWT deployment in challenging offshore regions. Full article
Show Figures

Figure 1

18 pages, 421 KB  
Review
Dinoflagellates and Saudi Marine Borders: A Special Consideration for Ballast Water, Invasive Species and BWM Convention
by Nermin El Semary
Diversity 2025, 17(11), 772; https://doi.org/10.3390/d17110772 - 3 Nov 2025
Viewed by 369
Abstract
Background: The Kingdom of Saudi Arabia is adjacent to two vital marine ecosystems; the semi-enclosed Arabian Gulf and the largely landlocked Red Sea. Dinoflagellates are repeatedly found in these bodies of marine water, which serve as significant routes for cargo ships. Through these [...] Read more.
Background: The Kingdom of Saudi Arabia is adjacent to two vital marine ecosystems; the semi-enclosed Arabian Gulf and the largely landlocked Red Sea. Dinoflagellates are repeatedly found in these bodies of marine water, which serve as significant routes for cargo ships. Through these ships and ballast water, invasive dinoflagellate species and their cysts are introduced. They compete with indigenous species for nutrients and space, cause massive fish kill-off and disturb the ecological balance and biodiversity. To address these threats, the International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWM Convention) set forth guidelines intended to curtail the dissemination of such detrimental organisms. The Kingdom of Saudi Arabia was one of the co-signatory countries to this Convention. Methods of detection and monitoring include microscopy, molecular characterization and remote sensing, which are employed for the detection and monitoring of these harmful algae, in order to avert disasters such as fish die-offs. The results of several reports confirmed the presence of number of dinoflagellates in both the Arabian Gulf and the Red Sea, some of which are toxin producers, with certain species being highlighted as invasive species whose presence requires a high level of alert. Discussion: The monitoring, the change in engineering of cargo ships and the introduction of advanced surveillance methods, together with the proper treatments of ballast water, are all important security elements that ensure the safe disposal of ballast water without introducing harmful species. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

19 pages, 3642 KB  
Article
Assessing the Performance of Shipboard Instruments Used to Monitor Total Residual Oxidants
by Matthew R. First, Gregory Ziegler, Stephanie H. Robbins-Wamsley, Janet M. Barnes and Mario N. Tamburri
J. Mar. Sci. Eng. 2025, 13(11), 2068; https://doi.org/10.3390/jmse13112068 - 29 Oct 2025
Viewed by 268
Abstract
Shipboard ballast water management systems (BWMS) commonly employ chlorine or other oxidants to treat ballast. Oxidant-based BWMS inject these biocides to meet a concentration threshold or target value that is lethal to most aquatic organisms. Resulting concentrations of total residual oxidant (TRO) may [...] Read more.
Shipboard ballast water management systems (BWMS) commonly employ chlorine or other oxidants to treat ballast. Oxidant-based BWMS inject these biocides to meet a concentration threshold or target value that is lethal to most aquatic organisms. Resulting concentrations of total residual oxidant (TRO) may span two orders of magnitude between initial doses (e.g., ~10 mg L−1) and discharged ballast, which must meet discharge limits (e.g., <0.1 mg L−1). Here, we evaluated three TRO instruments (two colorimetric-based and one based on amperometry) that have been integrated into BWMS for use in shipboard applications. Our study quantified accuracy and precision using test waters along a range of temperatures and salinities, using a pipe loop to mimic in-line shipboard operations, where the instruments continuously sample and analyze circulating water. Linear regression analysis compared the instruments to a standard reference method along a range of concentrations relevant to oxidant-based BWMS. In general, measurements from the TRO sensors showed strong linear relationships to the reference method, but slopes of these relationships were significantly <1 in all but one instance. Precision—measured as the coefficient of variation—ranged from 2 to 4%. These initial tests occurred on units shipped directly from the manufacturer, immediately following calibration and quality checks, and in a controlled laboratory environment. Thus, in this context, our evaluations represent a “best-case” outcome. We recommend that laboratory studies (as described here) be paired with endurance trials and in-service monitoring to include tests in a shipboard environment. These trials should evaluate TRO instruments that are integrated with BWMS and functioning under normal ship operations, measuring both high (treated ballast) and low (neutralized discharge) concentrations of TRO. Shipboard trials in concert with frequent calibration checks will reduce the risks of under- or overestimating TRO concentrations, as both outcomes may harm the environment. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Figure 1

17 pages, 4866 KB  
Article
Development of Virtual Disk Method for Propeller Interacting with Free Surface
by Sua Jeong, Hwi-Su Kim, Yoon-Ho Jang, Byeong-U You and Kwang-Jun Paik
J. Mar. Sci. Eng. 2025, 13(10), 1912; https://doi.org/10.3390/jmse13101912 - 5 Oct 2025
Viewed by 351
Abstract
As the environmental regulations of the International Maritime Organization (IMO) become more stringent, the accurate prediction of ship propulsion performance has become essential. Under ballast conditions where the draft is shallow, the propeller approaches the free surface, causing complex phenomena such as ventilation [...] Read more.
As the environmental regulations of the International Maritime Organization (IMO) become more stringent, the accurate prediction of ship propulsion performance has become essential. Under ballast conditions where the draft is shallow, the propeller approaches the free surface, causing complex phenomena such as ventilation and surface piercing, which reduce propulsion efficiency. The conventional virtual disk (VD) method cannot adequately capture these free-surface effects, leading to deviations from model propeller results. To resolve this, a correction formula that accounts for the advance ratio (J) and submergence ratio (h/D) has been proposed in previous studies. In this study, the correction formula was simplified and implemented in a CFD environment using a field function, enabling dynamic adjustment of body force based on time-varying submergence depth. A comparative analysis was conducted between the conventional VD, modified VD, and model propeller using POW and self-propulsion simulations for an MR tanker and SP598M propeller. The improved method was validated in calm and regular wave conditions. The results showed that the modified VD method closely matched the performance trends of the model propeller, especially in free surface-interference conditions (e.g., h/D < 0.5). Furthermore, additional validations in wave-induced self-propulsion confirmed that the modified VD method accurately reproduced the reductions in wake fraction and thrust deduction coefficient, unlike the overestimations observed with the conventional VD. These results demonstrate that the modified VD method can reliably predict propulsion performance under real sea states and serve as a practical tool in the early design stage. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2125 KB  
Article
Surface Mapping by RPAs for Ballast Optimization and Slip Reduction in Plowing Operations
by Lucas Santos Santana, Lucas Gabryel Maciel do Santos, Josiane Maria da Silva, Aldir Carpes Marques Filho, Francesco Toscano, Enio Farias de França e Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Thieres George Freire da Silva and Marco Antonio Zanella
AgriEngineering 2025, 7(10), 332; https://doi.org/10.3390/agriengineering7100332 - 3 Oct 2025
Viewed by 570
Abstract
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating [...] Read more.
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating added wheel weights at different speeds for a tractor-reversible plow system. Six 94.5 m2 quadrants were analyzed for slippage monitored by RPA (Mavic3M-RTK) pre- and post-agricultural operation overflights and soil sampling (moisture, density, penetration resistance). A 2 × 2 factorial scheme (F-test) assessed soil-surface attribute correlations and slippage under varying ballasts (52.5–57.5 kg/hp) and speeds. Results showed slippage ranged from 4.06% (52.5 kg/hp, fourth reduced gear) to 11.32% (57.5 kg/hp, same gear), with liquid ballast and gear selection significantly impacting performance in friable clayey soil. Digital Elevation Model (DEM) and spectral indices derived from RPA imagery, including Normalized Difference Red Edge (NDRE), Normalized Difference Water Index (NDWI), Bare Soil Index (BSI), Green–Red Vegetation Index (GRVI), Visible Atmospherically Resistant Index (VARI), and Slope, proved effective. The approach reduced tractor slippage from 11.32% (heavy ballast, 4th gear) to 4.06% (moderate ballast, 4th gear), showing clear improvement in traction performance. The integration of indices and slope metrics supported ballast adjustment strategies, particularly for secondary plowing operations, contributing to improved traction performance and overall operational efficiency. Full article
(This article belongs to the Special Issue Utilization and Development of Tractors in Agriculture)
Show Figures

Figure 1

17 pages, 1300 KB  
Article
Towards More Effective Ship Ballast Water Monitoring: Evaluating and Improving Compliance Monitoring Devices (CMDs)
by Qiong Wang, Xiang Yu, Tao Zhang, Jiansen Du and Huixian Wu
Water 2025, 17(19), 2845; https://doi.org/10.3390/w17192845 - 29 Sep 2025
Viewed by 473
Abstract
For accurate and reliable monitoring, compliance monitoring devices (CMDs) in Port State Control must meet strict and uniform quality standards. This study evaluates how effectively CMDs, using variable fluorescence (VF) and fluorescein diacetate (FDA) technologies, detect live organisms in the 10–50 μm size [...] Read more.
For accurate and reliable monitoring, compliance monitoring devices (CMDs) in Port State Control must meet strict and uniform quality standards. This study evaluates how effectively CMDs, using variable fluorescence (VF) and fluorescein diacetate (FDA) technologies, detect live organisms in the 10–50 μm size range. Employing a detailed analytical framework, we analyzed key performance indicators, including accuracy, precision, sensitivity, specificity, trueness, detection limits, and reliability by comparing CMD outputs to those of traditional microscopic methods. Reliability assessments revealed that VF-type CMD and FDA-type CMD performed robustly, with a stability rate of 99% for both, surpassing the 90% verification threshold. Precision analysis indicated an average CV exceeding 0.25; however, some samples, especially those below the D-2 standard, achieved a CV of less than 0.25. Concordance evaluations revealed that VF-CMDs and FDA-CMDs achieved rates of 63% and 55%, respectively, falling short of the 80% verification standard and underscoring the need for further calibration or optimization. Structural equation modeling shows that organism density significantly influences CMD performance. These findings underscore the challenges of accurately detecting low organism concentrations, further complicated by biological diversity and environmental variability. Despite their limitations in assessing ballast water compliance, CMDs are effective initial screening tools. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Graphical abstract

25 pages, 7534 KB  
Article
Coupled Simulation Study on the High-Pressure Air Expulsion from Submarine Ballast Tanks and Emergency Surfacing Dynamics
by Jiabao Chen, Likun Peng, Bangjun Lv, Wei Pan and Yong Wang
J. Mar. Sci. Eng. 2025, 13(9), 1769; https://doi.org/10.3390/jmse13091769 - 13 Sep 2025
Viewed by 466
Abstract
Emergency surfacing acts as the final line of defense in preserving the operational viability of submarines, playing a crucial role in their safety. To investigate the dynamic characteristics of submarine emergency surfacing, utilizing whole moving mesh technology, a method for coupled simulation of [...] Read more.
Emergency surfacing acts as the final line of defense in preserving the operational viability of submarines, playing a crucial role in their safety. To investigate the dynamic characteristics of submarine emergency surfacing, utilizing whole moving mesh technology, a method for coupled simulation of high-pressure air blowing out water tanks and emergency surfacing motion of submarines is proposed, enhancing the simulation’s fidelity to real-world dynamics. Based on meeting the requirements for simulation accuracy, utilizing the coupled simulation model, this study explored the effects of varying expulsion pressures on submarine motion parameters including depth, roll, pitch, and yaw angles. The findings indicate that the hull emerges slightly earlier and reaches a marginally higher point when coupling effects are accounted for compared to scenarios where these effects are neglected. At consistent expulsion pressures, as the pitch and roll angles increase and the back pressure decreases, the expulsion rate from the ballast tank accelerates. Higher expulsion pressures result in quicker surfacing of the hull, smaller amplitude of pitch angles, and larger amplitudes of roll angles, while the changes in yaw angle displayed no clear pattern. The methodologies and conclusions of this study offer valuable insights for the design and operational strategies of actual submarines. Full article
(This article belongs to the Special Issue Advanced Studies in Ship Fluid Mechanics)
Show Figures

Figure 1

23 pages, 909 KB  
Article
Enhancing Marine Environmental Protection Enforcement in Taiwan: Legal and Policy Reforms in the Context of International Conventions
by Shu-Hong Lin and Yu-Cheng Wang
Laws 2025, 14(5), 60; https://doi.org/10.3390/laws14050060 - 22 Aug 2025
Viewed by 1612
Abstract
The Marine Pollution Control Act (MPCA) in Taiwan aims to align with international conventions such as the United Nations Convention on the Law of the Sea (UNCLOS), the International Convention for the Prevention of Pollution from Ships (MARPOL), the International Convention on Civil [...] Read more.
The Marine Pollution Control Act (MPCA) in Taiwan aims to align with international conventions such as the United Nations Convention on the Law of the Sea (UNCLOS), the International Convention for the Prevention of Pollution from Ships (MARPOL), the International Convention on Civil Liability for Oil Pollution Damage (CLC), the International Oil Pollution Compensation Funds (FUNDs), and the International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWM). However, Taiwan’s particular international status prevents formal participation in these treaties. This study evaluates Taiwan’s legal and institutional frameworks on ship emission control, pollution liability and compensation, and interagency coordination, identifying key gaps compared with global standards. By analyzing Japan’s and South Korea’s best practices in port management, cross-border pollution prevention, and vessel monitoring, this study proposes legal and policy reforms that are tailored to Taiwan. Recommendations include strengthening liability mechanisms, enhancing interagency collaboration, monitoring vessels, and fostering regional cooperation. Our findings suggest that these reforms will improve Taiwan’s marine environmental governance and contribute to regional and global ocean sustainability. Full article
(This article belongs to the Section Environmental Law Issues)
Show Figures

Figure 1

14 pages, 701 KB  
Article
Working Primers and qPCR Protocols for Rapid eDNA Identification of Four Aquatic Invasive Species Found in the Lower Great Lakes with High Potential for Ballast Transport to Lake Superior
by Matthew E. Gruwell, Amanda Welsbacher, Noel Moore, Allegra Cangelosi, Abigail Melendez, Ryan Sheehan and Ivor Knight
Hydrobiology 2025, 4(3), 22; https://doi.org/10.3390/hydrobiology4030022 - 19 Aug 2025
Viewed by 760
Abstract
Reliable, timely and economical target organism detection in harbors and ballast water is urgently needed to prevent the spread of aquatic invasive species (AIS) by commercial ships in the North American Great Lakes (NAGL). Inter-Great Lake ships (Lakers) transport large volumes (ca. 52 [...] Read more.
Reliable, timely and economical target organism detection in harbors and ballast water is urgently needed to prevent the spread of aquatic invasive species (AIS) by commercial ships in the North American Great Lakes (NAGL). Inter-Great Lake ships (Lakers) transport large volumes (ca. 52 million metric tons. annually) of untreated lake water between lakes, with over 50% transported against the natural flow from the lower lakes to Western Lake Superior ports. The transport of ballast water is the number one threat of AIS spread throughout the NAGL. A relatively new tool to fight the spread of AIS is the use of eDNA for rapid detection and identification of target organisms. This technology opens doors for advancing control of ballast-mediated AIS through rapid detection. To that end, we have developed species-specific, reliable eDNA primers to target specific detection of four AIS in water samples along with qPCR protocols. Target organisms were selected based on the following criteria: (1) they are known to be invasive in the lower NAGL, (2) they are established in the lower NAGL but not in Superior, (3) they are biodegradable, and (4) they are obtainable, morphologically distinct and have existing DNA sequence information. Working primers, qPCR protocols and detection limits are provided for three invertebrate species and one alga species. These species are Daphnia lumholtzi (a water flea), Cercopagis pengoi (the fishhook water flea), Echinogammarus ishnus (a scud) and Nitellopsis obtusa (Starry Stonewort). Full article
Show Figures

Figure 1

24 pages, 3084 KB  
Article
Overall Design and Performance Analysis of the Semi-Submersible Platform for a 10 MW Vertical-Axis Wind Turbine
by Qun Cao, Xinyu Zhang, Ying Chen, Xinxin Wu, Kai Zhang and Can Zhang
Energies 2025, 18(13), 3488; https://doi.org/10.3390/en18133488 - 2 Jul 2025
Viewed by 1047
Abstract
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, [...] Read more.
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, high aerodynamic load fluctuations, and substantial self-weight—factors exacerbated by short installation windows and complex hydrodynamic interactions. Through systematic scheme demonstration, we establish the optimal four-column configuration, resolving critical limitations of existing concepts in terms of water depth adaptability, stability, and fabrication economics. The integrated design features central turbine mounting, hexagonal pontoons for enhanced damping, and optimized ballast distribution, achieving a 3400-tonne steel mass (29% reduction vs. benchmarks). Comprehensive performance validation confirms exceptional survivability under 50-year typhoon conditions (Hs = 4.42 m, Uw = 54 m/s), limiting platform tilt to 8.02° (53% of allowable) and nacelle accelerations to 0.10 g (17% of structural limit). Hydrodynamic analysis reveals heave/pitch natural periods > 20 s, avoiding wave resonance (Tp = 7.64 s), while comparative assessment demonstrates 33% lower pitch RAOs than leading horizontal-axis platforms. The design achieves unprecedented synergy of typhoon resilience, motion performance, and cost-efficiency—validated by 29% steel savings—providing a technically and economically viable solution for megawatt-scale VAWT deployment in challenging seas. Full article
Show Figures

Figure 1

20 pages, 2532 KB  
Article
Feeding Habits of the Invasive Atlantic Blue Crab Callinectes sapidus in Different Habitats of the SE Iberian Peninsula, Spain (Western Mediterranean)
by Fikret Öndes, Isabel Esteso, Elena Guijarro-García, Elena Barcala, Francisca Giménez-Casalduero, Alfonso A. Ramos-Esplá and Carmen Barberá
Water 2025, 17(11), 1615; https://doi.org/10.3390/w17111615 - 26 May 2025
Cited by 1 | Viewed by 1977
Abstract
The blue crab Callinectes sapidus Rathbun, 1896 is native to the western coast of the Atlantic Ocean. Although its arrival to the Mediterranean was probably due to ballast water, this species has several characteristics that have enabled it to successfully invade countless localities [...] Read more.
The blue crab Callinectes sapidus Rathbun, 1896 is native to the western coast of the Atlantic Ocean. Although its arrival to the Mediterranean was probably due to ballast water, this species has several characteristics that have enabled it to successfully invade countless localities in the Mediterranean and the Black Sea. Little is known about its feeding habits and ecosystem impacts in the Mediterranean basin. This study aimed to provide information on the natural diet of C. sapidus by comparing the stomach contents of specimens caught in different seasons and habitats of the SE Iberian Peninsula (hypersaline waters in Mar Menor Lagoon and brackish waters in Guardamar Bay). This study also tested whether gender influences prey selection and if ovigerous females exhibit limited feeding activity. Regarding the frequency of occurrence, the results indicated that in Mar Menor Lagoon the most frequently consumed prey were Crustacea (60%), followed by fish (57%) and Mollusca (29%), whilst in Guardamar Bay, Mollusca (40%), sediment (32%), algae (24%) and Crustacea (24%) were dominant. It has been determined that this species predates heavily on Mediterranean shrimp Penaeus kerathurus, an economically important shrimp species in the lagoon area. Analysis using a generalised linear model indicated that sex, season and size class were factors that significantly influenced the stomach content weight. Furthermore, non-ovigerous females had significantly fuller stomachs than ovigerous individuals. Since the population of Callinectes sapidus tends to increase in the Mediterranean basin, monitoring of its feeding ecology is recommended to determine its impact on the ecosystem. Full article
(This article belongs to the Special Issue Aquatic Environment and Ecosystems)
Show Figures

Figure 1

27 pages, 9421 KB  
Article
Transport Mechanism and Optimization Design of LBM–LES Coupling-Based Two-Phase Flow in Static Mixers
by Qiong Lin, Qihan Li, Pu Xu, Runyuan Zheng, Jiaji Bao, Lin Li and Dapeng Tan
Processes 2025, 13(6), 1666; https://doi.org/10.3390/pr13061666 - 26 May 2025
Cited by 12 | Viewed by 1063
Abstract
Static mixers have been widely used in marine research fields, such as marine control systems, ballast water treatment systems, and seawater desalination, due to their high efficiency, low energy consumption, and broad applicability. However, the turbulent mixing process and fluid–wall interactions involving complex [...] Read more.
Static mixers have been widely used in marine research fields, such as marine control systems, ballast water treatment systems, and seawater desalination, due to their high efficiency, low energy consumption, and broad applicability. However, the turbulent mixing process and fluid–wall interactions involving complex structures make the mixing transport characteristics of static mixers complex and nonlinear, which affect the mixing efficiency and stability of the fluid control device. Here, the modeling and design optimization of the two-phase flow mixing and transport dynamics of a static mixer face many challenges. This paper proposes a modeling and problem-solving method for the two-phase flow transport dynamics of static mixers, based on the lattice Boltzmann method (LBM) and large eddy simulation (LES). The characteristics of the two-phase flow mixing dynamics and design optimization strategies for complex component structures are analyzed. First, a two-phase flow transport dynamics model for static mixers is set up, based on the LBM and a multiple-relaxation-time wall-adapting local eddy (MRT-WALE) vortex viscosity coupling model. Using octree lattice block refinement technology, the interaction mechanism between the fluid and the wall during the mixing process is explored. Then, the design optimization strategies for the flow field are analyzed under different flow rates and mixing element configurations to improve the mixing efficiency and stability. The research results indicate that the proposed modeling and problem-solving methods can reveal the dynamic evolution process of mixed-flow fields. Blade components are the main driving force behind the increased turbulent kinetic energy and induced vortex formation, enhancing the macroscopic mixing effect. Moreover, variations in the flow velocity and blade angles are important factors affecting the system pressure drop. If the inlet velocity is 3 m/s and the blade angle is 90°, the static mixer exhibits optimized overall performance. The quantitative analysis shows that increasing the blade angle from 80° to 100° reduces the pressure drop by approximately 44%, while raising the inlet velocity from 3 m/s to 15 m/s lowers the outlet COV value by about 70%, indicating enhanced mixing uniformity. These findings confirm that an inlet velocity of 3 m/s combined with a 90° blade angle provides an optimal trade-off between mixing performance and energy efficiency. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

21 pages, 7821 KB  
Article
Utilizing Environmental DNA for Early Monitoring of Non-Indigenous Fish Species in Maritime Ballast Water
by Hanglei Li, Hui Jia and Hui Zhang
Fishes 2025, 10(5), 241; https://doi.org/10.3390/fishes10050241 - 21 May 2025
Viewed by 884
Abstract
Ballast water has become a significant vector for the global spread of non-indigenous aquatic species. These species may cause severe ecological disruption and economic losses when introduced into new environments. Traditional monitoring techniques often lack the sensitivity and efficiency required for early monitoring, [...] Read more.
Ballast water has become a significant vector for the global spread of non-indigenous aquatic species. These species may cause severe ecological disruption and economic losses when introduced into new environments. Traditional monitoring techniques often lack the sensitivity and efficiency required for early monitoring, hindering timely and effective management. In this study, we used environmental DNA (eDNA) technology to assess fish diversity and identify non-indigenous fish species in ballast water samples collected from 14 international vessels entering Dongjiakou Port, China. Genetic evidence of five non-indigenous fish species was monitored, including two recognized invasive species (Lates calcarifer and Anguilla anguilla). Among all groups, samples from Group B (V2, V3, V6, V8) exhibited the highest diversity of non-indigenous species, suggesting regional differences in species composition that may reflect source port biodiversity. These findings highlight the utility of eDNA-based monitoring not only for early detection of potentially non-indigenous taxa but also for capturing biogeographic patterns associated with global maritime traffic. By demonstrating the effectiveness of this approach at an international port, this study contributes a scientific foundation for both local biodiversity conservation and broader ecological surveillance, offering valuable insights for the ongoing development of ballast water management strategies worldwide. Full article
(This article belongs to the Section Fishery Economics, Policy, and Management)
Show Figures

Figure 1

15 pages, 2185 KB  
Article
A New Ribo-Type of Wangodinium sinense from Germination of Resting Cysts Isolated from Ballast Tank Sediments of Incoming Ships to China
by Zhe Tao, Caixia Yue, Yuyang Liu, Shuo Shi, Ruoxi Li, Zhaoyang Chai, Yunyan Deng, Lixia Shang, Zhangxi Hu, Haifeng Gu, Fengting Li and Yingzhong Tang
J. Mar. Sci. Eng. 2025, 13(5), 942; https://doi.org/10.3390/jmse13050942 - 12 May 2025
Cited by 1 | Viewed by 582
Abstract
In recent decades, ships’ ballast water and associated sediments have been recognized globally as significant vectors for the dissemination of non-indigenous species, which has attracted extensive attention due to its ecological and economic impacts. The characteristics of production of resting cysts in the [...] Read more.
In recent decades, ships’ ballast water and associated sediments have been recognized globally as significant vectors for the dissemination of non-indigenous species, which has attracted extensive attention due to its ecological and economic impacts. The characteristics of production of resting cysts in the dinoflagellate life cycle further increases the risk of biological invasions through ballast tank sediments. Despite extensive research which has characterized the species diversity of dinoflagellate cysts within ballast tank sediments, the possibility and importance of invasions caused by different ribosomal types of the same species have been paid little attention. In this study, two cultures of dinoflagellates were established through cyst germination from the ballast tank sediments collected from two ships (“THETIS” and “WARIYANAREE”) arriving at the Jiangyin Port (China) and identified as Wangodinium sinense Z. Luo, Zhangxi Hu, Yingzhong Tang and H.F. Gu by comprehensive phylogenetic analysis of rDNA sequences (including LSU, SSU, and ITS1-5.8S-ITS2). Despite the rDNA sequences of the isolates showing a generally high similarity to reference sequences, the LSU D1-D6 sequences contained up to 11 stable single nucleotide polymorphisms (SNPs), while SSU and ITS1-5.8S-ITS2 sequences exhibited up to five and two divergence sites, respectively. Moreover, phylogenetic analyses based on partial LSU and SSU rDNA sequences further indicated that strains germinated from ships’ ballast tank sediments formed a strongly supported sister clade to the strains previously isolated from Chinese and Korean waters, representing a novel ribo-type distinct from Chinese and Korean strains. Detailed morphological observations using light microscopy (LM) and scanning electron microscopy (SEM) did not find differences between our isolates and the holotype of the species in key diagnostic characteristics including the position and shape of the nucleus and chloroplasts, as well as the ASC structure, which suggested that no significant morphological divergence has occurred among these ribo-types. Acute toxicity exposure assays indicated that this ribo-type of W. sinense posed no lethal effect on rotifers at concentrations ≤ 104 cells/mL, yet it remains necessary to maintain vigilance regarding the potential risk of algal blooms resulting from higher cell density or environmental changes in the invaded ecosystems. This study reports the first successful germination of W. sinense cysts from ballast tank sediments, indicating that its cysts may be widely transferred through ballast tank sediments, and presents a potential risk of bio-invasions of new genotypes of species to a region where other genotypes of the same species have been present as indigenous species. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

25 pages, 4784 KB  
Article
Dynamic Simulation and Characteristic Analysis on Freezing Process in Ballast Tanks of Polar LNG Carriers
by Xu Bai, Cao Xu and Daolei Wu
Appl. Sci. 2025, 15(9), 5192; https://doi.org/10.3390/app15095192 - 7 May 2025
Cited by 1 | Viewed by 735
Abstract
The ballast tank is a critical system for LNG carriers, ensuring structural safety and stability during navigation. When LNG carriers navigate in polar regions, the ballast tank is prone to freezing, which will reduce the efficiency of ballast water circulation. Furthermore, the freezing [...] Read more.
The ballast tank is a critical system for LNG carriers, ensuring structural safety and stability during navigation. When LNG carriers navigate in polar regions, the ballast tank is prone to freezing, which will reduce the efficiency of ballast water circulation. Furthermore, the freezing process generates frost heaving forces that may damage the walls of the ballast tank, shorten the structure’s service life, and disrupt the ship’s normal operations. Therefore, analyzing the freezing process of ballast tanks is essential. This paper focuses on the ballast tank of a polar LNG carrier as the research subject. It assumes that the ballast water is fresh water with unchanging physical properties and takes into account the environmental conditions in polar regions. A numerical simulation model of the freezing process within the ballast tank is established. This study investigates the influence of various environmental parameters on the freezing process and determines the evolution of ice shape in relation to temperature field changes under different environmental conditions. The results indicate that as the ambient temperature decreases, the rate of temperature reduction at the ballast water level accelerates, resulting in a thicker ice layer formed by freezing. Additionally, as the seawater temperature decreases, the rate of temperature decline in the ballast water at the bulkhead is significantly accelerated, leading to an increased rate of ice shape evolution. Furthermore, a reduction in the height of the ballast water level enhances the heat transfer rate of the ballast water, which markedly increases the degree of freezing in the ballast water. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

Back to TopTop