Utilizing Environmental DNA for Early Monitoring of Non-Indigenous Fish Species in Maritime Ballast Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Filtration
2.2. DNA Extraction and PCR Amplification
2.3. Sequencing and Sequence Analysis
2.4. Species Composition Analysis
2.5. α- and β-Diversity Analysis
2.6. Non-Indigenous Fish Species Assessment
3. Results
3.1. Fish Species Composition
3.2. Results of Fish Diversity Analysis
3.3. Non-Indigenous Fish Species Statistics
4. Discussion
4.1. Reliability and Effectiveness of eDNA Technology in Monitoring Non-Indigenous Fish Species
4.2. Distribution of Non-Indigenous Species and High-Risk Populations
4.3. Control Measures for Non-Indigenous Fish in Ballast Water
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salleh, N.A.; Rosli, F.N.; Akbar, M.A.; Yusof, A.; Sahrani, F.K.; Razak, S.A.; Ahmad, A.; Usup, G.; Bunawan, H. Pathogenic hitchhiker diversity on international ships’ ballast water at West Malaysia port. Mar. Pollut. Bull. 2021, 172, 112850. [Google Scholar] [CrossRef]
- Hwang, J.; Park, S.Y.; Lee, S.; Lee, T.K. High diversity and potential translocation of DNA viruses in ballast water. Mar. Pollut. Bull. 2018, 137, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Cope, R.C.; Prowse, T.A.A.; Ross, J.V.; Wittmann, T.A.; Cassey, P. Temporal modelling of ballast water discharge and ship-mediated invasion risk to Australia. R. Soc. Open Sci. 2015, 2, 150039. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, C.; Pienaar, R.N.; Sym, S.D. Possible introduction of alien phytoplankton via shipping ballast water: A South African perspective. S. Afr. J. Bot. 2001, 67, 465–474. [Google Scholar] [CrossRef]
- García-Garay, J.; Franco-Herrera, A.; Machuca-Martinez, F. Zooplankton sensitivity and phytoplankton regrowth for ballast water treatment with advanced oxidation processes. Environ. Sci. Pollut. Res. 2018, 25, 35008–35014. [Google Scholar] [CrossRef]
- Gavand, M.R.; McClintock, J.B.; Amsler, C.D.; Peters, R.W.; Angus, R.A. Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: A prospective treatment to eradicate invasive organisms from ballast water. Mar. Pollut. Bull. 2007, 54, 1777–1788. [Google Scholar] [CrossRef]
- Gollasch, S.; Lenz, J.; Dammer, M.; Andres, H.G. Survival of tropical ballast water organisms during a cruise from the Indian Ocean to the North Sea. J. Plankton Res. 2000, 22, 923–937. [Google Scholar] [CrossRef]
- Ardura, A.; Martinez, J.L.; Zaiko, A.; Garcia-Vazquez, E. Poorer diversity but tougher species in old ballast water: Biosecurity challenges explored from visual and molecular techniques. Mar. Pollut. Bull. 2021, 168, 112465. [Google Scholar] [CrossRef]
- Mandrak, N.E.; Cudmore, B. The fall of native fishes and the rise of non-native fishes in the Great Lakes Basin. Aquat. Ecosyst. Health 2010, 13, 255–268. [Google Scholar] [CrossRef]
- Inoue, K.; Odo, S.; Noda, T.; Nakao, S.; Takeyama, S.; Yamaha, E.; Yamazaki, F.; Harayama, S. A possible hybrid zone in the Mytilus edulis complex in Japan revealed by PCR markers. Mar. Biol. 1997, 128, 91–95. [Google Scholar] [CrossRef]
- Cuthbert, R.N.; Pattison, Z.; Taylor, N.G.; Verbrugge, L.; Diagne, C.; Ahmed, D.A.; Leroy, B.; Angulo, E.; Briski, E.; Capinha, C.; et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 2021, 775, 145238. [Google Scholar] [CrossRef] [PubMed]
- Trebitz, A.S.; Hoffman, J.C.; Darling, J.A.; Pilgrim, E.M.; Kelly, J.R.; Brown, E.A.; Chadderton, W.L.; Egan, S.P.; Grey, E.K.; Hashsham, S.A.; et al. Early detection monitoring for aquatic non-indigenous species: Optimizing surveillance, incorporating advanced technologies, and identifying research needs. J. Environ. Manag. 2017, 202, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Scriver, M.; Marinich, A.; Wilson, C.; Freeland, J. Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquat. Bot. 2015, 122, 27–31. [Google Scholar] [CrossRef]
- Tsuji, S.; Takahara, T.; Doi, H.; Shibata, N.; Yamanaka, H. The detection of aquatic macroorganisms using environmental DNA analysis-A review of methods for collection, extraction, and detection. Environ. DNA 2019, 1, 99–108. [Google Scholar] [CrossRef]
- Jannel, L.A.; Guilhaumon, F.; Valade, P.; Chabanet, P.; Borie, G.; Grondin, H.; Jourand, P. eDNA metabarcoding, a promising tool for monitoring aquatic biodiversity in the estuaries of Reunion Island (South-West Indian Ocean). Environ. DNA 2024, 6, e70044. [Google Scholar] [CrossRef]
- Lymperopoulou, D.S.; Dobbs, F.C. Bacterial diversity in ships’ ballast water, ballast-water exchange, and implications for ship-mediated dispersal of microorganisms. Environ. Sci. Technol. 2017, 51, 1962–1972. [Google Scholar] [CrossRef]
- Gerhard, W.A.; Gunsch, C.K. Metabarcoding and machine learning analysis of environmental DNA in ballast water arriving to hub ports. Environ. Int. 2019, 124, 312–319. [Google Scholar] [CrossRef]
- Shang, L.; Hu, Z.; Deng, Y.; Li, J.; Liu, Y.; Song, X.; Zhai, X.Y.; Zhan, Z.F.; Tian, W.; Xu, J.X.; et al. Transoceanic ships as a source of alien dinoflagellate invasions of inland freshwater ecosystems. Harmful Algae 2024, 135, 102630. [Google Scholar] [CrossRef]
- Ghabooli, S.; Zhan, A.; Paolucci, E.; Hernandez, M.R.; Briski, E.; Cristescu, M.E.; MacIsaac, H.J. Population attenuation in zooplankton communities during transoceanic transfer in ballast water. Ecol. Evol. 2016, 6, 6170–6177. [Google Scholar] [CrossRef]
- Zaiko, A.; Martinez, J.L.; Schmidt-Petersen, J.; Ribicic, D.; Samuiloviene, A.; Garcia-Vazquez, E. Metabarcoding approach for the ballast water surveillance—An advantageous solution or an awkward challenge? Mar. Pollut. Bull. 2015, 92, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Stepien, C.A.; Neilson, M.E. What’s in a name? Taxonomy and nomenclature of invasive gobies in the Great Lakes and beyond. J. Great Lakes Res. 2013, 39, 555–559. [Google Scholar] [CrossRef]
- Yang, L. The role of new ports in port-related industries and urban development: A case study of Dongjiakou Port. J. Jinan Vocat. Coll. 2017, 95–96. [Google Scholar]
- Yu, Y.Q.; Zhang, B.M.; Teng, X.D.; Zhao, L. Surveillance on medical vectors at Qingdao Dongjiakou port. Chin. Front. Health Quar. 2017, 40, 173–176. [Google Scholar]
- Liu, J.W.; Yu, Z.X.; Zhu, C.B.; Hu, B.; Liu, Z. Determination of key factors for the moored operations of 400,000-DWT bulk carriers at Dongjiakou Port. Waterw. Eng. 2023, 72–77. [Google Scholar]
- Kumar, G.; Eble, J.E.; Gaither, M.R. A practical guide to sample preservation and pre-PCR processing of aquatic environmental DNA. Mol. Ecol. Resour. 2020, 20, 29–39. [Google Scholar] [CrossRef]
- IMO. International Convention for the Control and Management of Ship’s Ballast Water and Sediments; IMO: London, UK, 2004; Available online: https://www.imo.org/en/About/Conventions/Pages/International-Convention-for-the-Control-and-Management-of-Ships%27-Ballast-Water-and-Sediments-(BWM).aspx (accessed on 1 February 2024).
- Miya, M.; Sato, Y.; Fukunaga, T.; Sado, T.; Poulsen, J.Y.; Sato, K.; Minamoto, T.; Yamamoto, S.; Yamanaka, H.; Araki, H.; et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2015, 2, 150088. [Google Scholar] [CrossRef]
- Pagenkopp Lohan, K.M.; Fleischer, R.C.; Carney, K.J.; Holzer, K.K.; Ruiz, G.M. Amplicon-based pyrosequencing reveals high diversity of protistan parasites in ships’ ballast water: Implications for biogeography and infectious diseases. Microb. Ecol. 2016, 71, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.Y. The Checklist of Marine Biota of China Seas, 1st ed.; Science Press: Beijing, China, 2008. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Xiong, W.; Shen, C.; Wu, Z.; Lu, H.; Yan, Y. A brief overview of known introductions of non-native marine and coastal species into China. Aquat. Invasions 2017, 12, 109–115. [Google Scholar] [CrossRef]
- Zhao, S.J.; Zhang, X.J.; Li, C.D.; Zhu, A.Y.; Wu, C.W. Alien fishes of mariculture in China. Mar. Sci. 2006, 30, 75–80. [Google Scholar]
- Xu, H.; Qiang, S. China’s Invasive Alien Species, Revised Edition; Science Press: Beijing, China, 2018. [Google Scholar]
- Pusey, B.; Burrows, D.; Arthington, A.; Kennard, M. Translocation and spread of piscivorous fishes in the Burdekin River, north-eastern Australia. Biol. Invasions 2006, 8, 965–977. [Google Scholar] [CrossRef]
- Çinar, M.E. The alien ascidian Styela clava now invading the Sea of Marmara (Tunicata: Ascidiacea). ZooKeys 2016, 563, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Grammatiki, K.; de Jonge, N.; Nielsen, J.L.; Gómez-Gomez, S.C.; Avramidi, E.; Lymperaki, M.M.; Marcou, M.; Ioannou, G.; Papatheodoulou, M.; Dargent, O.; et al. eDNA metabarcoding of marine invertebrate communities at RO desalination plant outfalls in Cyprus. Mar. Pollut. Bull. 2025, 214, 117609. [Google Scholar] [CrossRef]
- Giroux, M.S.; Reichman, J.R.; Langknecht, T.; Burgess, R.M.; Ho, K.T. Environmental RNA as a tool for marine community biodiversity assessments. Sci. Rep. 2022, 12, 17782. [Google Scholar] [CrossRef]
- Fonseca, V.G.; Davison, P.I.; Creach, V.; Stone, D.; Bass, D.; Tidbury, H.J. The application of eDNA for monitoring aquatic non-indigenous species: Practical and policy considerations. Diversity 2023, 15, 631. [Google Scholar] [CrossRef]
- Outinen, O.; Bailey, S.A.; Casas-Monroy, O.; Delacroix, S.; Gorgula, S.; Griniene, E.; Kakkonen, J.E.; Srebaliene, G. Biological testing of ships’ ballast water indicates challenges for the implementation of the Ballast Water Management Convention. Front. Mar. Sci. 2024, 11, 1334286. [Google Scholar] [CrossRef]
- Wonham, M.J.; Carlton, J.T.; Ruiz, G.M.; Smith, L.D. Fish and ships: Relating dispersal frequency to success in biological invasions. Mar. Biol. 2000, 136, 1111–1121. [Google Scholar] [CrossRef]
- Arai, K.; Itakura, H.; Yoneta, A.; Yoshinaga, T.; Shirotori, F.; Kaifu, K.; Kimura, S. Discovering the dominance of the non-native European eel in the upper reaches of the Tone River system, Japan. Fish. Sci. 2017, 83, 735–742. [Google Scholar] [CrossRef]
- Stern, N.; Rothman, S.B.S. An alarming mariculture breach in a coral reef: Alien barramundi Lates calcarifer (Bloch, 1790) at the northern Red Sea. BioInvasions Rec. 2021, 10, 181–187. [Google Scholar] [CrossRef]
- Buley, R.P.; Hasler, C.T.; Tix, J.A.; Suski, C.D.; Hubert, T.D. Can ozone be used to control the spread of freshwater Aquatic Invasive Species? Manag. Biol. Invasion 2017, 8, 13–24. [Google Scholar] [CrossRef]
- Lakshmi, E.; Priya, M.; Achari, V.S. An overview on the treatment of ballast water in ships. Ocean Coast. Manag. 2021, 199, 105296. [Google Scholar] [CrossRef]
- Tsolaki, E.; Diamadopoulos, E. Technologies for ballast water treatment: A review. J. Chem. Technol. Biot 2010, 85, 19–32. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.; Li, Y.; Fan, X. Fast detection technology for alien invasive fish in ship ballast water. J. Shandong Jiaotong Univ. 2023, 31, 110–118. [Google Scholar]
- Egan, S.P.; Grey, E.; Olds, B.; Feder, J.L.; Ruggiero, S.T.; Tanner, C.E.; Lodge, D.M. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy. Environ. Sci. Technol. 2015, 49, 4113–4121. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Miyata, K.; Yamane, M.; Honda, H. Environmental nucleic acid pollution: Characterization of wastewater generating false positives in molecular ecological surveys. ACS ES T Water 2023, 3, 756–764. [Google Scholar] [CrossRef]
Group | Grouping Type | Vessels | Ballast Tank Samples |
---|---|---|---|
A | Geographic grouping | V1 | - |
B | Geographic grouping | V2, V3, V6, V8 | - |
C | Geographic grouping | V4, V9, V10 | - |
D | Geographic grouping | V5, V12, V14 | - |
E | Geographic grouping | V7 | - |
F | Geographic grouping | V11, V13 | - |
G | Intra-vessel sampling | V5 | V51, V52 |
H | Intra-vessel sampling | V6 | V61, V62, V63 |
Station | IMO Number | Vessel Name | Date of Uptake | Sampling Date | Ballast Tank Number and Sampling Volume | Location of Uptake | Sea Area 5 | Age of Ballast Water/Day 6 |
---|---|---|---|---|---|---|---|---|
V1 | 9735945 | Orion | 2.21 | 3.11 | BWT 1 (3 L) | 13.516° N, 112.955° E | Central South China Sea | 19 |
V2 | 9485904 | Safeen al amal | 4.4 | 4.18 | BWT (3 L) | 34.050° N, 131.750° E | SetoNaikai | 14 |
V3 | 9615042 | Friendly islands | 5.17 | 5.24 | DBT 2 (3 L) | 34.450° N, 133.927° E | SetoNaikai | 7 |
V4 | 9146558 | Sea alice | 5.10 | 6.3 | BWT (3 L) | 22.562° N, 120.330° E | Taiwan Strait | 24 |
V5 | 8747654 | Jin yang guan | 5.30 | 6.3 | FPT 3 (2 L), APT 4 (1 L) | 34.734° N, 126.379° E | South Yellow Sea | 4 |
V6 | 9533335 | Mandarin river | 5.28 | 6.5 | FPT (1 L), APT (1 L), DBT (1 L) | 34.514° N, 133.737° E | SetoNaikai | 8 |
V7 | 9362619 | Hong yang | 5.15 | 6.26 | BWT (3 L) | 35.6° N, 119.783° E | Langyatai Bay | 42 |
V8 | 9815305 | Soc glory | 6.27 | 7.2 | BWT (3 L) | 33.643° N, 133.508° E | Tosa Bay | 5 |
V9 | 9919723 | Theresa dua | 7.24 | 7.29 | BWT (3 L) | 20.65° N, 120.8° E | Northeastern South China Sea | 5 |
V10 | 9483293 | Sg foundation | 8.19 | 8.26 | BWT (3 L) | 25.883° N, 122.96° E | Southern East China Sea | 7 |
V11 | 9392377 | Argent sunrise | 8.25 | 9.19 | BWT (3 L) | 37.829° N, 122.393° W | San Francisco Bay | 25 |
V12 | 9488396 | Xin zhong rui 7 | 9.8 | 11.1 | BWT (3 L) | 37.504° N, 126.637° E | Ganghwa Bay | 54 |
V13 | 9288825 | Wenche victory | 10.20 | 11.18 | BWT (3 L) | 34.147° N, 119.211° W | Santa Barbara Channel | 29 |
V14 | 1020851 | Express star | 11.19 | 11.23 | BWT (3 L) | 36.962° N, 126.838° E | Pyeongtaek Bay | 4 |
Sample | Chao1 | Shannon Index | Simpson Index | Pielou Evenness |
---|---|---|---|---|
V51 | 7 | 0.104679399 | 0.034140565 | 0.053794569 |
V52 | 10 | 0.214499753 | 0.097928275 | 0.093156059 |
V61 | 36 | 0.279477463 | 0.092236373 | 0.085779368 |
V62 | 18 | 0.489592095 | 0.176108518 | 0.16938724 |
V63 | 22 | 1.576761115 | 0.62564492 | 0.510106587 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Jia, H.; Zhang, H. Utilizing Environmental DNA for Early Monitoring of Non-Indigenous Fish Species in Maritime Ballast Water. Fishes 2025, 10, 241. https://doi.org/10.3390/fishes10050241
Li H, Jia H, Zhang H. Utilizing Environmental DNA for Early Monitoring of Non-Indigenous Fish Species in Maritime Ballast Water. Fishes. 2025; 10(5):241. https://doi.org/10.3390/fishes10050241
Chicago/Turabian StyleLi, Hanglei, Hui Jia, and Hui Zhang. 2025. "Utilizing Environmental DNA for Early Monitoring of Non-Indigenous Fish Species in Maritime Ballast Water" Fishes 10, no. 5: 241. https://doi.org/10.3390/fishes10050241
APA StyleLi, H., Jia, H., & Zhang, H. (2025). Utilizing Environmental DNA for Early Monitoring of Non-Indigenous Fish Species in Maritime Ballast Water. Fishes, 10(5), 241. https://doi.org/10.3390/fishes10050241