Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = bacteriophage ecology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1846 KiB  
Article
Structural and Genetic Diversity of Lysis Modules in Bacteriophages Infecting the Genus Streptococcus
by Mathilde Saint-Jean, Olivier Claisse, Claire Le Marrec and Johan Samot
Genes 2025, 16(7), 842; https://doi.org/10.3390/genes16070842 - 19 Jul 2025
Viewed by 318
Abstract
Background/Objectives: Bacteriophages infecting the genus Streptococcus play a crucial role in microbial ecology and have potential applications in biotechnology and medicine. Despite their importance, significant gaps remain in our understanding of their lysis modules. This study aims to address these deficiencies by [...] Read more.
Background/Objectives: Bacteriophages infecting the genus Streptococcus play a crucial role in microbial ecology and have potential applications in biotechnology and medicine. Despite their importance, significant gaps remain in our understanding of their lysis modules. This study aims to address these deficiencies by analyzing the genomic diversity and lysis module organization in Streptococcus phages. Methods: A search was conducted in the NCBI RefSeq database to identify phage genomes infecting Streptococcus. A representative panel was selected based on taxonomic diversity. Lysis modules were annotated and visualized, functional domains in endolysins were identified, and holins were characterized. Results: A total of 205 phage genomes were retrieved from the NCBI RefSeq database, of which 185 complete genomes were analyzed. A subset of 34 phages was selected for in-depth analysis, ensuring the representation of taxonomic diversity. The lysis modules were annotated and visualized, revealing five distinct organizations. Among the 256 identified endolysins, 25 distinct architectural organizations were observed, with amidase activity being the most prevalent. Holins were classified into 9 of the 74 families listed in the Transporter Classification Database, exhibiting one to three transmembrane domains. Conclusions: This study provides insights into the structural diversity of lysis modules in Streptococcus phages, paving the way for future research and potential biotechnological applications. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

42 pages, 6467 KiB  
Review
Marine Bacteriophages as Next-Generation Therapeutics: Insights into Antimicrobial Potential and Application
by Riza Jane S. Banicod, Aqib Javaid, Nazia Tabassum, Du-Min Jo, Md. Imtaiyaz Hassan, Young-Mog Kim and Fazlurrahman Khan
Viruses 2025, 17(7), 971; https://doi.org/10.3390/v17070971 - 10 Jul 2025
Viewed by 749
Abstract
Microbial infections are an escalating global health threat, driven by the alarming rise of antimicrobial resistance (AMR), which has made many conventional antibiotics increasingly ineffective and threatens to reverse decades of medical progress. The rapid emergence and spread of multidrug-resistant bacteria have severely [...] Read more.
Microbial infections are an escalating global health threat, driven by the alarming rise of antimicrobial resistance (AMR), which has made many conventional antibiotics increasingly ineffective and threatens to reverse decades of medical progress. The rapid emergence and spread of multidrug-resistant bacteria have severely limited treatment options, resulting in increased morbidity, mortality, and healthcare burden worldwide. In response to these challenges, phage therapy is regaining interest as a promising alternative. Bacteriophages, the most abundant biological entities, have remarkable specificity toward their bacterial hosts, enabling them to selectively eliminate pathogenic strains. Phage therapy presents several advantages over conventional antibiotics, which include minimal disruption to the microbiome and a slower rate of resistance development. Among the various sources of phages, the marine environment remains one of the least explored. Given their adaptation to saline conditions, high pressure, and variable nutrient levels, marine bacteriophages mostly exhibit enhanced environmental stability, broader host ranges, and distinct infection mechanisms, thus making them highly promising for therapeutic purposes. This review explores the growing therapeutic potential of marine bacteriophages by examining their ecological diversity, biological characteristics, infection dynamics, and practical applications in microbial disease control. It also deals with emerging strategies such as phage–antibiotic synergy, genetic engineering, and the use of phage-derived enzymes, alongside several challenges that must be addressed to enable clinical translation and regulatory approval. Advancing our understanding and application of marine phages presents a promising path in the global fight against AMR and the development of next-generation antimicrobial therapies. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

16 pages, 9902 KiB  
Article
Genome Sequences of the First Phages Infecting Limnohabitans Reveal Their Global Distribution and Metabolic Potential
by Boxuan Deng, Raoqiong Che, Pinxin Zhu, Yongxia Wang, Zhiying Li, Shiying Zhang and Wei Xiao
Microorganisms 2025, 13(6), 1324; https://doi.org/10.3390/microorganisms13061324 - 6 Jun 2025
Viewed by 563
Abstract
Bacteriophages (phages) are one of the critical biotic drivers of prokaryotic community dynamics, functions, and evolution. Despite their importance in aquatic ecosystems, very few phages have been isolated from freshwater lakes, hampering our understanding of their ecological importance and usage in a variety [...] Read more.
Bacteriophages (phages) are one of the critical biotic drivers of prokaryotic community dynamics, functions, and evolution. Despite their importance in aquatic ecosystems, very few phages have been isolated from freshwater lakes, hampering our understanding of their ecological importance and usage in a variety of biotechnological applications. Limnohabitans, with a ubiquitous distribution, is a metabolically versatile, fast-growing, morphologically diverse freshwater lake bacterial genera. It is especially abundant in pH-neutral and alkaline aquatic habitats, where it represents an average of 12% of freshwater bacterioplankton and plays an important role in funneling carbon from primary producers to higher trophic levels. However, no phages infecting Limnohabitans have been reported to date. Here, we describe, for the first time, three phages infecting Limnohabitans, DC31, DC33, and YIMV22061, isolated from two freshwater lakes in China and characterized using genome content analysis and comparative genomics. DC31 and DC33, recovered from the eutrophic Dianchi Lake, with auxiliary metabolic genes (AMGs), associated with nucleotide metabolism, whereas YIMV22061, isolated from the oligotrophic Fuxian Lake, carried AMGs involved in antibiotic resistance. The AMGs they carried highlight their impacts on Limnohabitans in different environments. Comparative genomic analyses indicate that DC31, DC33, and YIMV22061 represent three novel species in the Caudoviricetes class. IMG/VR database alignment further reveal that these phages are widely distributed across diverse aquatic and terrestrial ecosystems globally, suggesting their ecological significance. This study provides a basis for better understanding Limnohabitans–phage interactions. Full article
(This article belongs to the Special Issue Advances in Genomics and Ecology of Environmental Microorganisms)
Show Figures

Figure 1

15 pages, 2850 KiB  
Article
Dolichocephalovirinae Phages Exist as Episomal Pseudolysogens Across Diverse Soil Bacteria
by Tannaz Mohammadi and Bert Ely
Microorganisms 2025, 13(6), 1239; https://doi.org/10.3390/microorganisms13061239 - 28 May 2025
Viewed by 412
Abstract
Interactions between bacteria and bacteriophages are important for the maintenance of soil communities. In this study, we characterized the giant bacteriophages found within diverse soil bacteria and 14 additional phages isolated directly from soil samples. Based on their genome sizes and genetic composition, [...] Read more.
Interactions between bacteria and bacteriophages are important for the maintenance of soil communities. In this study, we characterized the giant bacteriophages found within diverse soil bacteria and 14 additional phages isolated directly from soil samples. Based on their genome sizes and genetic composition, we concluded that these phages belong to the Dolichocephalovirinae subfamily. In addition, we used pulsed-field gel electrophoresis to show that the genomes of these phages were present as episomal pseudolysogens in the cytoplasm of their host cells. These findings suggest that episomal phages are important components of soil microbial ecosystems. Understanding the interactions between bacteriophages and bacteria is essential for microbial ecology, as they influence nutrient cycling, community composition, and host evolution. Furthermore, these phage-bacteria dynamics offer potential applications in plant disease control, as bacteriophages could serve as biocontrol agents against soilborne pathogens, promoting sustainable agricultural practices. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 295 KiB  
Review
Methods of Controlling Microbial Contamination of Food
by Renata Urban-Chmiel, Jacek Osek and Kinga Wieczorek
Pathogens 2025, 14(5), 492; https://doi.org/10.3390/pathogens14050492 - 16 May 2025
Cited by 1 | Viewed by 1809
Abstract
The rapid growth of world population and increase in living standards have led to an increase in the demand for high-quality, safe food. The Food and Agriculture Organization of the United Nations (FAO) estimates that by 2050 the demand for food will increase [...] Read more.
The rapid growth of world population and increase in living standards have led to an increase in the demand for high-quality, safe food. The Food and Agriculture Organization of the United Nations (FAO) estimates that by 2050 the demand for food will increase by 60%, and production of animal protein will increase by 1.7% a year, with meat production to increase by nearly 70%, dairy products by 55%, and aquaculture by as much as 90%. Microbial contamination of food is a significant problem for the accessibility of safe food which does not pose a threat to the life and health of consumers. Campylobacter, Salmonella, and Yersinia are responsible for thousands of food-borne infections in humans. Currently, numerous programs are being developed to combat pathogenic bacteria in the food supply chain, especially at the primary production stage. These approaches include physical, chemical, biological, and other strategies and methods used to inhibit the bacterial growth of bacteria or completely eliminate the pathogens from the food chain. Therefore, an extremely important goal is to provide safe food and control its quality by eliminating pathogenic and spoilage microorganisms. However, the use of chemicals in food preservation has negative effects for both the consumption values of food and the natural environment. Therefore, it seems absolutely necessary to implement measures utilizing the most environmentally friendly and effective techniques for controlling microbial contamination in food. There is a great need to develop ecological methods in food production which guarantee adequate safety. One of these methods is the use of bacteriophages (bacterial viruses) naturally occurring in the environment. Given the above, the aim of this study was to present the most natural, ecological, and alternative methods of food preservation with regard to the most common foodborne zoonotic bacteria. We also present methods for reducing the occurrence of microbial contamination in food, thus to produce maximally safe food for consumers. Full article
17 pages, 1692 KiB  
Article
Klebsiella Lytic Phages Induce Pseudomonas aeruginosa PAO1 Biofilm Formation
by Grzegorz Guła, Grazyna Majkowska-Skrobek, Anna Misterkiewicz, Weronika Salwińska, Tomasz Piasecki and Zuzanna Drulis-Kawa
Viruses 2025, 17(5), 615; https://doi.org/10.3390/v17050615 - 25 Apr 2025
Viewed by 730
Abstract
Bacterial biofilms, characterized by complex structures, molecular communication, adaptability to environmental changes, insensitivity to chemicals, and immune response, pose a big problem both in clinics and in everyday life. The increasing bacterial resistance to antibiotics also led to the exploration of lytic bacteriophages [...] Read more.
Bacterial biofilms, characterized by complex structures, molecular communication, adaptability to environmental changes, insensitivity to chemicals, and immune response, pose a big problem both in clinics and in everyday life. The increasing bacterial resistance to antibiotics also led to the exploration of lytic bacteriophages as alternatives. Nevertheless, bacteria have co-evolved with phages, developing effective antiviral strategies, notably modification or masking phage receptors as the first line of defense mechanism. This study investigates viral–host interactions between non-host-specific phages and Pseudomonas aeruginosa, assessing whether bacteria can detect phage particles and initiate protective mechanisms. Using real-time biofilm monitoring via impedance and optical density techniques, we monitored the phage effects on biofilm and planktonic populations. Three Klebsiella phages, Slopekvirus KP15, Drulisvirus KP34, and Webervirus KP36, were tested against the P. aeruginosa PAO1 population, as well as Pseudomonas Pbunavirus KTN6. The results indicated that Klebsiella phages (non-specific to P. aeruginosa), particularly podovirus KP34, accelerated biofilm formation without affecting planktonic cultures. Our hypothesis suggests that bacteria sense phage virions, regardless of specificity, triggering biofilm matrix formation to block potential phage adsorption and infection. Nevertheless, further research is needed to understand the ecological and evolutionary dynamics between phages and bacteria, which is crucial for developing novel antibiofilm therapies. Full article
(This article belongs to the Special Issue Bacteriophages and Biofilms 2.0)
Show Figures

Graphical abstract

16 pages, 4919 KiB  
Article
Comparative Genomics of Bifidobacterium animalis subsp. lactis Reveals Strain-Level Hyperdiversity, Carbohydrate Metabolism Adaptations, and CRISPR-Mediated Phage Immunity
by Ozge Can, Ismail Gumustop, Ibrahim Genel, Hulya Unver, Enes Dertli, Ibrahim Cagri Kurt and Fatih Ortakci
Fermentation 2025, 11(4), 179; https://doi.org/10.3390/fermentation11040179 - 31 Mar 2025
Viewed by 1681
Abstract
Several strains of Bifidobacterium animalis subsp. lactis are blockbusters of commercial dietary supplement cocktails, widely recognized for their probiotic properties and found in various ecological niches. The present study aimed to perform an in-depth comparative genomic analysis on 71 B. animalis subsp. lactis [...] Read more.
Several strains of Bifidobacterium animalis subsp. lactis are blockbusters of commercial dietary supplement cocktails, widely recognized for their probiotic properties and found in various ecological niches. The present study aimed to perform an in-depth comparative genomic analysis on 71 B. animalis subsp. lactis strains isolated from diverse sources, including human and animal feces, breast milk, fermented foods, and commercial dietary supplements, to better elucidate the strain level diversity and biotechnological potential of this species. The average genome size was found to be 1.93 ± 0.05 Mb, with a GC content of 60.45% ± 0.2, an average of 1562 ± 41.3 coding sequences (CDS), and 53.4 ± 1.6 tRNA genes. A comparative genomic analysis revealed significant genetic diversity among the strains, with a core genome analysis showing that 34.7% of the total genes were conserved, while the pan-genome remained open, indicating ongoing gene acquisition. Functional annotation through EggNOG-Mapper and CAZYme clustering highlighted diverse metabolic capabilities, particularly in carbohydrate metabolism. Nearly all (70 of 71) Bifidobacterium animalis subsp. lactis strains were found to harbor CRISPR-Cas adaptive immune systems (predominantly of the Type I-E subtype), underscoring the ubiquity of this phage defense mechanism in the species. A comparative analysis of spacer sequences revealed distinct strain-specific CRISPR profiles, with certain strains sharing identical spacers that correlate with common phylogenetic clades or similar isolation sources—an indication of exposure to the same phage populations and shared selective pressures. These findings highlight a dynamic co-evolution between B. lactis and its bacteriophages across diverse ecological niches and point to the potential of leveraging its native CRISPR-Cas systems for future biotechnological applications. Our findings enhance our understanding of the genetic and functional diversity of B. animalis subsp. lactis, providing valuable insights for its use in probiotics and functional foods. Full article
(This article belongs to the Special Issue Lactic Acid Bacteria Metabolism)
Show Figures

Figure 1

26 pages, 9037 KiB  
Article
Isolation, Characterization, and Genomic Analysis of Bacteriophages Against Pseudomonas aeruginosa Clinical Isolates from Early and Chronic Cystic Fibrosis Patients for Potential Phage Therapy
by Hanzada T. Nour El-Din, Maryam Kettal, José C. Granados Maciel, Greg Beaudoin, Umut Oktay, Sabahudin Hrapovic, Subash Sad, Jonathan J. Dennis, Danielle L. Peters and Wangxue Chen
Microorganisms 2025, 13(3), 511; https://doi.org/10.3390/microorganisms13030511 - 26 Feb 2025
Cited by 3 | Viewed by 2922
Abstract
Pseudomonas aeruginosa is associated with both community and hospital-acquired infections. It colonizes the lungs of cystic fibrosis (CF) patients, establishing an ecological niche where it adapts and evolves from early to chronic stages, resulting in deteriorating lung function and frequent exacerbations. With antibiotics [...] Read more.
Pseudomonas aeruginosa is associated with both community and hospital-acquired infections. It colonizes the lungs of cystic fibrosis (CF) patients, establishing an ecological niche where it adapts and evolves from early to chronic stages, resulting in deteriorating lung function and frequent exacerbations. With antibiotics resistance on the rise, there is a pressing need for alternative personalized treatments (such as bacteriophage therapy) to combat P. aeruginosa infections. In this study, we aimed to isolate and characterize phages targeting both early and chronic P. aeruginosa isolates and evaluate their potential for phage therapy. Four highly virulent phages belonging to myoviral, podviral, and siphoviral morphotypes were isolated from sewage samples. These phages have a broad host range and effectively target 62.5% of the P. aeruginosa isolates with a positive correlation to the early isolates. All the phages have a virulence index of ≥0.90 (0.90–0.98), and one has a large burst size of 331 PFU/cell and a latency period of 30 min. All phages are stable under a wide range of temperature and pH conditions. Genomic analysis suggests the four phages are strictly lytic and devoid of identifiable temperate phage repressors and genes associated with antibiotic resistance and virulence. More significantly, two of the phages significantly delayed the onset of larval death when evaluated in a lethal Galleria mellonella infection model, suggesting their promise as phage therapy candidates for P. aeruginosa infections. Full article
(This article belongs to the Special Issue Phage–Bacteria Interplay: Phage Biology and Phage Therapy)
Show Figures

Figure 1

27 pages, 1395 KiB  
Review
Exploring the Microbial Ecology of Water in Sub-Saharan Africa and the Potential of Bacteriophages in Water Quality Monitoring and Treatment to Improve Its Safety
by Boniface Oure Obong’o, Fredrick Onyango Ogutu, Shauna Kathleen Hurley, Gertrude Maisiba Okiko and Jennifer Mahony
Viruses 2024, 16(12), 1897; https://doi.org/10.3390/v16121897 - 9 Dec 2024
Cited by 1 | Viewed by 1760
Abstract
Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review [...] Read more.
Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region. Bacteriophages specifically infect bacteria and offer a targeted approach to reducing bacterial load, including multidrug-resistant strains, without the drawbacks of chemical disinfectants. This review also highlights the advantages of phage bioremediation, including its specificity, adaptability, and minimal environmental impact. It also discusses various case studies demonstrating its efficacy in different water systems. Additionally, we underscore the need for further research and the development of region-specific phage applications to improve water quality and public health outcomes in sub-Saharan Africa. By integrating bacteriophage strategies into water treatment and food production, the region can address critical microbial threats, mitigate the spread of antimicrobial resistance, and advance global efforts toward ensuring safe water for all. Full article
(This article belongs to the Special Issue Women in Virology 2025)
Show Figures

Figure 1

12 pages, 3144 KiB  
Article
Soybean Bradyrhizobium spp. Spontaneously Produce Abundant and Diverse Temperate Phages in Culture
by Vanessa A. Richards, Barbra D. Ferrell, Shawn W. Polson, K. Eric Wommack and Jeffry J. Fuhrmann
Viruses 2024, 16(11), 1750; https://doi.org/10.3390/v16111750 - 7 Nov 2024
Viewed by 1236
Abstract
Soybean bradyrhizobia (Bradyrhizobium spp.) are symbiotic root-nodulating bacteria that fix atmospheric nitrogen for the host plant. The University of Delaware Bradyrhizobium Culture Collection (UDBCC; 353 accessions) was created to study the diversity and ecology of soybean bradyrhizobia. Some UDBCC accessions produce temperate [...] Read more.
Soybean bradyrhizobia (Bradyrhizobium spp.) are symbiotic root-nodulating bacteria that fix atmospheric nitrogen for the host plant. The University of Delaware Bradyrhizobium Culture Collection (UDBCC; 353 accessions) was created to study the diversity and ecology of soybean bradyrhizobia. Some UDBCC accessions produce temperate (lysogenic) bacteriophages spontaneously under routine culture conditions without chemical or other apparent inducing agents. Spontaneous phage production may promote horizontal gene transfer and shape bacterial genomes and associated phenotypes. A diverse subset (n = 98) of the UDBCC was examined for spontaneously produced virus-like particles (VLPs) using epifluorescent microscopy, with a majority (69%) producing detectable VLPs (>1 × 107 mL−1) in laboratory culture. Phages from the higher-producing accessions (>2.0 × 108 VLP mL−1; n = 44) were examined using transmission electron microscopy. Diverse morphologies were observed, including various tail types and lengths, capsid sizes and shapes, and the presence of collars or baseplates. In many instances, putative extracellular vesicles of a size similar to virions were also observed. Three of the four species examined (B. japonicum, B. elkanii, and B. diazoefficiens) produced apparently tailless phages. All species except B. ottawaense also produced siphovirus-like phages, while all but B. diazoefficiens additionally produced podovirus-like phages. Myovirus-like phages were restricted to B. japonicum and B. elkanii. At least three strains were polylysogens, producing up to three distinct morphotypes. These observations suggest spontaneously produced phages may play a significant role in the ecology and evolution of soybean bradyrhizobia. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Graphical abstract

9 pages, 443 KiB  
Article
The Isolation and Characterization of Novel Caulobacter and Non-Caulobacter Lysogenic Bacteria from Soil and the Discovery of Broad-Host-Range Phages Infecting Multiple Genera
by Tannaz Mohammadi and Bert Ely
Microorganisms 2024, 12(9), 1894; https://doi.org/10.3390/microorganisms12091894 - 14 Sep 2024
Cited by 2 | Viewed by 1821
Abstract
To explore how microbial interactions within the rhizosphere influence the diversity and functional roles of bacterial communities, we isolated 21 bacterial strains from soil samples collected near Rocky Branch Creek on the University of South Carolina campus. Our findings revealed that a significant [...] Read more.
To explore how microbial interactions within the rhizosphere influence the diversity and functional roles of bacterial communities, we isolated 21 bacterial strains from soil samples collected near Rocky Branch Creek on the University of South Carolina campus. Our findings revealed that a significant proportion of the isolated bacterial strains are lysogenic. Contrary to predictions of a narrow host range, most of the bacteriophages derived from these lysogenic bacteria demonstrated the ability to infect a broad range of bacterial strains. These results suggest that the bacterial community shares a complex phage community, creating an intricate web of interactions. This study enhances our understanding of the relationships between phages and their bacterial hosts in soil ecosystems, with implications for ecological balance and agricultural practices aimed at improving plant health through microbial management strategies. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community, 3rd Edition)
Show Figures

Figure 1

19 pages, 4389 KiB  
Article
Exploring the Complexity of the Human Respiratory Virome through an In Silico Analysis of Shotgun Metagenomic Data Retrieved from Public Repositories
by Talya Conradie, Jose A. Caparros-Martin, Siobhon Egan, Anthony Kicic, Sulev Koks, Stephen M. Stick and Patricia Agudelo-Romero
Viruses 2024, 16(6), 953; https://doi.org/10.3390/v16060953 - 13 Jun 2024
Cited by 2 | Viewed by 2376
Abstract
Background: Respiratory viruses significantly impact global morbidity and mortality, causing more disease in humans than any other infectious agent. Beyond pathogens, various viruses and bacteria colonize the respiratory tract without causing disease, potentially influencing respiratory diseases’ pathogenesis. Nevertheless, our understanding of respiratory microbiota [...] Read more.
Background: Respiratory viruses significantly impact global morbidity and mortality, causing more disease in humans than any other infectious agent. Beyond pathogens, various viruses and bacteria colonize the respiratory tract without causing disease, potentially influencing respiratory diseases’ pathogenesis. Nevertheless, our understanding of respiratory microbiota is limited by technical constraints, predominantly focusing on bacteria and neglecting crucial populations like viruses. Despite recent efforts to improve our understanding of viral diversity in the human body, our knowledge of viral diversity associated with the human respiratory tract remains limited. Methods: Following a comprehensive search in bibliographic and sequencing data repositories using keyword terms, we retrieved shotgun metagenomic data from public repositories (n = 85). After manual curation, sequencing data files from 43 studies were analyzed using EVEREST (pipEline for Viral assEmbly and chaRactEriSaTion). Complete and high-quality contigs were further assessed for genomic and taxonomic characterization. Results: Viral contigs were obtained from 194 out of the 868 FASTQ files processed through EVEREST. Of the 1842 contigs that were quality assessed, 8% (n = 146) were classified as complete/high-quality genomes. Most of the identified viral contigs were taxonomically classified as bacteriophages, with taxonomic resolution ranging from the superkingdom level down to the species level. Captured contigs were spread across 25 putative families and varied between RNA and DNA viruses, including previously uncharacterized viral genomes. Of note, airway samples also contained virus(es) characteristic of the human gastrointestinal tract, which have not been previously described as part of the lung virome. Additionally, by performing a meta-analysis of the integrated datasets, ecological trends within viral populations linked to human disease states and their biogeographical distribution along the respiratory tract were observed. Conclusion: By leveraging publicly available repositories of shotgun metagenomic data, the present study provides new insights into viral genomes associated with specimens from the human respiratory tract across different disease spectra. Further studies are required to validate our findings and evaluate the potential impact of these viral communities on respiratory tract physiology. Full article
(This article belongs to the Special Issue Virus Bioinformatics 2024)
Show Figures

Figure 1

12 pages, 1847 KiB  
Article
Valp1, a Newly Identified Temperate Phage Facilitating Coexistence of Lysogenic and Non-Lysogenic Populations of Vibrio anguillarum
by Manuel Arce, Guillermo Venegas, Karla Paez, Simone Latz, Paola Navarrete, Mario Caruffo, Carmen Feijoo, Katherine García and Roberto Bastías
Pathogens 2024, 13(4), 285; https://doi.org/10.3390/pathogens13040285 - 27 Mar 2024
Viewed by 2150
Abstract
Vibrio anguillarum is a pathogen for several fish and shellfish species. Its ecology is influenced by diverse factors, including bacteriophages. Here, we identify and characterize a new temperate bacteriophage (Valp1) of V. anguillarum. Valp1 is a myovirus with a 60 nm head [...] Read more.
Vibrio anguillarum is a pathogen for several fish and shellfish species. Its ecology is influenced by diverse factors, including bacteriophages. Here, we identify and characterize a new temperate bacteriophage (Valp1) of V. anguillarum. Valp1 is a myovirus with a 60 nm head and a 90 nm contractile tail. Its double-stranded DNA genome of 42,988 bp contains 68 genes, including a protelomerase gene, typical of telomeric phages. Valp1 inhibits the growth of the virulent strain of V. anguillarum PF4, while the derived lysogenic strain P1.1 presents a slight reduction in its growth but is not affected by the presence of Valp1. Both strains present similar virulence in a larval zebrafish (Danio rerio) model, and only slight differences have been observed in their biochemical profile. Co-culture assays reveal that PF4 and P1.1 can coexist for 10 h in the presence of naturally induced Valp1, with the proportion of PF4 ranging between 28% and 1.6%. By the end of the assay, the phage reached a concentration of ~108 PFU/mL, and all the non-lysogenic PF4 strains were resistant to Valp1. This equilibrium was maintained even after five successive subcultures, suggesting the existence of a coexistence mechanism between the lysogenic and non-lysogenic populations of V. anguillarum in conjunction with the phage Valp1. Full article
(This article belongs to the Special Issue The Interactions between Phages and Their Hosts)
Show Figures

Figure 1

13 pages, 16827 KiB  
Article
Potential of Limestonevirus Bacteriophages for Ecological Control of Dickeya solani Causing Bacterial Potato Blackleg
by Martin Kmoch, Josef Vacek, Věra Loubová, Karel Petrzik, Sára Brázdová and Rudolf Ševčík
Agriculture 2024, 14(3), 497; https://doi.org/10.3390/agriculture14030497 - 19 Mar 2024
Cited by 1 | Viewed by 1961
Abstract
Pectinolytic bacteria of the family Enterobacteriaceae, specifically Dickeya solani, are known to cause potato blackleg. This study aimed to evaluate the effectiveness of a mixture of two bacteriophages from the genus Limestonevirus in controlling Dickeya solani in both greenhouse and field [...] Read more.
Pectinolytic bacteria of the family Enterobacteriaceae, specifically Dickeya solani, are known to cause potato blackleg. This study aimed to evaluate the effectiveness of a mixture of two bacteriophages from the genus Limestonevirus in controlling Dickeya solani in both greenhouse and field trials. The potential of bacteriophages for ecological potato control was also assessed. The phages φDs3CZ and φDs20CZ were isolated from soil in the Czech Republic between 2019 and 2021. They were applied preventively and curatively as a solution on artificially wounded and inoculated seed tubers immediately prior to planting. The phage-treated variant showed a highly significant reduction in the extent of D. solani infection compared to the untreated control in both the greenhouse and field trial. The effect of the phages depended on the concentration of the solution, the rate of tuber injury, and the sequence of application. When applied preventively, the phages caused a significantly higher reduction in the rate of blackleg symptoms (86.7% and/or 87.1%) compared to the curative application (54.6 and/or 36.6%). Phages φDs3CZ and φDs20CZ showed potential for use in biological potato control against Dickeya solani. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

25 pages, 6188 KiB  
Article
First European Erwinia amylovora Lytic Bacteriophage Cocktails Effective in the Host: Characterization and Prospects for Fire Blight Biocontrol
by Elena G. Biosca, Ricardo Delgado Santander, Félix Morán, Àngela Figàs-Segura, Rosa Vázquez, José Francisco Català-Senent and Belén Álvarez
Biology 2024, 13(3), 176; https://doi.org/10.3390/biology13030176 - 8 Mar 2024
Cited by 8 | Viewed by 3942
Abstract
Fire blight, caused by the plant-pathogenic bacterium Erwinia amylovora, is a highly contagious and difficult-to-control disease due to its efficient dissemination and survival and the scarcity of effective control methods. Copper and antibiotics are the most used treatments but pose environmental and [...] Read more.
Fire blight, caused by the plant-pathogenic bacterium Erwinia amylovora, is a highly contagious and difficult-to-control disease due to its efficient dissemination and survival and the scarcity of effective control methods. Copper and antibiotics are the most used treatments but pose environmental and human health risks. Bacteriophages (phages) constitute an ecological, safe, and sustainable fire blight control alternative. The goal of this study was to search for specific E. amylovora phages from plant material, soil, and water samples in Mediterranean environments. A collection of phages able to specifically infect and lyse E. amylovora strains was generated from former fire blight-affected orchards in Eastern Spain. Following in vitro characterization, assays in immature fruit revealed that preventively applying some of the phages or their combinations delayed the onset of fire blight symptoms and reduced the disease’s severity, suggesting their biocontrol potential in Spain and other countries. The morphological and molecular characterization of the selected E. amylovora phages classified them as members of the class Caudoviricetes (former Myoviridae family) and genus Kolesnikvirus. This study reveals Mediterranean settings as plausible sources of E. amylovora-specific bacteriophages and provides the first effective European phage cocktails in plant material for the development of sustainable fire blight management measures. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants)
Show Figures

Figure 1

Back to TopTop