Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = auxin receptor TIR1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4102 KiB  
Article
The TIR1/AFB Family in Solanum melongena: Genome-Wide Identification and Expression Profiling under Stresses and Picloram Treatment
by Wenchao Du, Umer Karamat, Liuqing Cao, Yunpeng Li, Haili Li, Haoxin Li, Lai Wei, Dongchen Yang, Meng Xia, Qiang Li and Xueping Chen
Agronomy 2024, 14(7), 1413; https://doi.org/10.3390/agronomy14071413 - 28 Jun 2024
Viewed by 1294
Abstract
TIR1/AFB proteins are a class of auxin receptors with key roles in plant development and biotic and abiotic stress responses; several have been identified as targets of the auxin-mimicking herbicide picloram. In this study, we identified five putative TIR1/AFB gene family members in [...] Read more.
TIR1/AFB proteins are a class of auxin receptors with key roles in plant development and biotic and abiotic stress responses; several have been identified as targets of the auxin-mimicking herbicide picloram. In this study, we identified five putative TIR1/AFB gene family members in the important vegetable crop Solanum melongena (eggplant) and characterized them using bioinformatics tools and gene expression analyses. Phylogenetic analysis of the TIR1/AFBs classified them into three subgroups based on their Arabidopsis and Solanum lycopersicum homologs. AFB6 homologs were present only in S. melongena and S. lycopersicum, whereas AFB2/3 homologs were found only in Arabidopsis. One pair of S. melongena TIR1 homologs were located in syntenic regions in the genome and appeared to have arisen by segmental duplication. Promoter analysis revealed 898 cis-elements in the TIR1/AFB promoters, 125 of which were related to hormones, stress, light, or growth responses, but only SmAFB5 had a cis-acting regulatory element involved in auxin responsiveness (AuxRR-core). RNA sequencing and expression profiling showed that the TIR1/AFB genes were differentially expressed at different growth stages and in response to light, temperature, and drought. Only SmTIR1A expression was significantly induced by picloram treatment and different growth stages. TIR1/AFB expression is regulated by microRNAs (miRNAs) in other plant species, and we identified 6 or 29 miRNAs that potentially targeted the five TIR1/AFB genes on the basis of comparisons with S. lycopersicum and S. tuberosum miRNAs, respectively. Three-dimensional protein structure predictions revealed that all the TIR1/AFB proteins were very similar in structure, differing only in the numbers of alpha helices and in one angle linking an α helix and a β sheet. For measuring the function of TIR1/AFB genes in response to drought, SmAFB5 was selected, and knockdown by virus-induced gene silence (VIGS) 35S::SmAFB5 lines showed resistance to drought compared to controls. These analyses provide insight into the potential functions of TIR1/AFBs during growth and in response to stress; they highlight differences among the SmTIR1/AFBs that may be useful for eggplant breeding. Full article
Show Figures

Figure 1

17 pages, 8115 KiB  
Article
The Role of FveAFB5 in Auxin-Mediated Responses and Growth in Strawberries
by Xuhui Wang, Shuo Feng, Jiangshan Luo, Shikui Song, Juncheng Lin, Yunhe Tian, Tongda Xu and Jun Ma
Plants 2024, 13(8), 1142; https://doi.org/10.3390/plants13081142 - 19 Apr 2024
Viewed by 1800
Abstract
Auxin is a crucial hormone that regulates various aspects of plant growth and development. It exerts its effects through multiple signaling pathways, including the TIR1/AFB-based transcriptional regulation in the nucleus. However, the specific role of auxin receptors in determining developmental features in the [...] Read more.
Auxin is a crucial hormone that regulates various aspects of plant growth and development. It exerts its effects through multiple signaling pathways, including the TIR1/AFB-based transcriptional regulation in the nucleus. However, the specific role of auxin receptors in determining developmental features in the strawberry (Fragaria vesca) remains unclear. Our research has identified FveAFB5, a potential auxin receptor, as a key player in the development and auxin responses of woodland strawberry diploid variety Hawaii 4. FveAFB5 positively influences lateral root development, plant height, and fruit development, while negatively regulating shoot branching. Moreover, the mutation of FveAFB5 confers strong resistance to the auxinic herbicide picloram, compared to dicamba and quinclorac. Transcriptome analysis suggests that FveAFB5 may initiate auxin and abscisic acid signaling to inhibit growth in response to picloram. Therefore, FveAFB5 likely acts as an auxin receptor involved in regulating multiple processes related to strawberry growth and development. Full article
(This article belongs to the Special Issue Role of Auxin in Plant Growth and Development)
Show Figures

Figure 1

11 pages, 2253 KiB  
Article
A Combinatorial TIR1-Aux/IAA Co-Receptor System for Peach Fruit Softening
by Yutong Zhao, Qing Wang, Dan Guan, Haiqing Yang, Jianwei Wu and Yueping Liu
Horticulturae 2023, 9(7), 734; https://doi.org/10.3390/horticulturae9070734 - 23 Jun 2023
Cited by 3 | Viewed by 1812
Abstract
Fruit softening is an important characteristic of peach fruit ripening. The auxin receptor TIR1 (Transport Inhibitor Response 1) plays an important role in plant growth and fruit maturation. Still, little research has been conducted on the relation of TIR1 to the softening of [...] Read more.
Fruit softening is an important characteristic of peach fruit ripening. The auxin receptor TIR1 (Transport Inhibitor Response 1) plays an important role in plant growth and fruit maturation. Still, little research has been conducted on the relation of TIR1 to the softening of peach fruits. In this study, the hardness of isolated peach fruits was reduced under exogenous NAA treatment at low concentrations. At the same time, the low concentration of NAA treatment reduced the transcription level of PpPG and Ppβ-GAL genes related to cell wall softening and PpACS1 genes related to ethylene synthesis. The transient overexpression of the PpTIR1 gene in peach fruit blocks caused significant down-regulation of the expression of early auxin-responsive genes, ethylene synthesis, and cell wall metabolic genes related to fruit firmness. Through yeast two-hybrid technology, bimolecular fluorescence complementary technology, and a firefly luciferase complementation imaging assay, we were able to unveil an interaction between PpTIR1 and PpIAA1/3/5/9/27 proteins. Furthermore, it was determined that the interaction depended on auxin and its type and concentration. These results show that the PpTIR1-Aux/IAA module has a possible regulatory effect on fruit ripening and softening. Full article
Show Figures

Figure 1

13 pages, 1705 KiB  
Article
Genome-Wide Transcriptome Analysis Reveals That Upregulated Expression of Aux/IAA Genes Is Associated with Defective Leaf Growth of the slf Mutant in Eggplant
by Wenchao Du, Yang Lu, Shuangxia Luo, Ping Yu, Jiajia Shen, Xing Wang, Shuxin Xuan, Yanhua Wang, Jianjun Zhao, Na Li, Xueping Chen and Shuxing Shen
Agronomy 2022, 12(11), 2647; https://doi.org/10.3390/agronomy12112647 - 27 Oct 2022
Cited by 4 | Viewed by 2350
Abstract
Leaf size is a crucial trait in eggplant breeding, as it influences photosynthesis, plant biomass and management. However, little is known about the molecular mechanism regulating leaf size in eggplant. This study reports a small leaf mutant (slf) generated with the [...] Read more.
Leaf size is a crucial trait in eggplant breeding, as it influences photosynthesis, plant biomass and management. However, little is known about the molecular mechanism regulating leaf size in eggplant. This study reports a small leaf mutant (slf) generated with the mutagen ethyl methane sulfonate (EMS). The slf mutant showed restricted cell proliferation and an increased content of auxin. Transcriptome analysis revealed that several genes involved in auxin signaling are upregulated in slf. Exogenous application of auxinole, an auxin antagonist of TIR1/AFB receptors, repressed the expression of these genes and restored leaf growth of slf, suggesting that the small leaf size of slf is likely associated with auxin signaling. This study provides essential clues to unveil the molecular mechanism of leaf size regulation in eggplant. Full article
Show Figures

Figure 1

16 pages, 1658 KiB  
Article
Auxin Regulates Apical Stem Cell Regeneration and Tip Growth in the Marine Red Alga Neopyropia yezoensis
by Kensuke Taya, Shunzei Takeuchi, Megumu Takahashi, Ken-ichiro Hayashi and Koji Mikami
Cells 2022, 11(17), 2652; https://doi.org/10.3390/cells11172652 - 26 Aug 2022
Cited by 6 | Viewed by 2748
Abstract
The red alga Neopyropia yezoensis undergoes polarized elongation and asymmetrical cell division of the apical stem cell during tip growth in filamentous generations of its life cycle: the conchocelis and conchosporangium. Side branches are also produced via tip growth, a process involving the [...] Read more.
The red alga Neopyropia yezoensis undergoes polarized elongation and asymmetrical cell division of the apical stem cell during tip growth in filamentous generations of its life cycle: the conchocelis and conchosporangium. Side branches are also produced via tip growth, a process involving the regeneration and asymmetrical division of the apical stem cell. Here, we demonstrate that auxin plays a crucial role in these processes by using the auxin antagonist 2-(1H-Indol-3-yl)-4-oxo-4-phenyl-butyric acid (PEO-IAA), which specifically blocks the activity of the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) in land plants. PEO-IAA repressed both the regeneration and polarized tip growth of the apical stem cell in single-celled conchocelis; this phenomenon was reversed by treatment with the auxin indole-3-acetic acid (IAA). In addition, tip growth of the conchosporangium was accelerated by IAA treatment but repressed by PEO-IAA treatment. These findings indicate that auxin regulates polarized tip cell growth and that an auxin receptor-like protein is present in N. yezoensis. The sensitivity to different 5-alkoxy-IAA analogs differs considerably between N. yezoensis and Arabidopsis thaliana. N. yezoensis lacks a gene encoding TIR1, indicating that its auxin receptor-like protein differs from the auxin receptor of terrestrial plants. These findings shed light on auxin-induced mechanisms and the regulation of tip growth in plants. Full article
(This article belongs to the Special Issue Growth and Division in Algae)
Show Figures

Figure 1

15 pages, 1239 KiB  
Review
The miR393-Target Module Regulates Plant Development and Responses to Biotic and Abiotic Stresses
by Jinjin Jiang, Haotian Zhu, Na Li, Jacqueline Batley and Youping Wang
Int. J. Mol. Sci. 2022, 23(16), 9477; https://doi.org/10.3390/ijms23169477 - 22 Aug 2022
Cited by 41 | Viewed by 3903
Abstract
MicroRNAs (miRNAs), a class of endogenous small RNAs, are broadly involved in plant development, morphogenesis and responses to various environmental stresses, through manipulating the cleavage, translational expression, or DNA methylation of target mRNAs. miR393 is a conserved miRNA family present in many plants, [...] Read more.
MicroRNAs (miRNAs), a class of endogenous small RNAs, are broadly involved in plant development, morphogenesis and responses to various environmental stresses, through manipulating the cleavage, translational expression, or DNA methylation of target mRNAs. miR393 is a conserved miRNA family present in many plants, which mainly targets genes encoding the transport inhibitor response1 (TIR1)/auxin signaling F-box (AFB) auxin receptors, and thus greatly affects the auxin signal perception, Aux/IAA degradation, and related gene expression. This review introduces the advances made on the miR393/target module regulating plant development and the plant’s responses to biotic and abiotic stresses. This module is valuable for genetic manipulation of optimized conditions for crop growth and development and would also be helpful in improving crop yield through molecular breeding. Full article
(This article belongs to the Special Issue Molecular Genetics and Plant Breeding 2.0)
Show Figures

Figure 1

15 pages, 4712 KiB  
Article
The Photoperiod Stress Response in Arabidopsis thaliana Depends on Auxin Acting as an Antagonist to the Protectant Cytokinin
by Manuel Frank, Anne Cortleven, Aleš Pěnčík, Ondrej Novak and Thomas Schmülling
Int. J. Mol. Sci. 2022, 23(6), 2936; https://doi.org/10.3390/ijms23062936 - 8 Mar 2022
Cited by 4 | Viewed by 2909
Abstract
Fluctuating environmental conditions trigger adaptive responses in plants, which are regulated by phytohormones. During photoperiod stress caused by a prolongation of the light period, cytokinin (CK) has a protective function. Auxin often acts as an antagonist of CK in developmental processes and stress [...] Read more.
Fluctuating environmental conditions trigger adaptive responses in plants, which are regulated by phytohormones. During photoperiod stress caused by a prolongation of the light period, cytokinin (CK) has a protective function. Auxin often acts as an antagonist of CK in developmental processes and stress responses. Here, we investigated the regulation of the photoperiod stress response in Arabidopsis thaliana by auxin and its interaction with CK. Transcriptome analysis revealed an altered transcript abundance of numerous auxin metabolism and signaling genes after photoperiod stress treatment. The changes appeared earlier and were stronger in the photoperiod-stress-sensitive CK receptor mutant arabidopsis histidine kinase 2 (ahk2),3 compared to wild-type plants. The concentrations of indole-3-acetic acid (IAA), IAA-Glc and IAA-Asp increased in both genotypes, but the increases were more pronounced in ahk2,3. Genetic analysis revealed that the gain-of-function YUCCA 1 (YUC1) mutant, yuc1D, displayed an increased photoperiod stress sensitivity. In contrast, a loss of the auxin receptors TRANSPORT-INHIBITOR-RESISTANT 1 (TIR1), AUXIN SIGNALING F-BOX 2 (AFB2) and AFB3 in wild-type and ahk2,3 background caused a reduced photoperiod stress response. Overall, this study revealed that auxin promotes response to photoperiod stress antagonizing the protective CK. Full article
(This article belongs to the Special Issue Perception, Transduction and Crosstalk of Auxin and Cytokinin Signals)
Show Figures

Figure 1

19 pages, 8018 KiB  
Article
The Lotus japonicus AFB6 Gene Is Involved in the Auxin Dependent Root Developmental Program
by Alessandra Rogato, Vladimir Totev Valkov, Marcin Nadzieja, Jens Stougaard and Maurizio Chiurazzi
Int. J. Mol. Sci. 2021, 22(16), 8495; https://doi.org/10.3390/ijms22168495 - 6 Aug 2021
Cited by 3 | Viewed by 2538
Abstract
Auxin is essential for root development, and its regulatory action is exerted at different steps from perception of the hormone up to transcriptional regulation of target genes. In legume plants there is an overlap between the developmental programs governing lateral root and N [...] Read more.
Auxin is essential for root development, and its regulatory action is exerted at different steps from perception of the hormone up to transcriptional regulation of target genes. In legume plants there is an overlap between the developmental programs governing lateral root and N2-fixing nodule organogenesis, the latter induced as the result of the symbiotic interaction with rhizobia. Here we report the characterization of a member of the L. japonicus TIR1/AFB auxin receptor family, LjAFB6. A preferential expression of the LjAFB6 gene in the aerial portion of L. japonicus plants was observed. Significant regulation of the expression was not observed during the symbiotic interaction with Mesorhizobium loti and the nodule organogenesis process. In roots, the LjAFB6 expression was induced in response to nitrate supply and was mainly localized in the meristematic regions of both primary and lateral roots. The phenotypic analyses conducted on two independent null mutants indicated a specialized role in the control of primary and lateral root elongation processes in response to auxin, whereas no involvement in the nodulation process was found. We also report the involvement of LjAFB6 in the hypocotyl elongation process and in the control of the expression profile of an auxin-responsive gene. Full article
Show Figures

Figure 1

15 pages, 1450 KiB  
Article
Variation of Glucosinolate Contents in Clubroot-Resistant and -Susceptible Brassica napus Cultivars in Response to Virulence of Plasmodiophora brassicae
by Nazanin Zamani-Noor, Johann Hornbacher, Christel Joy Comel and Jutta Papenbrock
Pathogens 2021, 10(5), 563; https://doi.org/10.3390/pathogens10050563 - 6 May 2021
Cited by 9 | Viewed by 3001
Abstract
The present study investigated the changes in total and individual glucosinolates (GSLs) in roots and leaves of different clubroot-resistant and -susceptible oilseed rape cultivars following artificial inoculation with Plasmodiophora brassicae isolates with different virulence. The results showed significant differences in clubroot incidence and [...] Read more.
The present study investigated the changes in total and individual glucosinolates (GSLs) in roots and leaves of different clubroot-resistant and -susceptible oilseed rape cultivars following artificial inoculation with Plasmodiophora brassicae isolates with different virulence. The results showed significant differences in clubroot incidence and severity as well as in the amount of total and individual glucosinolates between oilseed rape cultivars in response to virulence of the pathogen. Single among with total aliphatic and total indolic glucosinolate contents were significantly lower in leaves of susceptible cultivars compared to resistant ones due to the infection. Similarly, single and total aliphatic as well as indolic glucosinolate contents in roots were lower in susceptible cultivars compared to resistant cultivars analyzed. The different isolates of P. brassicae seem to differ in their ability to reduce gluconasturtiin contents in the host. The more aggressive isolate P1 (+) might be able to suppress gluconasturtiin synthesis of the host in a more pronounced manner compared to the isolate P1. A possible interaction of breakdown products of glucobrassicin with the auxin receptor transport inhibitor response 1 (TIR1) is hypothesized and its possible effects on auxin signaling in roots and leaves of resistant and susceptible cultivars is discussed. A potential interplay between aliphatic and indolic glucosinolates that might be involved in water homeostasis in resistant cultivars is explained. Full article
Show Figures

Figure 1

16 pages, 4758 KiB  
Article
Bioprospecting Fluorescent Plant Growth Regulators from Arabidopsis to Vegetable Crops
by Radu L. Sumalan, Liliana Halip, Massimo E. Maffei, Lilia Croitor, Anatolii V. Siminel, Izidora Radulov, Renata M. Sumalan and Manuela E. Crisan
Int. J. Mol. Sci. 2021, 22(6), 2797; https://doi.org/10.3390/ijms22062797 - 10 Mar 2021
Cited by 2 | Viewed by 3574
Abstract
The phytohormone auxin is involved in almost every process of a plant’s life, from germination to plant development. Nowadays, auxin research connects synthetic chemistry, plant biology and computational chemistry in order to develop innovative and safe compounds to be used in sustainable agricultural [...] Read more.
The phytohormone auxin is involved in almost every process of a plant’s life, from germination to plant development. Nowadays, auxin research connects synthetic chemistry, plant biology and computational chemistry in order to develop innovative and safe compounds to be used in sustainable agricultural practice. In this framework, we developed new fluorescent compounds, ethanolammonium p-aminobenzoate (HEA-pABA) and p-nitrobenzoate (HEA-pNBA), and investigated their auxin-like behavior on two main commercial vegetables cultivated in Europe, cucumber (Cucumis sativus) and tomato (Solanumlycopersicum), in comparison to the model plant Arabidopsis (Arabidopsis thaliana). Moreover, the binding modes and affinities of two organic salts in relation to the natural auxin indole-3-acetic acid (IAA) into TIR1 auxin receptor were investigated by computational approaches (homology modeling and molecular docking). Both experimental and theoretical results highlight HEA-pABA as a fluorescent compound with auxin-like activity both in Arabidopsis and the commercial cucumber and tomato. Therefore, alkanolammonium benzoates have a great potential as promising sustainable plant growth stimulators to be efficiently used in vegetable crops. Full article
Show Figures

Graphical abstract

17 pages, 2894 KiB  
Article
Study on Gene Differential Expression in Tetraploid Populus Leaves
by Ying Zhang, Yongyu Ren and Xiangyang Kang
Forests 2020, 11(11), 1233; https://doi.org/10.3390/f11111233 - 23 Nov 2020
Cited by 5 | Viewed by 2938
Abstract
Polyploids exhibit different phenotypes compared to those of diploids in plants, and the important role of polyploids in tree breeding has been widely recognized. The transcriptomes detected by RNA-seq in the Populus triploid by doubling the chromosomes of the female gamete, in the [...] Read more.
Polyploids exhibit different phenotypes compared to those of diploids in plants, and the important role of polyploids in tree breeding has been widely recognized. The transcriptomes detected by RNA-seq in the Populus triploid by doubling the chromosomes of the female gamete, in the triploid by doubling the chromosomes of somatic cells and the diploid with the parent were compared to reveal the patterns of gene expression of tetraploid leaves and their influence on growth. The results showed that the high expression of GATA and PORA in tetraploid leaves was the reason for the higher chlorophyll content in the leaves than in diploid and triploid leaves. The 11-day-old tetraploid leaves began to enter the aging stage. Compared with that in the diploid, GRF was significantly upregulated, while the amylase genes were downregulated. Compared with those in the triploid, 3 STN7 genes that regulate photosynthetic genes and PGSIP genes which are related to starch synthesis, were significantly downregulated in the tetraploid, and the auxin receptor protein TIR1 was also significantly downregulated. In the tetraploid, auxin-regulating genes such as GH3 and AUX/IAA as well as genes involved in the regulation of leaf senescence, SAG genes and SRG genes were significantly up-regulated, resulting in a decrease in the auxin content. In senescent leaves, CHLD, CHLI1, and CHLM in the early stage of chlorophyll synthesis all began to downregulate their expressions, leading to the downregulation of LHC genes and a decrease in their photosynthetic efficiency, which led to the downregulation of carbon fixation-related genes such as SS genes, thus affecting carbon synthesis and fixation. This finally led to the slow growth of tetraploid plants. These data represent the transcriptome characteristics of tetraploid, and they can be used as a resource for further research on polyploids and provide a reference for further understanding of the function of polyploid vegetative growth-related genes. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

21 pages, 2704 KiB  
Article
Variable Light Condition Improves Root Distribution Shallowness and P Uptake of Soybean in Maize/Soybean Relay Strip Intercropping System
by Li Wang, Tao Zhou, Bin Cheng, Yongli Du, Sisi Qin, Yang Gao, Mei Xu, Junji Lu, Ting Liu, Shuxian Li, Weiguo Liu and Wenyu Yang
Plants 2020, 9(9), 1204; https://doi.org/10.3390/plants9091204 - 15 Sep 2020
Cited by 11 | Viewed by 3496
Abstract
In this study, soybean root distribution in an inter-cropping system was influenced by various environmental and biotic cues. However, it is still unknown how root development and distribution in inter-cropping responds to aboveground light conditions. Herein, soybeans were inter- and monocropped with P [...] Read more.
In this study, soybean root distribution in an inter-cropping system was influenced by various environmental and biotic cues. However, it is still unknown how root development and distribution in inter-cropping responds to aboveground light conditions. Herein, soybeans were inter- and monocropped with P (phosphorus) treatments of 0 and 20 kg P ha yr−1 (P0 and P20, respectively) in field experiment over 4 years. In 2019, a pot experiment was conducted as the supplement to the field experiment. Shade from sowing to V5 (Five trifoliolates unroll) and light (SL) was used to imitate the light condition of soybeans in a relay trip inter-cropping system, while light then shade from V5 to maturity (LS) was used to imitate the light condition of soybeans when monocropped. Compared to monocropping, P uptake and root distribution in the upper 0–15 cm soil layer increased when inter-cropped. Inter-cropped soybeans suffered serious shade by maize during a common-growth period, which resulted in the inhibition of primary root growth and a modified auxin synthesis center and response. During the solo-existing period, plant photosynthetic capacity and sucrose accumulation increased under ameliorated light in SL (shade-light). Increased light during the reproductive stage significantly decreased leaf P concentration in SL under both P-sufficient and P-deficient conditions. Transcripts of a P starvation response gene (GmPHR25) in leaves and genes (GmEXPB2) involved in root growth were upregulated by ameliorated light during the reproductive stage. Furthermore, during the reproductive stage, more light interception increased the auxin concentration and expression of GmYUCCA14 (encoding the auxin synthesis) and GmTIR1C (auxin receptor) in roots. Across the field and pot experiments, increased lateral root growth and shallower root distribution were associated with inhibited primary root growth during the seedling stage and ameliorated light conditions in the reproductive stage. Consequently, this improved topsoil foraging and P uptake of inter-cropped soybeans. It is suggested that the various light conditions (shade-light) mediating leaf P status and sucrose transport can regulate auxin synthesis and respond to root formation and distribution. Full article
Show Figures

Graphical abstract

15 pages, 4090 KiB  
Article
Genome-Wide Analysis of Auxin Receptor Family Genes in Brassica juncea var. tumida
by Zhaoming Cai, De-er Zeng, Jingjing Liao, Chunhong Cheng, Zulfiqar Ali Sahito, Meiqin Xiang, Min Fu, Yuanqing Chen and Diandong Wang
Genes 2019, 10(2), 165; https://doi.org/10.3390/genes10020165 - 20 Feb 2019
Cited by 22 | Viewed by 4633
Abstract
Transport inhibitor response 1/auxin signaling f-box proteins (TIR1/AFBs) play important roles in the process of plant growth and development as auxin receptors. To date, no information has been available about the characteristics of the TIR1/AFB gene family in Brassica juncea var. tumida. [...] Read more.
Transport inhibitor response 1/auxin signaling f-box proteins (TIR1/AFBs) play important roles in the process of plant growth and development as auxin receptors. To date, no information has been available about the characteristics of the TIR1/AFB gene family in Brassica juncea var. tumida. In this study, 18 TIR1/AFB genes were identified and could be clustered into six groups. The genes are located in 11 of 18 chromosomes in the genome of B. juncea var. tumida, and similar gene structures are found for each of those genes. Several cis-elements related to plant response to phytohormones, biotic stresses, and abiotic stresses are found in the promoter of BjuTIR1/AFB genes. The results of qPCR analysis show that most genes have differential patterns of expression among six tissues, with the expression levels of some of the genes repressed by salt stress treatment. Some of the genes are also responsive to pathogen Plasmodiophora brassicae treatment. This study provides valuable information for further studies as to the role of BjuTIR1/AFB genes in the regulation of plant growth, development, and response to abiotic stress. Full article
(This article belongs to the Special Issue Hormonal Control of Gene Expression in Plants)
Show Figures

Figure 1

12 pages, 3297 KiB  
Article
The 5′-3′ Exoribonuclease XRN4 Regulates Auxin Response via the Degradation of Auxin Receptor Transcripts
by David Windels and Etienne Bucher
Genes 2018, 9(12), 638; https://doi.org/10.3390/genes9120638 - 17 Dec 2018
Cited by 8 | Viewed by 4383
Abstract
Auxin is a major hormone which plays crucial roles in instructing virtually all developmental programs of plants. Its signaling depends primarily on its perception by four partially redundant receptors of the TIR1/AFB2 clade (TAARs), which subsequently mediate the specific degradation of AUX/IAA transcriptional [...] Read more.
Auxin is a major hormone which plays crucial roles in instructing virtually all developmental programs of plants. Its signaling depends primarily on its perception by four partially redundant receptors of the TIR1/AFB2 clade (TAARs), which subsequently mediate the specific degradation of AUX/IAA transcriptional repressors to modulate the expression of primary auxin-responsive genes. Auxin homeostasis depends on complex regulations at the level of synthesis, conjugation, and transport. However, the mechanisms and principles involved in the homeostasis of its signaling are just starting to emerge. We report that xrn4 mutants exhibit pleiotropic developmental defects and strong auxin hypersensitivity phenotypes. We provide compelling evidences that these phenotypes are directly caused by improper regulation of TAAR transcript degradation. We show that the cytoplasmic 5′-3′ exoribonuclease XRN4 is required for auxin response. Thus, our work identifies new targets of XRN4 and a new level of regulation for TAAR transcripts important for auxin response and for plant development. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1718 KiB  
Review
Auxin Information Processing; Partners and Interactions beyond the Usual Suspects
by Thea Van den Berg and Kirsten H. Ten Tusscher
Int. J. Mol. Sci. 2017, 18(12), 2585; https://doi.org/10.3390/ijms18122585 - 1 Dec 2017
Cited by 7 | Viewed by 5203
Abstract
Auxin plays a major role in a variety of processes involved in plant developmental patterning and its adaptation to environmental conditions. Therefore, an important question is how specificity in auxin signalling is achieved, that is, how a single signalling molecule can carry so [...] Read more.
Auxin plays a major role in a variety of processes involved in plant developmental patterning and its adaptation to environmental conditions. Therefore, an important question is how specificity in auxin signalling is achieved, that is, how a single signalling molecule can carry so many different types of information. In recent years, many studies on auxin specificity have been published, unravelling increasingly more details on differential auxin sensitivity, expression domains and downstream partners of the auxin receptors (transport inhibitor response 1 (TIR1) and other auxin signaling F-box proteins (AFB)), transcriptional repressors that are degraded in response to auxin (AUX/IAA) and downstream auxin response factors (ARF) that together constitute the plant’s major auxin response pathways. These data are critical to explain how, in the same cells, different auxin levels may trigger different responses, as well as how in different spatial or temporal contexts similar auxin signals converge to different responses. However, these insights do not yet answer more complex questions regarding auxin specificity. As an example, they leave open the question of how similar sized auxin changes at similar locations result in different responses depending on the duration and spatial extent of the fluctuation in auxin levels. Similarly, it leaves unanswered how, in the case of certain tropisms, small differences in signal strength at both sides of a plant organ are converted into an instructive auxin asymmetry that enables a robust tropic response. Finally, it does not explain how, in certain cases, substantially different auxin levels become translated into similar cellular responses, while in other cases similar auxin levels, even when combined with similar auxin response machinery, may trigger different responses. In this review, we illustrate how considering the regulatory networks and contexts in which auxin signalling takes place helps answer these types of fundamental questions. Full article
(This article belongs to the Special Issue Auxin)
Show Figures

Figure 1

Back to TopTop